ENGI E1112 Departmental Project Report:
Computer Science/Computer Engineering

Ankita Gore, Christina Huang, Shikhar Kumar
December 16, 2011

Abstract

The overarching goal of the project was to learn to write new firmware
for an HP 20b calculator. We were introduced to embedded programming,
which is coding software for something that does not, and should not, appear
to be a computer in the traditional sense, yet is one at its core. In addition, the
project was meant to let us experience the challenges of designing systems
ranging from traditional electrical issues like power consumption to high-
level computer science problems like efficient algorithm design, and in turn,
learn some standard solutions.

The project was made up of four labs, each of which allowed us to learn
the intricacies of writing new firmware and build upon knowledge and code
from the previous lab. The objective of the first lab was to write code that
would implement a scrolling display on the HP 20b calculator. The objective
of the second lab was to write code that would let the user enter and display
numbers. The objective of the third lab was to write code that would read the
keyboard on the HP 20b and display which key was pressed. The objective
of the final lab was to write code that would allow the HP 20b to make
calculations through the RPN method.

1 Introduction

The HP 20b Business Consultant is a financial calculator published in 2008 by
Hewlett-Packard [3]]. It is an open source calculator, since HP has made its hard-
ware and software public. In this project, we programmed the calculator from
scratch to work like an RPN calculator. The following document guides the user
through the functionality of the calculator as well as the hardware and the software
that make it possible.

2 User Guide

L e L L lAs Amar|
S'M Kowe Bey FIYE End Dapr

Chfl (R NPV Bond L] RCL
Dun Bws Bbbs Date Sook SIC

2.1 ON/OFF Key

To turn on the HP 20b calculator, press the ON/OFF key in the bottom left hand
of the calculator. To turn it off, press the key above it and then the ON/OFF key.

2.2 Display

The calculator has a two-line display screen, but for the computations that we have
programmed it to do, only the bottom line on the display screen will be used. The
bottom line will display numbers as they are pressed.

2.3 INPUT Key

The INPUT key is used to enter numbers into stacks for the calculator’s RPN
mode.

2.4 Number Entry

The +, -, x and / (division) keys along the right side of the calculator keyboard
perform the operations they indicate.

Numbers are entered using the O - 9 keys. To enter a number, press the number
digits consecutively, with a maximum limit of 12 digits.

To delete the most recent number entry, press the backspace key (indicated by
left-pointing arrow. The backspace key is located right above the / (division) key
along the right side of the calculator keyboard. Each press of the backspace key
erases the last digit or symbol that you entered.

2

To change the sign of the number entered, press the +/- sign located next to
the backspace key.

2.5 Computation in RPN

This is an RPN calculator. RPN works by placing numbers in storage registers
called stacks. In our lab 4, the RPN stack has 10 levels. The levels are stacked on
top of one another as shown in the following figure.

Stack Level 4

Stack Level 3 -15
Stack Level 2 12
Stack Level 1 41

The initial stack contains 3 numbers: -15, 12 and 41. Numbers are added to
the stack by entering the digits into the calculator display and pressing the INPUT
key. When a number is added, it gets added to the bottom of the stack. The figure
below shows how the stack moves when a new number 23 is added.

Stack Level 4 -15
Stack Level 3 -15 12
Stack Level 2 12 41
Stack Level 1 41 23

For any kind of computation (+, -, x and /), first enter all the numbers into
the calculator by using the INPUT key to enter each number into the stack. Then
press the desired operation key. The operation is performed with the most recent
two numbers that were added to the stack (in stack levels 1 and 2). Below is how
the stack looks when the + key is pressed.

-16

-16

12

64

When the two numbers are added, they are removed from the stack and the rest
of the numbers move down the stack. Then the result of the addition is entered
back into the stack. For subtraction, the number in stack level 1 is subtracted from
the number in stack level 2 (level 2 - level 1). So, in this case, if the - key were
pressed, the computation would be 41-23 = 18. For division, the number in stack
level 2 is divided by the number in stack level 1 (level 2/level 1). So, if the / key
were pressed, the computation would be 41/23. Unfortunately, division does not
work at the moment because the calculator has not been programmed to handle
decimals.

If another operation key is pressed after this, it will again use the numbers from
stack level 2 and stack level 1 (the result of the previous operation). Operation
keys can be pressed consecutively until there is only one number left in the stack.
After this, no operation key will work unless more numbers are added to the stack.

NOTE: The above description of the calculator’s display and keyboard only
included what was relevant for our project. For a comprehensive description, refer
to the Online Manual [5].

3 Social Implications

In this project, we programmed the HP 20b calculator to work as a basic calculator.
The calculator that we have designed has great social implications. It makes every

4

one’s lives easier by speeding up calculations in everyday life. When people go to
a restaurant and have to tip, they can pull out their calculators and determine the
right amount to pay. Students can use calculators in school to perform complicated
calculations quicker, so that they can spend time understanding the concepts rather
than performing tedious calculations. Calculators help to save time. Saving time
allows people to focus on more beneficial activities such as volunteering to relieve
poverty in Africa, getting clean water to people in villages, prevent World War 111,
etc. In the end, calculators help save the world.

4 The Platform

In order to implement our project, the HP 20b calculator, we used a hardware plat-
form which required three main components: 1) the HP 20b Business Consultant
Financial Calculator itself, 2) a 16-pin JTAG header, and 3) a JTAG dongle (USB
adapter) connected to a 20-pin ribbon connector cable [}, 2. In order to com-
municate with the calculator’s processor through its built-in JTAG port, Professor
Edwards had already soldered the JTAG header onto the calculator’s circuit board
to bring out the JTAG signals. The 20-pin connector cable, which was connected
to one side of the JTAG dongle, was plugged onto the calculator’s JTAG header,
with the red wire on the left. The four pins on the right side of the ribbon connec-
tor were to remain unconnected, since they were negligible for this project. The
images below show the JTAG header and how the hardware works.

4.1 The Processor

The HP 20b is essentially a keyboard and liquid crystal display (LCD) connected
to an Atmel AT91SAM7L128 processor, which will hereafter be referred to as
SAM7L. The SAMT7L is part of Atmel’s AT91SAM series of chips, which are
all built around an ARM processor core (“AT” is for Atmel; “SAM” refers to
“smart ARM core;” 91 seemsto be arbitrary). The 7L series of microcontrollers
are designed for low power (hence the L), and the final 128 indicates that it in-
cludes 128K of flash program memory.

Figure [I] shows a block diagram of the SAM7L chip. It is basically a single
standard processor surrounded by memory and various peripherals such as a sys-
tem (clock) controller and an LCD controller, but most of which were not used in
this project. The system controller can control the clock and power supply of each
peripheral through software. This makes it possible not only to save energy by not
powering on unnecessary peripherals, but also to make a peripheral appear to not
work if the user forgets to turn on its power.

4.2 The LCD Display

The LCD controller generates the complex AC waveforms necessary to drive the
calculator’s elaborate LCD display. To software, the LCD appears as a series of
memory locations whose bits control individual LCD segments. The following
figure shows a block diagram of the LCD Macrocell [5]].

SCLK
| Prescaler
3 3
PRESC Clock —> CSEG0]
SLODC_FRR M““‘z‘e‘e' —
Com./Rate Uniformizer CSEGz]
|-
.2 -ﬂ — [SEGA]
B N — =
il Divide by 1108
s
COMSEL, LPMODE, BIAS ENDFRAME,
BUFFTIME, LCDBLKFREQ Timing Generation
Buffer_on
Teer Frame Bfer
Analog
Switch
fe=-[sLCDC_MEM 0-1 LCDCOM Avvlr‘:y
Wavform
N play Generator
r Buffer
B
ec
B s 40x LCD SEG
u . 10:1 gyl Waveform
s MuX Generat ator
i —
lep{SCCOC_MEM 1819] DISPMODE, SEGSEL BIAS ewmn
-
—
_SLCDC,DR LCDBLKFREQ, DISPMODE, — [COMO]
—
SLCDC_IER
SLCDC_IDR DISABLE 14V cq .
Analog [T=y—1
SLoDC R EDERAE Buffers |12 Vico| —
& BV
SLCDC_SR BN L Jon | I
34 Vicp
| [Soocon 1 evee, oisaaie swast s ansm s
[
SLCOC_ VR COMSEL, SEGSEL
[« BIASBUFFTIME, LPMODE
SLCDC_SR ENA ’

TDI
TDO
T™S
TCK

JTAGSEL

TST
FIQ

IRQO-IRQ1

PCK0-PCK2
CLKIN

PLLRC

XIN
XouT

VDDIO1

VDDIO1

NRST

NRSTB

FWuUP

DRXD
DTXD

SEGO00-SEG39
COMO-COM9

Figure 1: A block diagram of the AT91SAMT7L microcontroller that is at the core

of the HP 20b

> 1 1
< S| e [rce ARM7TDMI Cphf%gpe T
> SCAN [—» Processor <
>
System Controller vftl?a%e T
N Regulator <>
> 18V |et+—
<o AIC Voltage —
T Regulatorf—t—»
<> |« \ 4 <
> Memory Controller SRAM <
—-| PLL PMC EmFblggged Address |]2 Kbytes(Back-up)
: osC Controller Decoder 4 Kbytes (Core)
Abort Misalignment
32k RCOSC] Status Detection <
Flash
—> BOD 64/128 Kbytes
Supply
—| POR Controller I
Peripheral Bridge
- Peripheral Data ROM (12 Kbytes >
<¢— Controller >
Fast Flash <
11 Ch I <
annels Programming | |
Interface <
VDDIO1 il
APB
<
<
AR > PWMC < >
4o > <
- L S - - :
Timer Counter ; l;
o0 % <J| Pl i<
o < > | 1>
» < > |1
L > <>
[ot i«] D B
O]
P > T |t
— > <> [
> [+ PDC
- < PDC <> [«
LCD Controller | ¢ < 1>
< g < <>
» SPI 1 |1
> < PDC | |~
< < > USARTO < FDe gl bl e
il B < PDC il
il e - PDC >
< ;g > PDC 2 <
A — o ADC l— I »
<>l |< =
1™ — USART1 < <
<> > <«
< F > PDC

CAPP1
CAPM1
CAPP2
CAPM2
VDDINLCD
VDD3V6

VDDLCD

VDDIO2

VDDIO1
GND
VDDOUT

VDDCORE
VDDIO2

VDDCORE

ERASE

PGMRDY
PGMNVALID
PGMNOE

PGMCK
PGMMO0-PGMM3
PGMD0-PGMD15
PGMNCMD
PGMENO-PGMEN2

ADVREF

Below are some library functions concerning the LCD display.

led _init

initializes the LCD display (turns on its
power supply and set various counters)

led_put_char7

prints an ASCII character in the given col-
umn on the 7-segment display

led_print7

prints a string on the 7-segment display
starting from the leftmost column

led_print_int_neg

prints right-justified integer with an op-
tional leading negative sign (which de-
pends on whether a given condition is
true/false)

led_print_int

prints an right-justified signed integer

4.3 The Keyboard

Earlier in the term, we tore apart some keyboards in order to figure out how key-
boards work. We found that there were three layers of thin plastic sheets under-
neath the keys of the keyboard. The outer two sheets had printed matrix-like grids
of circuits on them, while the center sheet was blank with cut-out holes at each
circuit point. This discovery provided crucial insight into how keyboards work.
We realized that the center sheet separated the circuits, keeping them from con-
necting; however, whenever a key pressed down, it would complete the circuits,

thus giving the ability for an electrical signal to be sent to a processor.

mowEs

N I% BV EMT EV
| = | = | == | e | == |
R i 1 il = |]]
! %g _;HLD_l CshFI _CEBLD_I IRR _Ojﬂio_l NEV _OEHEB_I B::’i_oﬁﬂ‘io_l _;EEO_‘
. R | SHo INPUT | SaM (-) | s +/- | sam .
e i | i 5| S5
2, l—; _c_‘E'_;_l up _o_sél‘_;_l 7 _D_’EED_J _Dﬂ“_l _D_SEED_|
R E— | = DO | Seer 4| = 5| = 6 | = X
e =] i i =]]
m.ig _OEEE SHIFT _;EE 1 _OEEE 2 _Ojﬂﬂ 3 _ajﬂﬁ -
= | i o i G|
e] = oles L= L= L= =l s
R52320N <K
coLioe]
O~ |N|M) T || WO
R Y R N) R | RN | R)
[e]l[elle]lle]le]lelle]
olojojojojojo el
Z|0|00|0|0 (o]
f Olx | x|x e e (1’
\;‘GZF rmmvmmnmmo%(ﬂ({vw
M~ 00| O O v ON| O | | | I~ 00| O O O O O O O| O O| O v | —|
0| 03| 20| O O B O G G| | | | B | —| —| —| —| —| —| —| —| ~|—{ | —|~
O NOITWHLOOOMMMMNODO~~NO NN =~
FELEE LRI EE L PN EEE R
xgxxxéépEaaxxxgjmm§§§§Epggj
ggg%%\|5°§§%§§§§§§5559”55:§
4 Y ETCRSEESEeRe 0 ERE20R06ER
45| PBO_SEG20 SRS PR N 00 FPSITPRERT
PBI/SEG21 222 00RcLiccDReE=SCCzZ5c2Zza 500
P=T=" |_§..g-_ GO —<€mI 5=
43 pp> sEG22 LEEEEZ=B8555Zs089C358RINTER
i~ =t =m YSA<S50N O
———e|Peasees POEEFSBTTaaB3REIZPROTERDaTEY
PB4 SEG24 OQOAQ<ES SxERE s
46 = S=259d8=< EobE=oO o~
T 47| PB5SEG25 3585888 Sap%s Q
— 4 |peesEG26 ARaf 99 oGt o

The HP 20b’s keyboard is similar to the old keyboards that we tore apart. The
figure above shows the schematic for the HP 20b’s keyboard, which is a standard
matrix-type, consisting of row and column wires that can be shorted together by
the keys. The top is the keyboard matrix itself. The bottom shows how the matrix
is connected pins on the SAM7L chip that can be driven by a parallel I/O controller:
a peripheral that enables software to control and read the state of each pin [4]].

9

Two important pieces of information to note about the HP 20b’s keyboard is that it
counter-intuitively reads rows vertically and columns horizontally, and the ON/CE
key is separate from the matrix. The below figure is a more concise table that lists
the pair of pins—one for its row, the other for its column—that each key shorts when
pressed.

“rows”
PCu1 PCiz PCiz3 PCigy PCis PC26

PCo N I/YR PV PMT FG Amort

~ PCa CshFl IRR NPV Bond o RCL
2 PCa | INPUT) H- -
g PC3 A 7 8 g9 -
S PC4 v 4 5 6 x
- PCs shift 1 2 3 —

PCa o . = +

5 Software Architecture

Our system required two pieces of software: Ubuntu Linux and OpenOCD. OpenOCD
is a software package that communicates to the SAM7L CPU through USB of the
computer and JTAG of the calculator. The "OCD" in its name stands for "on-chip
debugger." The lab’s Ubuntu Linux workstations provided the C compiler, assem-
bler and linker, necessary for packaging our code [1, 2].

6 Software Details

In this project, we programmed our calculator to accomplish four different tasks.
Each lab built upon the previous one and became progressively more difficult. The
goal of the first lab was to display a message across the LCD, while in our second
lab, we displayed which key was being pressed when the user pressed a button
on the calculator. The objective of our third lab, was to let the user see which
numbers and operation key have been pressed so far, while lab four builds upon
this functionality to create an Reverse Polish notation (RPN) calculator.

6.1 Lab 1: A Scrolling Display

Let us begin by explaining the details of Lab 1, shown in Figure 2] and Figure [3]
The objective of this lab was to have a message scroll across the LCD screen.
Since this was the first exposure to programming in C for any of the members in
our group, we were unsure of how to approach this lab. We contemplated the use
of pointers to run through a character array and append a character at a time to

10

the current string being displayed, but none of us were comfortable enough with
pointers to write code this way. Instead, we used arrays to display the string of
letters. The character array namel stores the string we want to display, and the
character array name?2 is the array that is going to be displayed on the screen.
We use two nested while loops to iterate once through namel and once through
name?2. We constantly modify name2 so that it displays 15 letters of the display
string at a time. Each time name?2 is displayed, it has been shifted over by one so
that the overall effect of the display is that the string to display is scrolling across
the screen. Once name?2 reaches the end of the string, it just displays a blank space,
and this code is written in line 22. Of course, the calculator is operating at a very
fast speed so if this code is run without any delay, the message will scroll across
too quickly, so in 29 and 30 we have made the calculator count from 0O to 50000
without doing anything. The constant BLANKSPACES represents the number of
blank spaces to output before wrapping over and reprinting the message.

The main problem with this code is that it works only for the specified string
that has been inputted. In order to make this program more versatile, we should
have made a function that would return the string length of the input string and
also by using pointers instead of arrays, we could have made the code slightly
more condensed.

6.2 Lab 2: Scanning the Keyboard

Now let us move on to Lab 2, shown in Figure dand Figure[5] The objective of this
lab was to notify the user when no key was being pressed, and if a key was being
pressed, then the calculator should notify the user which key was being pressed.
We approached this problem by creating a function keyboard_key which would
return a decimal value where the first digit corresponded to the column number
and the second digit corresponded to the row number. This decimal value would
then be displayed in main, and if no key was being pressed, then the message
"No key" would be displayed. For this program, we implemented the function
keyboard_init to set all columns initially to high. Then, we used the fact that
if a key was pressed, its row and column would be low, so we iterated through
each of the columns and set them to row. Then we iterate through each of the
columns and check if any of the rows in that column are set to low. If it set to
low, we execute lines 12 and 13. Line 13 returns the two digit number with row
and column information, and if none of the keys are being pressed in that specific
column, the column is set back to high and the function loops through the next
column. If none of the keys are being pressed, then the function returns 1 in line
18. In main, we obtain the integer returned by keyboard_key and display if it is

11

NO vk WN R

9

10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

//Ankita Gore, Shikhar Kumar, Christina Huang
#include "AT91SAM71128.h"
#include "lcd.h"

#define DELAY 50000 //Delay factor

#define STRLEN 19 //Length of display string

#define COLS 15 //Number of spaces allotted to display on the
//LCD

#define BLANKSPACES 2 //Number of blank spaces to display
//before wrapping around

int main()
{
*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS; //Turn off watchdog
//timer
led_init(Q);

char namel[] = "HELLO_WORLD_ABC123"; //Display string

char name2[COLS]; //String which will be displayed on LCD17

int i, j, p;

for(;;) {

for (j=0;j<STRLEN;j++) { //Iterate through display string
for (i=0;i<COLS;i++) { //Iterate through LCD display
if (i+j>COLS+BLANKSPACES) { //LCD string has reached
//end of display string

name2[i]="_";

}

else { //LCD string still within display string
name2[i]=namel[i+j];

b

3

lcd_print7(name2);

for (p=0;p<DELAY;p++) { //Delay
ks

3

Figure 2: Part 1 of our solution for lab 1: the scrolling message

12

32 }
33 return O;
34 }

Figure 3: Part 2 of our solution for lab 1: the scrolling message

not -1. If it is -1, that means a key is not being pressed, so we display the "No
key" message.

One difficulty we faced when programming this lab was determining how to
tell user which key was being pressed. In our case, we returned decimal digit
with row and column number, but in retrospect we should have created a two-
by-two array with all the different character buttons so that if a key was pressed,
the character corresponding to the button instead of the row and column number
would be returned. Another difficulty we faced was that we did not include line 16
initially, so the code would not work properly because we did not reset the current
column back to high.

6.3 Lab 3: Entering and Displaying Numbers

Now let us move on to Lab 3, shown in Figure [and Figure [7]] The objective of
this lab was to let the user input a bunch of numbers on the calculator, and when
the user presses either the input key or an operation key, the string of numbers
which have been pressed so far will be displayed. We approached this problem
by defining a list of variables in the function keyboard_get_entry, which accepts
a struct with variables operation and number as a parameter. Then, the method
enters an infinite loop which breaks at line 41. Each time through the loop, key-
board_key is called to determine which key is being pressed. The variable b stores
the previous value of a to see ifthe key is being pressed down or not. If b stores
the same value as a, that means the key has been held down because the value ofa
would be reset to -1 if the user’s finger had let go. If a number has been pressed
in line 12, then that number is displayed and the value of result is modified. If the
negative key has been pressed in line 20, then the sign value switches and a nega-
tive sign will be displayed or removed depending on whether or not the negative
key has been pressed before. In line 30, if any of the operation keys or the input
key has been pressed, then the operation will be displayed, the value of result and
operation will be modified, and the function will break out of the infinity for loop.

One difficulty we faced when programming this lab was trying to make key-
board_key be able to display numbers as they were being pressed and still be able

13

1 //Ankita Gore, Shikhar Kumar, Christina Huang

2 #define NUMCOLS 7 //Number of columns in calculator
//configuration

3 #define NUMROWS 6 //Number of rows in calculator
//configuration

4

5 int keyboard_key() {

6 int r;

7 int c;

8 for (c = 0; ¢ < NUMCOLS; c++) { //iterate through columns

9 keyboard_column_low(c); // change current column to low

10 for (r = 0 ; r < NUMROWS ; r++) { //iterate through

//rows in current column
11 if ('keyboard_row_read(r)) { //current row also reads
//low

12 keyboard_column_high(c);

13 return (c*10)+r; //return array position of key

14 }

15 }

16 keyboard_column_high(c); //reset column back to high

17 }

18 return -1;

19 3}

20

21 dint main() {

22

23 lcd_init();

24 keyboard_init();

25 for (;;) {

26 int x = keyboard_key();

27

28 if (x==-1) {

29 lcd_print7("No_key");

30 }

31 else {

32 lcd_print7("KEY_");

Figure 4: Part 1 of our solution for lab 2: scanning the keyboard

14

33 lcd_put_char7(’0’+(x/10), 4); //place 1st digit of
//keyboard_key in 4th spot

34 lcd_put_char7(’0’+(x%10), 5); //place 2nd digit of
//keyboard_key in 5th spot

35 }

36 }

37 return 0;

38 }

Figure 5: Part 2 of our solution for lab 2: scanning the keyboard

to return the correct result and operation. The way the code is written currently,
the numbers are being displayed as they are pressed, and the resulting number
and operations are being stored, but nothing is being done with result.number and
result.operation. They are not being returned by the function so their values are
lost once the function is done running. In retrospect, we should have returned the
result and operation so that the function would be more versatile and these values
could be used in the main method. Also, the way this program is written, the main
method does not do anything while all the functionality of the calculator occurs in
keyboard.c, which is not very good programming practice.

6.4 Lab 4: An RPN Calculator

Finally, we would like to talk about Lab 4, shown in Figure [§| and Figure 0] For
this lab, we were supposed to design a Reverse Polish calculator (RPN calcula-
tor). This kind of calculator allows you to keep on adding new numbers to a data
structure called a stack, and when any of the operation keys were entered, the two
most recent entries in the stack will be combined together by the operation. Line
16 puts a zero in the first position of the calculator to tell the user that the program
is running. Then, keyboard_get_entry is run to update the struct entry. If the struct
has a value not equal to int_max, then we add that value to the stack in lines 22 to
25. In lines 27 to 42, an operation key has been pressed so we apply that operation
to the previous two values in the stack and update the value of numOfTermsIn-
Stack. Then, for each operation,we update the number of terms in the stack. In
line 44, we test for the error case where an input greater than INT_MAX or less
than -1*INT_MAXis entered, and in line 49 we print the value of the integer if
the integer is a valid input.

For this code, the divide function does not work properly because the C pro-

15

13

14
15
16

17
18
19
20

21
22
23
24
25
26
27
28
29
30

31

// Ankita Gore, Shikhar Kumar, Christina Huang
void keyboard_get_entry(struct entry *result) {

result->number = 0; // entry.number

int a = -1; // nothing is being pressed
int numOfKeysPressed = 0;

int sign = 1; // sign is positive

int position = 1;

for (;;) {

int b = a; // b stores previous value of a

a = keyboard_key();

if (a>="0" && a<=’9’" && b==1) { // a is an integer and
//a has not been held down

lcd_put_char7(a, position); // displays key pressed in
//appropriate position

position++;

numOfKeysPressed++;

int num_to_add = a- '0’; // converts key pressed to
//int and adds to entry number

result -> number = (result -> number)*10 + num_to_add;

}

if (a=="~" && b==1) { // negative button has been

//pressed
if (sign==1) {
lcd_put_char7(’-’, 0); // put negative sign
}
else {
lcd_put_char7(’_’, 0); // get rid of negative sign
}
sign = sign%-1; // switch sign of variable ’sign’
}
if (a=="/" || a=="+" || a=="+" [| a=="-" || a=="\r’) { //

//operation/input key pressed
if (numOfKeysPressed == 0) {

Figure 6: Part 1 of our solution for lab 3: entering and displaying numbers

16

32 result-> number = INT_MAX; // return INT_MAX if no
//key pressed

33 }

34 if (a=="/" || a=="+' || a=="+" || a=="-") {

35 lcd_put_char7(a, position);

36 }

37 result->operation = a;

38 if (sign==-1) {

39 result->number*=-1; // Switch sign of result

40 }

41 return; // if operation/input pressed, break out of infinite
//for-loop

42 }

43 }

44 }

Figure 7: Part 2 of our solution for lab 3: entering and displaying numbers

gramming code that has been inputted into the code does not allow for division
by variables. Also, another problem we faced was that when a value greater than
int_max was entered, the number would wrap around to a very negative number
which was less than int_max, so if we tried to add or multiply by a very big num-
ber, the result would become negative. Also, because we ran out of time, we did
not account for the fact that the user might try to input more terms into the stack
than the stack size, which would lead to errors.

7 Lessons Learned

We often wasted a lot of time thinking that our program was buggy, when it wasn’t.
We advise future students to make sure that the power connector is plugged into
the calculator, that the 20-pin ribbon connector cable is connected to the 16-pin
JTAG header connector with the red wires facing the same direction, that the USB
cable is plugged into the computer, and that the calculator is turned on. We also
advise for future students to bring a pencil and paper to scribble their thought
processes on. Furthermore, we advise that they take their time in order to fully
comprehend what their codes do.

We gained a deeper understanding of C programming and programming in
general, due to both the code review and different labs.

17

//Ankita Gore, Shikhar Kumar, Christina Huang
#include "AT91SAM71128.h"

#include "lcd.h"

#include "keyboard.h"

int main() {

© 0N UL WN

struct entry entry;

10 // Disable the watchdog timer

11 «AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;
12

13 lcd_init();

14 keyboard_init();

15 int stack[10]; //Declare stack
16 int numOfTermsInStack = 0; // Keeps track of how many terms
//in track

17 lcd_put_char7(’0’,11); //Start off by displaying 0
18
19 for(;;) {

20 keyboard_get_entry(&entry) ;

21

22 if(entry.number != INT_MAX) { //Add value to stack if
//it is valid entry number

23 numOfTermsInStack++;

24 stack[numOfTermsInStack] = entry.number;

25 }

26

27 if(entry.operation == '+’ && numOfTermsInStack > 1) {

//add two top values of stack if more than two values
//exist in stack

28 stack[numOfTermsInStack - 1] = stack[numOfTermsInStack - 1]
+stack[numOfTermsInStack];

29 numOfTermsInStack--; //number of terms in stack decreases
//by one

30 }

Figure 8: Part 1 of our solution for lab 4: the RPN calculator

18

31 else if (entry.operation == ’-’ && numOfTermsInStack > 1) {
//add two top values of stack if more than two values exist

// in stack
32 stack[numOfTermsInStack - 1] = stack[numOfTermsInStack - 1]
-stack[numOfTermsInStack];
33 numOfTermsInStack--;
34 }
35 else if (entry.operation == '+’ && numOfTermsInStack > 1) {
//multiply two top values in stack
36 stack[numOfTermsInStack - 1] = stack[numOfTermsInStack - 1]
#stack[numOfTermsInStack];
37 numOfTermsInStack--;
38 }
39 else if (entry.operation == '/’ && numOfTermsInStack > 1) {
//divide two top values in stack
40 stack[numOfTermsInStack - 1] = stack[numOfTermsInStack - 1]
/stack[numOfTermsInStack];
41 numOfTermsInStack--;
42 }
43
44 if(stack[numOfTermsInStack] > INT_MAX
45 | | stack[numOfTermsInStack] < INT_MAX=x-1) {
//print error if input value too big
46 lcd_print7("ERROR! i)
47 numOfTermsInStack = 0;
48 }
49 else { //print value in stack
50 lcd_print_int(stack[numOfTermsInStack]);
51 }
52
53 }
54 return 0O;
55 }

Figure 9: Part 2 of our solution for lab 4: the RPN calculator

19

8 Criticism of the Course

The lab rooms were much too small for a group as big as ours. There often were
not enough chairs, and when there were, the space was very cramped. Also, there
would often be graduate or upperclassman students that we would have to kick
out of our stations before we could get to work.

The individual labs were just the right difficulty, especially with help and guid-
ance from Professor Edwards and Yoonji. Since the labs basically built upon each
other, we had a pretty clear idea about how the pieces would fit together as we
progressed through each lab. The code reviews were generally helpful. They al-
lowed us to compare how differently (sometimes vastly) other groups went about
in order to code the same thing. What helped the most was that the code reviews
showed us what each group, including our own, did right, wrong, or inefficiently.

A more in-depth "crash course" to C would have helped, though we did not
have enough time to fully cover it at the beginning of class. None of the members
in our group had any existing knowledge about C programming. In particular, for
the one member of the group who had never done any programming, it was very
discouraging at the beginning to have no idea what was going on.

References
[1] Lab 1. Online http://www.cs.columbia.edu/~sedwards/classes/
2011/gateway-fall/hello.pdf.

[2] Hp-20b repurposing project. Online http://www.wiki4hp.com/doku.
php?id=20b:repurposing_project.

[3] Hp-20b. Online http://en.wikipedia.org/wiki/HP_20b.

[4] Lab 2. Online http://www.cs.columbia.edu/~sedwards/classes/
2011 /gateway-fall/keyboard.pdf.

[S] Hp-20b business consultant financial calculator manual. Online
http://h10010.wwwl.hp.com/wwpc/pscmisc/vac/us/product_
pdfs/HP_20b_Online_Manual .pdf.

20

http://www.cs.columbia.edu/~sedwards/classes/2011/gateway-fall/hello.pdf
http://www.cs.columbia.edu/~sedwards/classes/2011/gateway-fall/hello.pdf
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://en.wikipedia.org/wiki/HP_20b
http://www.cs.columbia.edu/~sedwards/classes/2011/gateway-fall/keyboard.pdf
http://www.cs.columbia.edu/~sedwards/classes/2011/gateway-fall/keyboard.pdf
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf

	Introduction
	User Guide
	ON/OFF Key
	Display
	INPUT Key
	Number Entry
	Computation in RPN

	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Lab 1: A Scrolling Display
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the Course

