
ENGI E1112 Departmental Project Report:

Computer Science/Computer Engineering

By Yiming Ge, Anna Teng, Kaiven Zhou

Abstract

This report serves to document the ENGI E1112 Departmental Project. In this project, we used C
to program the HP 20b calculator with the goal of turning it into an RPN calculator, one that
operates using Reverse Polish Notation. Essentially, we are writing a new firmware for this
calculator. We worked on the final product with algorithm efficiency and user friendliness in
mind. This project teaches the important lesson of how to work on a limited platform with
confined methods and a strict memory limit. Thus, it was paramount that we planned accordingly
and wrote the right methods to achieve a functioning RPN calculator.

We started out by writing a program that makes a message scroll across the screen. This gave us
the necessary background on working with the LCD display and manipulating the output of
characters. Then, we worked on a program that scans for a key being pressed, and if so, returns
that key. With this knowledge, we were able to proceed by writing a program that lets the user
input a number. Finally, there was a sufficient foundation to make a functioning calculator, and in
this case we implemented stacks to make an RPN calculator.

1 Introduction

In today's world, processors are found everywhere, whether you realize it or not. While
there seems to be a big distinction between something as simple as a four function calculator and
a top of the line desktop PC, the difference is actually not that great. Both devices have a
processor, memory, and some sort of input and output. Most importantly, both run on firmware
and software that has been pre-programmed into memory.

The HP 20b calculator contains all of the above; it features a liquid crystal display, a 6 by
7 matrix keyboard, and an Atmel AT91SaM7L128 processor with 128K of flash program
memory. In this flash memory is the firmware that allows the calculator to perform all sorts of
functions, in this case specialized finance functions which is undoubtedly why this calculator is
dubbed the 'business consultant.' In this project, we attempted to reprogram this calculator into
an RPN calculator, which required several steps that gradually lead to the final product. This
type of programming is called 'embedded programming,' as the calculator doesn't appear to be a
computer at first glance but in fact is. We used a JTAG port to communicate with the Atmel
processor, and on the other end, we used a USB port to connect to Linux workstations running
openOCD software to edit and compile the necessary files. This project attempted to manipulate
the LCD screen and other input/output peripherals such as the keyboard to make the calculator
behave like a real RPN calculator.

In the first lab, we created a scrolling message across the screen. This required
knowledge of how for loops and character arrays in C work. In the second lab, we constructed a
program that takes input from the keyboard and displays it on the screen. In the third lab, we
used the knowledge and methods from the previous programs to make entering numbers
possible. Lastly, in the fourth lab, we went one step further by allowing the user to operate on
numbers in Reverse Polish Notation.

2 User Guide

In order to enter a number, simply press the digits from left to right on the keyboard, then
hit the return key. Our calculator has the capacity to store and display any integer, both positive
and negative, up to twelve digits long. Leading zeros, however, will not be displayed. In order to
toggle between positive and negative, enter the number and then hit the +/- key.

Once you have entered a number (A) and pressed the return key, enter a second number
(B). Now that there are two numbers, one of the four binary operations we support can be
performed on them. Once you have finished entering the second number, press either the
addition (+), subtraction (-), multiplication (x) or division (÷) symbol. The calculator will then
perform A __ B, and display the result.

The calculator we have reprogrammed is an RPN calculator. RPN stands for “Reverse
Polish Notation,” and is characterized by entering the number first followed by the operation.
Additionally, numbers can be stored in what is called a “stack”. A way to visualize it is to image
that every time a number is pressed and then return hit, it is added to the top of a literal, vertical
stack of numbers. When an operation is pressed, it is performed on the topmost two items of the
stack in the format written above. The resulting answer becomes the new top of the stack. In the
case of our calculator, the maximum stack height is 30.

An RPN calculator provides alternate, and often simpler alternatives to entering long
expressions with many terms. For example, if one were trying to perform (9 + 8 + 7 + 6 + 5), he
could enter the following keys: 5 return 6 return 7 return 8 return 9 (adding each number to the
stack) and then + + + +, adding all of the numbers in correct order of operations.

• It scrolls from right to left? YES
• If you hit an operation first it returns INTMAX
• If you keep hitting an operation after the stack only has 1 term nothing happens

Source: http://www.hpmuseum.org/rpn.htm

 key in a number
 hit “return” to tell the calculator that you have finished entering the number
 Key in another number
 hit an operation key. The first number will perform that operation on the second number

(for example if you entered A return B -, it would perform A-B not B-A
 There is a stack, so you can do it for more than 2 numbers. A return B return C + +. Or, A

return B + C +. You do not need an enter after the B because the operation key makes
clear that you are done entering that number.

 The only functions our calculator supports are multiplication, division, addition, and
subtraction. Negative and positive integers are supported as well.

3 Social Implications

The calculator we used is extremely useful because it is easily re-programmable. We
were able to turn this calculator into an RPN calculator by writing the necessary code. There is
so much flexibility in the use of this calculator because by programming it, we can change its
function. The calculator is valuable to people who require technical calculators with specialized
functions. We reduce the cost by condensing these many possible calculators into one package.

The result of re-programming the calculator is a RPN calculator that is effective and user-
friendly. This calculator can accurately and quickly perform the simple arithmetic that people
need in day to day life: it encompasses multiplication, division, addition, and subtraction, and
also has the ability to process negative numbers. Because it neglects the more complicated math
that most people do not need, it is also a useful tool for children who are only beginning to learn
arithmetic. Because Reverse Polish Notation does not take into account the complicated
operation orders but instead focuses purely on the operations between numbers, this RPN
calculator has definite use for children early in their education.

http://www.hpmuseum.org/rpn.htm

4 The Platform

HP 20b Calculator

The calculator we used for this project is the HP 20b. The original purpose of this calculator was
for finance, insurance, real estate, accounting, and statistics functions. However, for this project,
Professor Edwards stripped the calculator of all of its features.

4.1 The Processor

The HP 20b uses the Atmel AT91SAM7L128 chip, containing the ARM7TDMI
processor. The chip is composed of the single processor, surrounded by memory and a multitude
of peripherals. The 128 at the end of the name represents the amount of programmable flash
memory it posses (128 KB). The ARM7TDMI is a 32 bit microprocessor designed to run at low
power. It uses a three-stage instruction pipeline: Fetch → Decode → Execute. During operation,
while one command is being executed, the next command is being decoded, and a third
command is being fetched. The ability for the processor to allow these three actions
simultaneously greatly increases the efficiency.

Two important peripherals for our purposes are the System Controller and the LCD
controller. The System controller has software that controls both the internal clock and the power
supply to each of the other peripherals. The LCD controller generates AC waveforms which
control the calculator’s LCD display.

4.2 The LCD Display
The LCD display of the HP 20b contains 2 rows. For this lab, we only utilized the bottom

row. The bottom line contains twelve squares to display characters. Each of the digits reserved
for characters is composed of 9 possible line segments:

• The top center horizontal
• the top left vertical
• the middle center horizontal
• the top right vertical
• the bottom left vertical
• the bottom center horizontal
• the bottom right vertical
• the decimal point
• the comma.

Each digit and operation is composed of these nine line segments.
To take care of the complicated task of making the LCD display characters, Professor

Edwards gave us a library of three functions to work with. The first, lcd_init initializes the LCD
display and turns on its power supply. The next function is called lcd_put_char7 prints a
specified character in the specified column of the LCD display. The 7 in the name stands for the
7 main line segments that make up most of the characters (numbers 1-7 above). The third
function was lcd_print7. This function prints an array of characters, always starting in the first
column of the display.

4.3 The Keyboard
Before beginning our lab, we took time to disassemble some assorted keyboards,

including computer keyboards, a fax machine, and a very simple calculator. One commonality
we observed among each of the keyboards was an underlying two dimensional matrix of wires.
Each key corresponded to an intersection of row and column.

Like all of the keyboards that examined, the keyboard of the HP 20b is organized in a
matrix of size 6x7. Confusingly, in this keyboard matrix, vertical stacks conventionally referred
to as columns are referred to as rows, and vice versa. The action of pressing a key shorts together
a row and a column, equalizing the voltage between the two. The matrix is connected to pins on
the SAM7L chip which lead to a parallel I/O controller. This controller enables software to both
control and set the state of each pin.

Before we began the second phase of our lab (Listening to the Keyboard), Professor
Edwards bestowed upon us some functions which allowed us to scan the matrix of the keyboard
for a key being pressed. The first of these is called keyboard_init, which initializes the keyboard,
setting all pins to high. The next function, keyboard_column_high, sets the pins corresponding to
a given column to “high” voltage. The corresponding function is the function
keyboard_column_low, which just does the opposite. The last function, keyboard_row_read
checks the voltage on the pin of a specified row, and if it reads high, returns true.

5 Software Architecture
We have 3 methods that interact together to let the calculator perform arithmetic using Reverse
Polish Notation. The first method keyboard_key() scans the keyboard for keystrokes and returns
the pressed key. The second method keyboard_get_entry(struct) gets an entered number and
operation and stores them in the passed struct. The third method rpn(int *stack, int, struct) uses a
stack, the location of the top of the stack, and a struct to perform the four binary operations.

The first lab was used as an introduction to the platform, as well as an introduction to
programming in C.

6 Software Details

6.1 Lab 1: A scrolling display
We start by creating a function strlen which computes the length of a character array by

iterating through the array until a null character is reached, and counts and returns how many
characters there are. Then we create a character array message to be displayed. We find and store
its length into len using function strlen and set startingPosition = 0. In an infinite loop we
display our message by using a for loop that places the character message[i] at placeNext mod
NUM_DISP_DIGITS (modulus is used so that any characters displayed off the screen reappear at
the left of the screen), then increments placeNext. The end result is that all the characters of
message are placed on the screen. Then we pause the system by using do-nothing while loop
which increments dummyCounter. The screen is wiped of all its characters, the startingPosition
is incremented, and the loop restarts, and dummyCounter is reset to 0 again.

Our Solution for Lab 1: A scrolling display
//By: Abhinav Mishra, Andrew Pope, Yiming Ge, Anna Teng, Will VanArsdall, Kaiven Zhou
#define NUM_DISP_DIGITS 12
#define NUM_TO_WAIT 50000
int strlen(const char *s)
{
 int n;

for(n=0; *s!='\0';s++)
n++;

return n;
}
int main()
{
 lcd_init();
 char message[] = "test"; //the message
 int len = 0;
 len = strlen(message); //length of the message

int startingPosition=0;

while(1)
{

int i, placeNext, dummyCounter=0;
placeNext=startingPosition;
for(i=0; i < len; i++)
{

lcd_put_char7(message[i],placeNext% NUM_DISP_DIGITS);
placeNext++;

}
while(dummyCounter< NUM_TO_WAIT) dummyCounter+=1; //dummy loop

 lcd_print7(" "); //clears the screen
startingPosition++;

}
return 0;

}

6.2 Lab 2: Scanning the Keyboard
We created a character array keys which stores every possible keystroke, along with some

empty values because the upper part of the calculator has more keys per row than the lower part.
Columns and rows have two states: 0 and 1 (or, low and high), and by default all the columns are
set to 1. We define an integer index, to represent the index of the key that is pressed. In a for
loop, we set each of the columns to 0 using keyboard_column_low() and use another for loop and
check each row with keyboard_row_read(). If the key is pressed in the row we are checking,
keyboard_row_read() returns true, and otherwise it will return false. If true, then we set the
column back to 1 using keyboard_column_high() (in order to return the calculator back to its
default state), and return key[index], the key pressed. If false, index increments. If the row
checking for loop ends without finding the key pressed, then the column is set back to 1, and we
start checking the next column. If no key is pressed, 0 is returned.

Our Solution for Lab 2: Scanning the Keyboard
#define NUM_COLUMNS 7
#define NUM_ROWS 6
const char* keys[44] = {"", "N", "I/YR", "PV", "PMT", "FG", "Amort",

"CshFl", "IRR", "NPV", "Bond", "%", "RCL",
"INPUT", "(", ")", "+/-", "<-", "",
"UP", "7", "8", "9", "/", "",
"DOWN", "4", "5", "6", "x", "",
"SHIFT", "1", "2", "3", "-", "",
"", "0", ".", "=", "+", ""};

int keyboard_key()
{

int i, j;
int index = 1;
for(i = 0; i < NUM_COLUMNS; i++)
{

keyboard_column_low(i);

for(j = 0; j < NUM_ROWS; j++)
{

if(!keyboard_row_read(j))
{

keyboard_column_high(i); //Resets the current column
return keys[index];

}
index ++;

}

keyboard_column_high(i);
}
return 0;

}

6.3 Lab 3: Entering and Displaying Numbers
We use a struct to hold the user's input: the number entered as well as the operation

entered. We define integers inputNumber, the current number that the user has entered; lastKey,
which will store the last key pressed; inputOperation, the user's inputted operation; and
numOfDigits, the number of digits in the user's number. By default, inputNumber is INT_MAX.
Then, in an infinite loop, we get attempt to get the user's keystroke while avoiding a problem:
since the loop iterates faster than the user can react, a pressed keystroke will register in multiple
iterations of the loop. Therefore, we start the loop by ensuring no key is being pressed. Once we
are sure that no key is pressed, we get the key pressed and store it in lastKey. Several cases are
now checked:

If the lastKey is a digit, and the total number of digits in the inputNumber is less than the
predefined maximum number of digits MAX_NUM_DIGITS, then we proceed. If this keystroke
is the very first, inputNumber is INT_MAX, so we set inputNumber to 0. We then "append" a
digit to inputNumber by converting lastKey into an integer, multiply inputNumber by 10, and
add the converted number to inputNumber. We display lastKey on screen, and increment the
number of digits.

If '~' is pressed, we check if any number has been inputted already (as in the previous case), then
change the sign of inputNumber, and display a '+' or '-'.

If one of the four operations (+,-,/,*) or enter (\r) is pressed, then we set inputOperation to equal
lastKey, set the struct's number to equal inputNumber and the struct's operation to
inputOperation, and return.

If none of the above is pressed, nothing happens. Any key that is not a number or operation is
ignored.

Our Solution to Lab 3: Entering and Displaying Numbers

//By Kaiven Zhou, Yiming Ge, Anna Teng
void keyboard_get_entry(struct entry *result)
{

int inputNumber=INT_MAX;

int lastKey=-1,inputOperation=-1,numOfDigits=0;
lcd_put_char7(0,'+'); //by default the number is positive
while(1)
{

while(keyboard_key()); //ensure no key is pressed

while(lastKey==-1) lastKey = keyboard_key(); //get key

if('0'<=lastKey && lastKey <= '9' && numOfDigits<=MAX_NUM_DIGITS)
{

if(inputNumber==INT_MAX) //excutes if lastKey is the first key pressed
inputNumber=0;

int integerOfLastKey = lastKey-'0'; //char to int
inputNumber*=10;
inputNumber+=integerOfLastKey;
lcd_put_char7(lastKey,numOfDigits+1);

numOfDigits++;
}
else if(lastKey == '~')
{

if(inputNumber==INT_MAX)
inputNumber=0;

inputNumber*=-1;
if(inputNumber<0)

lcd_put_char7(0,'-');
else

lcd_put_char7(0,'+');
}
else if(lastKey=='+'||lastKey=='-'||lastKey=='*'||lastKey=='/'||lastKey=='\r')
{

result->number = inputNumber;
 result->operation = inputOperation;

return;
}

}
}

Our Solution to Lab 4: An RPN Calculator
//By Kaiven Zhou, Alex Ge, Anna Teng

void rpn(int *stack, int *top, struct entry *input)
{

if(input->number != INT_MAX) //if there is a number, add it to the stack
{

stack[(*top)] = input->number;
(*top)++;

}
if((*top)>1) //only do an operation if there are at least 2 numbers in the stack
{

switch(input->operation)
{

case '\r‘: break; //done in the first if statement
case '+‘: lcd_print_int(stack[(*top)-2] += stack[(*top)-1]);

(*top)--;
break;

case '-‘: lcd_print_int(stack[(*top)-2] -= stack[(*top)-1]);
(*top)--;
break;

case '/': lcd_print_int(stack[(*top)-2] /= stack[(*top)-1]);
(*top)--;
break;

case '*‘: lcd_print_int(stack[(*top)-2] *= stack[(*top)-1]);
(*top)--;
break;

}
}

}

6.4 Lab 4: An RPN Calculator
We create an array *stack which will be used as a stack, and then we keep track of the index in
the array that is the position of where the next element would be placed in *top. The size of the
array is limited by the constant STACK_SIZE.

If a number has been entered, then the first if statement executes. The number is added to the top
of the stack and *top is incremented.

If there are at least 2 elements in the stack, operations can occur. We use a switch to determine
what to do depending on the operation. If operation is one of the 4 mathematical operations
(+,-,/,*), then the highest two numbers in the stack (at positions (*top)-1 and (*top)-2) are acted
upon, where the first number in the operation is (*top)-1. If enter is pressed, nothing happens,
because first if statement has already handled all the necessary actions.

7 Lessons Learned

This project taught us C, an important programming language. We have learned valuable
problem solving skills through writing and fixing code to achieve a working product. Most
importantly, we learned that the best way to program is not by trial and error, but by using logic
and sound reasoning to proofread our code beforehand. This method allows us to consciously
realize our mistakes so that we won't make the same mistakes later on. It also forces us to put
more thought and focus into what we're writing.

This project also made us realize the important role of planning and organization in
programming. On numerous occasions, we were confused by our nebulous variable names,
causing us to lose track of the purpose of those variables. Because of a lack of planning
beforehand, some of our code could be much more efficient by condensing two variables into
one. Furthermore, some 'magic numbers' are better off replaced with constants. These are just
some of the lessons we have gleaned from this project.

#include "AT91SAM7L128.h"
#include "lcd.h"
#include "keyboard.h"

#define STACK_SIZE 30

int main()
{
 int i;

struct entry entry;
// Disable the watchdog timer
*AT91C_WDTC_WDMR = AT91C_WDTC_WDDIS;

lcd_init();
keyboard_init();

int stack[STACK_SIZE];
int top = 0;
while(top<STACK_SIZE)
{

keyboard_get_entry(&entry);
rpn(&stack,&top,&entry);

}
lcd_print7("Overflo"); //only shown if more numbers are added to the

//calculator than can be stored in the stack

return 0;
}

8 Criticism of the Course

Going into this lab, nearly none of the members of our group had any experience
programming in C. So although jumping in and trying to learn the language in a day was
challenging, it was a rewarding experience to work through it together. However, although we
started at about the same level in the language C, experience programming in general ranged
from nearly none to extensive. Because of this discrepancy, members of the group who were
skilled in writing code ended up carrying most of the programming. It was often difficult for
members who did not understand basics about loops, functions, and syntax to follow what was
being written.

In addition to learning how to program in C, we had to understand the hardware that we
were working with. The calculator was connected to the computer by a JTAG connector.
Additionally, the calculator had to be connected to a power source. In the beginning stages of the
project, when the calculator malfunctioned, sometimes it was due to a disconnected chord, not a
bug in the program. Getting used to the platform made it harder to focus on the code itself. On a
larger scale, the room in which we worked was cramped and lacked chairs. Occasionally,
calculators would go missing. These physical inconveniences made the lab trivially more
confusing and difficult.

Code reviews were a helpful way to see a different solution to the same problem. Once
we got started on writing a function, our group would often get stuck in a single track of
reasoning and problem solving. Instead of stepping back and trying an approach which avoided
our problem, we would try to hack through the roadblock we faced. Reading the code of different
groups, who often approached the programming from a different angle, showed us simpler, more
elegant ways to write the programs.

