Video

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

Columbia University
Spring 2011
The Model 181 is a high console model which provides television sight and sound entertainment with a selection of four (4) television channels. The black and white picture of pleasing contrast is reproduced on the screen of the 14 inch teletron, and measures 8 inches by 10 inches. The beautifully grained walnut cabinet of pleasing modern design measures 48% inches high, 23 inches wide and 26 inches deep. It is completely A.C., operated from standard 110 volt 60 cycle power lines. Twenty-two (22) tubes including the Du Mont Teletron are employed in the superheterodyne circuit. A dynamic speaker is used for perfect sound reproduction. In addition, a three-band superheterodyne all wave radio is provided for standard radio reception. This receiver employs 8 tubes, is completely A.C. operated from 110 volt 60 cycle power lines. Push button and manual tuning are provided. An individual dynamic speaker is used for broadcast sound reproduction.
Vector Displays
Raster Scanning
Raster Scanning
Raster Scanning
Raster Scanning
Originally black-and-white
60 Hz vertical scan frequency
15.75 kHz horizontal frequency

\[
\frac{15.75 \text{ kHz}}{60 \text{ Hz}} = 262.5 \text{ lines per field}
\]

White 1 V
Black 0.075 V
Blank 0 V
Sync − 0.4 V
A Line of B&W Video

White

Black

Blank

Sync

H

Front Porch: 0.02H
Sync: 0.08H
Back Porch: 0.06H
Blanking: 0.16H
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning

The diagram illustrates the process of interlaced scanning, which is a method used in digital video capture and transmission. In interlaced scanning, the video is divided into two fields: even-numbered fields and odd-numbered fields. The even fields are scanned in one direction, and the odd fields are scanned in the opposite direction. This creates a staggered pattern, allowing for a higher refresh rate and smoother motion compared to progressive scanning. The arrows in the diagram represent the scanning paths for both even and odd fields.
Interlaced Scanning
Interlaced Scanning
Color Television

Color added later: had to be backwards compatible.
Solution: continue to transmit a “black-and-white” signal and modulate two color signals on top of it.
RGB vs. YIQ colorspace

\[
\begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
=
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix}
\]

Y baseband 4 MHz “black-and-white” signal
I as 1.5 MHz, Q as 0.5 MHz at 90°:
modulated at 3.58 MHz
YIQ color space with Y=0.5
International Standards

<table>
<thead>
<tr>
<th></th>
<th>lines</th>
<th>active lines</th>
<th>vertical res.</th>
<th>aspect ratio</th>
<th>horiz. res.</th>
<th>frame rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>525</td>
<td>484</td>
<td>242</td>
<td>4:3</td>
<td>427</td>
<td>29.94 Hz</td>
</tr>
<tr>
<td>PAL</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>425</td>
<td>25 Hz</td>
</tr>
<tr>
<td>SECAM</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>465</td>
<td>25 Hz</td>
</tr>
</tbody>
</table>

PAL: Uses YUV instead of YIQ, flips phase of V every other line

SECAM: Transmits the two chrominance signals on alternate lines; no quadrature modulation
Computer Video: VGA

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Green</td>
<td>Blue</td>
<td>ID2</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGND</td>
<td>GGND</td>
<td>BGND</td>
<td>(+5V)</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID0</td>
<td>ID1</td>
<td>hsync</td>
<td>vsync</td>
<td>ID3</td>
</tr>
</tbody>
</table>

- - GND Monochrome, < 1024×768
- GND - Color, < 1024×768
GND GND - Color, ≥ 1024×768

DDC1
- ID2 Data from display
- vsync also data clock

DDC2
- ID1 I²C SDA
- ID3 I²C SLC
<table>
<thead>
<tr>
<th>Mode</th>
<th>Resolution</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Pixel Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>640 × 350</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640 × 400</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640 × 480</td>
<td>59.94 Hz</td>
<td>31.469 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>56 Hz</td>
<td>35.2 kHz</td>
<td>36 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>60 Hz</td>
<td>37.8 kHz</td>
<td>40 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>72 Hz</td>
<td>48.0 kHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>XGA</td>
<td>1024 × 768</td>
<td>60 Hz</td>
<td>48.5 kHz</td>
<td>65 MHz</td>
</tr>
<tr>
<td>SXGA</td>
<td>1280 × 1024</td>
<td>61 Hz</td>
<td>64.2 kHz</td>
<td>110 MHz</td>
</tr>
<tr>
<td>HDTV</td>
<td>1920 × 1080i</td>
<td>60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXGA</td>
<td>1600 × 1200</td>
<td>60 Hz</td>
<td>75 kHz</td>
<td>162 MHz</td>
</tr>
<tr>
<td>UXGA</td>
<td>1600 × 1200</td>
<td>85 Hz</td>
<td>105.77 kHz</td>
<td>220 MHz</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1920 × 1200</td>
<td>70 Hz</td>
<td>87.5 kHz</td>
<td>230 MHz</td>
</tr>
</tbody>
</table>
Detailed VGA Timing

640 × 480, “60 Hz”

<table>
<thead>
<tr>
<th>Dot Clock</th>
<th>25.175 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Frequency</td>
<td>31.469 kHz</td>
</tr>
<tr>
<td>Field Frequency</td>
<td>59.94 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pixels</th>
<th>role</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Front Porch</td>
</tr>
<tr>
<td>96</td>
<td>Horizontal Sync</td>
</tr>
<tr>
<td>40</td>
<td>Back Porch</td>
</tr>
<tr>
<td>8</td>
<td>Left border</td>
</tr>
<tr>
<td>640</td>
<td>Active</td>
</tr>
<tr>
<td>8</td>
<td>Right border</td>
</tr>
<tr>
<td>800</td>
<td>total per line</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lines</th>
<th>role</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Front Porch</td>
</tr>
<tr>
<td>2</td>
<td>Vertical Sync</td>
</tr>
<tr>
<td>25</td>
<td>Back Porch</td>
</tr>
<tr>
<td>8</td>
<td>Top Border</td>
</tr>
<tr>
<td>480</td>
<td>Active</td>
</tr>
<tr>
<td>8</td>
<td>Bottom Border</td>
</tr>
<tr>
<td>525</td>
<td>total per field</td>
</tr>
</tbody>
</table>

Active-low Horizontal and Vertical sync signals.
Let’s build a VHDL module that displays a 640 × 480 VGA raster with a white rectangle in the center against a blue background.
Video on the DE2
Horizontal Timing

For a 25.175 MHz pixel clock,

- HSYNC: 96 pixels
- BACK_PORCH: 48
- HACTIVE: 640
- FRONT_PORCH: 16
- HTOTAL: 800
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_vga_raster is

port (reset : in std_logic;
 clk : in std_logic;
 VGA_CLK,
 VGA_HS,
 VGA_VS,
 VGA_BLANK,
 VGA_SYNC : out std_logic;
 VGA_R,
 VGA_G,
 VGA_B : out unsigned(9 downto 0) -- Should be 25.125 MHz
 -- Clock
 -- H_SYNC
 -- V_SYNC
 -- BLANK
 -- SYNC
 -- Red[9:0]
 -- Green[9:0]
 -- Blue[9:0]

);

end de2_vga_raster;
architecture rtl of de2_vga_raster is

-- Video parameters

constant HTOTAL : integer := 800;
constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;
constant HFRONT_PORCH : integer := 16;

constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;

constant RECTANGLE_HSTART : integer := 100;
constant RECTANGLE_HEND : integer := 540;
constant RECTANGLE_VSTART : integer := 100;
constant RECTANGLE_VEND : integer := 380;
-- Signals for the video controller

-- Horizontal position (0-800)
signal Hcount : unsigned(9 downto 0);

-- Vertical position (0-524)
signal Vcount : unsigned(9 downto 0);

signal EndOfLine, EndOfField : std_logic;

signal vga_hblank, vga_hsync,
 vga_vblank, vga_vsync : std_logic; -- Sync. signals

-- rectangle area
signal rectangle_h, rectangle_v, rectangle : std_logic;

begin
Counters

HCounter : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' or EndOfLine = '1' then
 Hcount <= (others => '0');
 else
 Hcount <= Hcount + 1;
 end if;
 end if;
end process HCounter;

EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

VCounter: process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then
 Vcount <= (others => '0');
 elsif EndOfLine = '1' then
 if EndOfField = '1' then
 Vcount <= (others => '0');
 else
 Vcount <= Vcount + 1;
 end if;
 end if;
 end if;
end process VCounter;

EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';
Horizontal signals

HSyncGen : process (clk) begin
 if rising_edge(clk) then
 if reset = '1' or EndOfLine = '1' then
 vga_hsync <= '1';
 elsif Hcount = HSYNC - 1 then
 vga_hsync <= '0';
 end if;
 end if;
end process HSyncGen;

HBlankGen : process (clk) begin
 if rising_edge(clk) then
 if reset = '1' then
 vga_hblank <= '1';
 elsif Hcount = HSYNC + HBACK_PORCH then
 vga_hblank <= '0';
 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then
 vga_hblank <= '1';
 end if;
 end if;
end process HBlankGen;
Vertical signals

VSyncGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then vga_vsync <= '1';
 elsif EndOfLine = '1' then
 if EndOfField = '1' then vga_vsync <= '1';
 elsif Vcount = VSYNC - 1 then vga_vsync <= '0';
 end if;
 end if;
 end if;
end process VSyncGen;

VBlankGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then vga_vblank <= '1';
 elsif EndOfLine = '1' then
 if Vcount = VSYNC + VBACK_PORCH - 1 then
 vga_vblank <= '0';
 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
 vga_vblank <= '1';
 end if; end if; end if;
 end process VBlankGen;
The Rectangle

RectangleHGen : process (clk)
begin
if rising_edge(clk) then
if reset = '1' or Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HSTART then
rectangle_h <= '1';
elsif Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HEND then
rectangle_h <= '0';
end if; end if;
end process RectangleHGen;

RectangleVGen : process (clk)
begin
if rising_edge(clk) then
if reset = '1' then rectangle_v <= '0';
elsif EndOfLine = '1' then
if Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VSTART then
rectangle_v <= '1';
elsif Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VEND then
rectangle_v <= '0';
end if; end if; end if;
end process RectangleVGen;

rectangle <= rectangle_h and rectangle_v;
Output signals

VideoOut: process (clk, reset)
begin
 if reset = '1' then
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "0000000000";
 elsif clk'event and clk = '1' then
 if rectangle = '1' then
 VGA_R <= "1111111111"; VGA_G <= "1111111111"; VGA_B <= "1111111111";
 elsif vga_hblank = '0' and vga_vblank = '0' then
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "1111111111";
 else
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "0000000000";
 end if;
 end if;
end process VideoOut;

VGA_CLK <= clk;
VGA_HS <= not vga_hsync;
VGA_VS <= not vga_vsync;
VGA_SYNC <= '0';
VGA_BLANK <= not (vga_hsync or vga_vsync);
end rtl;