
SAGa
Carlos Abad - caa2140
Matthew Duane - md2835
Anthony Garvan - ag3035
Sam Friedman - snf2108

INTRODUCTION
Our team will design and implement a Sprite Animated Game (SAGa) modeled after the turn-
based shooter Worms. The game will feature sprite-based characters moving about a
gameboard, and will include a variety of sound effects and animations, and will be displayed on
the connected monitor at 640X480 resolution. Gameplay will be two players simultaneously,
either on the same computer or via a network connection. Keeping in line with the Worms
gameplay, our game will feature multiple sprite characters per team (the original game typically
supports 4 per side), with each being allowed to move and attack the opposition on a turn-by-
turn basis. Movement of sprites will be in both the X and Y frames. Multiple weapons and
location-specific damage will also be included, but at this point specific levels for each are
unknown.

Basic Diagram

I. VGA CONTROLLER/SPRITE ENGINE

The resolution for the VGA monitor is 640X480, so for simplicity we will make sure any pre-
rendered Characters and Tiles are proportional to this measurement. Thus, both Tiles and
Character sprites will be displayed in 16X8 pixel dimensions. That will make it easier for us to
transmit exact locations both between memory and the VGA controller as well as through the
network as packets.

Sprite Creation and Display

As we learned in the Sprites lecture, it is more efficient to store and draw pre-rendered
Characters and Tiles as opposed to drawing them in real-time. The entire gameboard will be
stored in RAM as a 40X30 array, with a 1 byte value specifying the type of sprite or Tile (or lack
thereof). Table 1.1 specifies the individual code and representative sprite.

Value Sprite/Tile Type

0 None/transparent

1 Worm/player

2 Lava tile

3 Ground tile

4 Sky tile

5 Weapon/bullet
Table 1.1: Sprite Array Codes

Since the character and weapon sprites can be placed arbitrarily on this grid, we will use the
pixel location to “map” its location to the grid and display the given sprite at that location.

Here are some example Sprites and Tiles that we plan to use.

Sprites from http :// www . yoda . arachsys . com / worms / wa / anims /

The actual sprites used in the game will be rendered in multiple “sprite arrays.” Tiles and
Character sprites will be afforded 4 colors, meaning each pixel location for that Sprite will have a
3-bit “color code” to specify which color should be visible (or if that bit should be transparent).
By using 3 bits, this affords us some flexibility if we would like to add additional color depth for a
particular sprite.

http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA
http://www.google.com/url?q=http%3A%2F%2Fwww.yoda.arachsys.com%2Fworms%2Fwa%2Fanims%2F&sa=D&sntz=1&usg=AFQjCNEWsocrQN66TMS29fCFzZLiMKxFsA

II. KEYBOARD INPUTS
The PS2 Keyboard will be used for input from the user.

Characters will only be able to move in the X plane, meaning the ⇠ and ⇢ arrow keys will be
used for character locomotion. Pressing a direction opposite of the direction the character is
facing will turn the character around.

Aiming for a character is achieved by rotating the “sight” of the gun up to 90o above and below
the X axis. Pressing the ⇡ arrow increases the angle while pressing the ⇣ arrow decreases the
angle.

III. RAM CONTROLLER AND MEMORY-MAPPED I/O
We expect to utilize both the FPGA's on-board memory as well as the 512K SRAM module
utilized in Lab 3. At this time, we expect to store all of the sprites and tiles in the onboard
memory, since they are small and immutable.

Characters and Tiles
The size of a 3-bit Character sprite will be 1024 bytes (16X8 bytes * 8 [3-bit color code]).
Depending on implementation, there will either be a single Character for all players (the only
difference being the direction it is facing), or two Characters with a distinguishing characteristic
(such as a different body color). With 4 unique Weapon projectiles, that increases the number
of potential characters to 6, meaning 6KB used. Factoring in 8 unique Tile types increases the
total number to 14 KB, still well below the 62KB found on the FPGA.

Gameboard and Audio
Since both the gameboard and audio components of the game need not be accessed as quickly
nor updated as frequently as the sprites, we expect to store them on the board's SRAM module.
The 16-bit bus width and slower response times for reads and writes will be issues, but we them
to be less pressing because both elements are time-lenient, as the gameboard would only be
altered at the end of a turn and the audio sound effects would be needed infrequently and only
at specific instances (e.g. player being hit by a projective or dying).

Memory-Mapped I/O
Though subject to change, here are the know memory mappings for the peripherals we expect
to use in the project:

Peripheral Name Mapping Size
Keyboard 8 bytes
Audio 8 bytes
Jtag_UART 8 bytes
SRAM 524,288 bytes

IV. NETWORK INTERFACE
The network interface for SAGa will be similar to the paradigm utilized in Lab 2, meaning the
device will utilize standard UDP packets with IP headers specifically designed for this
application and the ad hoc network that exists in the lab.

A standard Ethernet packet features 4 “layers” that can be accessed programmatically by the
user, with each layer incorporating header information and/or data specific to the routing of that
packet over a network. These four layers and associated data are:

Layer Data

Link Source and Destination MAC addresses plus Packet Type

Network IP Header (defined below)

Transport UDP datagram (defined below)

Application SAGa-specific protocol (defined below)

Network Layer

The Network Layer includes the IP Header, which is required for determining how and where to
send a packet between two machines. It includes a number of pre-determined fields along with
optional fields, all of which are defined below:

Due to the minimal amount of data that should need to be transmitted between the two
computers, we do not foresee the need for multiple packets per transaction, nor do we expect
any fragmentation of datagrams to occur because the maximum transmission unit (MTU) for the
network is larger (1500 bytes) than the expected maximum packet size (1024 bytes). These
assumptions eliminate the need to contend with the fragmentation flags and offsets found in a
typical IP header. If during implementation these assumptions prove to be incorrect, then we will
implement the necessary fragmentation procedures for packet transmission.

Transport Layer

The Transport Layer features the actual UDP datagram, which includes both the UDP header
and the data to be used by the Application Layer. The UDP header is 8 bytes long and includes
the following information:

Both the source and destination ports can be set to some generic value because the packets
will only be traversing the network in the lab. If this application was ported to communicate
between computers on different networks, these values would need to be coincide with ports
that are open on both networks (such as 80 for HTTP and 25 for SMTP) and be consistent
across all systems.

The UDP packet length will be computed by combining the size of the UDP header (8 bytes)
with the total number of bytes in the UDP payload. Though the maximum possible UDP payload
is 8184 bytes (8192 bytes – 8 byte header), our maximum UDP packet size will be 512 bytes,
with 8 bytes dedicated to the header.

The UDP checksum is not required for IPv4 packets (RFC 768), and thus will be sent to 0 since
any error correction will occur in SAGa and not by the network.

Application Layer

The Application Layer represents the protocol utilized by SAGa to transmit information about
the current game state between networked computers. There are three game events that will
lead to the transmission of data between the two clients:

1. Player movement - The active player changes its position on the gameboard.
The packet will include the player’s current location (x and y coordinates) on the
gameboard.

2. Player Fires Weapon - The active player fires its weapon. The packet will
include the player’s current location (x and y coordinates) on the gameboard, the
angle at which the player fired, the “power” of the shot (as defined below in the
Gameplay section), and optional additional data such as the type of weapon
fired (if different than the default).

3. Turn Completion - Sent by the active player’s computer upon the completion of
a turn. In addition to signifying the completion of a turn and shift control to the
other user, this packet will serve as a “sanity check” for the game, including data
for standardizing the game environment in light of the last turn. The data
included in this packet will include, but is not limited to:

a. The location of each player.
b. The health of each player.
c. Any Tiles that were affected during the last turn. This will be

treated as a simple on/off switch - if there was a Tile at this
location previously, it will be removed; if not, a Tile of specified
type will be added.

In the event that the non-active player’s game state does not match this data, it will treat
this data as correct and alter its state accordingly. By following this protocol, we will be
assured that game state is consistent between turns.

Application Data Protocol Breakdown
Below are breakdowns of data that may be included in a packet. These protocols can be
combined in a single data packet. Note that additional fields may be added during
implementation.

Player Movement:

● Data Type ID = The Sprite code value found in Table 1.1 above.
● Player ID = The ID number for the specific worm.

● Player X - pixel location = The x location of the upper-left pixel for the Sprite on the
gameboard.

● Player Y - pixel location = The y location of the upper-left pixel for the Sprite on the
gameboard.

● Options or filled = This may include additional data or be stuffed.

Weapon Fired:

● Data Type ID = The Sprite code value found in Table 1.1 above.
● Weapon ID = The particular type of weapon fired.
● CF = Bit representing the direction the character was facing when weapon fired

(0 is left, 1 is right).
● Firing Angle = The angle between 0 and 180o at which the weapon was fired.
● Velocity = The “strength” of the weapon fired, between 0 and 100.
● Player X - pixel location = The x location of the upper-left pixel for the Sprite on the

gameboard.
● Player Y - pixel location = The y location of the upper-left pixel for the Sprite on the

gameboard.
● Options or filled = This may include additional data or be stuffed.

Player Health

● Data Type ID = The Sprite code value found in Table 1.1 above.
● Player ID = The ID number for the specific worm.
● Player Health = The current health for the player (typically 0 to 100, but may be

altered).
● Options or filled = This may include additional data or be stuffed.

Tile Existence

● Data Type ID = The Sprite code value found in Table 1.1 above.
● Tile ID = The ID number for the type of Tile being displayed (should usually be

the same as Data Type ID).
● Tile X - pixel location = The x location of the upper-left pixel for the Tile on the

gameboard.

● Tile Y - pixel location = The y location of the upper-left pixel for the Tile on the
gameboard.

● Options or filled = This may include additional data or be stuffed.

Reliability of Transfer
Since UDP is a connectionless transfer with only best-effort assurances, we cannot assume that
all packets will arrive without error across the network. This presents two problems - one is a
lost packet during transmission, the other a corrupted packet that is received.

For a packet lost in transmission, the easiest means by which to assure receipt is through a
SEND-ACKNOWLEDGE protocol between the sender and receiver. Thus, when the active user
sends a packet, it will await an ACK packet from the receiver acknowledging receipt of the
packet. The sender will wait a specified amount of time for this acknowledgment (for example,
500 ms), and if it is not received it will timeout and resend the last packet. Multiple failures to
transmit the packet will lead to termination of the game. Upon receipt of this acknowledgment
from the receiver, the sender will return an ACK packet that signifies its receipt of this packet
and “officially” cedes control of the game to the other computer. An identical timeout protocol to
that for the earlier packet will apply.

In the event that a packet is received but is corrupted (based on an inconsistent checksum
value), the receiver will not send an acknowledgment and wait for the sender to resend the
packet. If corruption of a given packet occurs multiple times, the game will terminate.

V. GAMEPLAY

Overview
A typical game will feature 2 players for each side, and victory will be achieved for a side when
all players on the opposing side are dead. We may support more than 2 players per side
depending on implementation and time constraints.

Game Control
The game control logic will be executed by the NIOS II RISC processor running C. The
interface will consist of signal inputs for left, right, up and down arrow keys, and the spacebar.
Each key must be able to output two codes: one for “key pressed,” and the other for “key
released.” Since only one key may be pressed at a time, all inputs will be coded into a single
integer value communicated to software, similar to the method utilized in Lab 2. The outputs of

the software consist of the location of the top right pixel of each sprite and the top right pixel of
each Tile, and an integer that requests a sound be played. Sprites will be 16x8 RGB arrays.

Sprite and Audio Generation
In order to simplify the game design process, two programs will be written in a high-level
scripting language such as C#. The first program will convert a 256 color bitmap file into a
VHDL formatted text file defining an array. This will let us design the sprites in a program such
as Microsoft paint, and convert them into a format that we can copy / paste into the VHDL
hardware definitions.

The second scripted program will perform a similar function for the audio files. It will take a
windows waveform file (.WAV) and convert it to a VHDL-formatted array definition.
The game play will be executed as follows. First, there is an introduction screen which prompts
the use for his or her team name. Each team consists of four worms, and the names of the
worms are chosen randomly from a list of 40 worm name. No two worms can have the same
name. After the user enters his or her name and presses enter, the program enters game
mode. First, the terrain is drawn. There are three basic types of Tiles that make up the terrain
(as specified in Table 1.1): ground, lava, and air. The terrain will be drawn as follows. The first
Tile is always drawn at pixel 1/3 from the bottom of the screen (pixel 317) on the left hand side.
After that, each Tile is placed one unit above, one unit below, or on the same level as the Tile to
its left with equal probabilities. All Tiles will be rectangular. Thus, the terrain is a random walk
around position 317. Next, any Tile below position 317 that is not occupied by terrain will be
filled in with the lava Tile. This will ensure that roughly 50% of the terrain is lava. Lastly, any
Tile that is not occupied by ground or lava will be occupied by a sky Tile.

Game Initialization and Player Interaction
Next, the worms will be placed. The worms are placed randomly, but must only be placed on
“land” Tiles. Each worm consists of two sprites. The first is the worm itself, which may be
facing left or right depending on which direction the worm last moved. The second is the target
reticle, which starts at 45 degrees and always stays a fixed radius away from the worm. The
first worm to move is chosen at random. Text will display “[Worm Name] is up from team [Team
Name],” and a bobbing arrow will appear above the worm whose turn it is. Now the player
starts his or her turn. The left and right arrow keys move the worm left or right while they are
pressed. The up and down arrow keys change the angle of the reticle in a range of +/- 90
degrees in the direction that the worm is facing.

Once the player has moved the worm and target into position, he or she is ready to fire the
projectile. A status bar will indicate the speed of the projectile from 0-100%. Pressing down the
space bar initiates the fire sequence, and the status bar starts charging up from 0% to 100%.
When the user releases the space bar, the speed is set for the projectile. The projectile

consists of a spherical sprite that moves with constant speed in the x direction and constant
acceleration in the y direction. When the projectile hits a ground Tile, several “explosion” sprites
are drawn from the point of contact out to a predefined damage radius. Any worms drawn
within that radius are penalized with a damage value that depends on their distance from the
point of impact. If the projectile hits a lava Tile or goes off the screen, no explosion occurs.
Then the first worm from the opposite team goes.

If a worm’s health decreases below 0%, the text “[Worm Name] is toast” is displayed and a
“gravestone” sprite appears in its place. Players continue until all the worms on one side are
eliminated. When the game is over, text displays “Team [Team Name] is victorious!” Pressing
space bar automatically starts a new game.

The each explosion radius is pre-computed and stored in ram as an array, the value of each
element determine the damage caused, if damage is assigned to a ground Tile, the
corresponding position in the Tile matrix is set to '0'.

To determine the trajectory of the projectile the following procedure is used:

1. When the player releases the space bar two points are computed:
a. Point T as (H,L), where H = sin(angle)*strength and L =

cos(angle)* strength + wind intensity. Wind is a parameter that can
be positive or negative, because of that the minimum l is fixed to
'0' (the worm hurts itself). The functions sine and cosine will be
implemented as a lookup tables stored in RAM.

b. Point D as (X,Y), where X = starting x coordinate and Y = starting
y coordinate + L.
Using point T it is obtained the movement equation of the
projectile: y = Ax + C. So for going towards the point T, A will be
(sin(angle)*strength*2)/(cos(angle)*strength+wind). C will be '0'
except when arriving to T.

2. During movement If the projectile hits anything it explodes.

After releasing the space bar, the projectile is moved smoothly towards the point T. In order to
get a curved trajectory, When the projectile get closes to the point T, the parameter C starts
decreasing.

When the projectile gets to T it turns to go towards D, so the A parameter will be -A. This time
the parameter C will increase until be '0'. If the projectile get to D it continues with the same
route (same A) until it hits land or water, in the second case it does not explode.

Game Scoring

Scoring is based on two elements: the amount of health that remains for a player as well as the
number of players that remain for a given side. Each player begins with 100% health, and this
will diminish based on the amount and type of damage that player receives from the opposition.
Once the player’s health reaches 0%, that player is dead and eliminated from that round of the
game.

VI. SOUND OUTPUT
Sound will be generated using the DE2 on board WM8731 audio CODEC, as used in the lab 3.
The audio CODEC will read the values of the music and sound effects from the RAM using the
Avalon bus.

VII. VIDEO INPUT
The Video component of this project is an element whose inclusion is optional and will be based
on progress of essential elements.

To generate a “unique” background for a game session, the user will be able to utilize an
attached video camera to take a “snapshot” and use that for the background of the game. The
basic premise is that when the user initiates a gaming session, whatever image is currently
being sent to the Video In component of the DE2 board will replace the generic background for
the game. This signal will first be run through the Sobel Edge detection algorithm described
below before being outputted to the screen. This will allow us to filter out extraneous noise from
the video signal and improve the speed by which the background will need to be updated (since
the background will be either black or white).

Video will be input to the DE2 on board ADV7181 ADC. This decoder outputs color in YUV
color space so we will need to convert those colors to RGB to use in the VGA display. The
color space conversion can be implemented by integer multiplication and bitshifting so it is easy
to do this work in VHDL. We will buffer each line of data from the video input device and when
a complete line has been input we will write the data into ram over the avalon bus. Parameters
for the ADV7181 chip are set using the I2C interface so our top level module will establish that
connection. Below is a more detailed block diagram of the video input hardware:

Edge Detection
Sobel Edge detection is a simple algorithm for detecting edges. The algorithm works by
convolving an image with a 3 x 3 matrix approximating the horizontal, vertical or diagonal
derivative. For example the convolution matrix for the horizontal derivative approximation is:

The matrix for the vertical derivative is the transpose of the above matrix.

Since matrix multiplication is just a series of additions and multiplications and we will have the
color values of the pixels stored in RAM we should be able to implement this algorithm in VHDL.
For each pixel we need to locate its 8 neighboring pixels and multiply their color values by the
corresponding number in the convolution matrix. The border lines are special cases as they do
not have a complete set of neighboring pixels. We executed the convolution separately for each
color channel and combine the results into the output color.

