Fundamentals of Computer Systems
Thinking Digitally

Stephen A. Edwards

Columbia University

Fall 2011
The Subject of this Class

0
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Engineering Works Because of Abstraction

Application Software
Operating Systems
Architecture
Micro-Architecture
Logic
Digital Circuits
Analog Circuits
Devices
Physics
Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.
Operating Systems COMS W4118
Architecture Second Half of 3827
Micro-Architecture Second Half of 3827
Logic First Half of 3827
Digital Circuits ELEN 3331
Analog Circuits ELEN 3106
Devices ELEN 3106 et al.
Physics
Boring Stuff

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
462 Computer Science Building

Class meets 10:35–11:50 AM Tuesdays and Thursdays in 633 Mudd
Holidays: Nov 8, Nov 24
Assignments and Grading

<table>
<thead>
<tr>
<th>Weight</th>
<th>What</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Six homeworks</td>
<td>See Webpage</td>
</tr>
<tr>
<td>30%</td>
<td>Midterm exam</td>
<td>October 25th</td>
</tr>
<tr>
<td>30%</td>
<td>Final exam</td>
<td>9–12, December 20th</td>
</tr>
</tbody>
</table>

Homework is due at the beginning of lecture.

I will drop the lowest of your six homework scores; you can skip, omit, forget, ignore, blow off, screw up, feed to dog, flake out on, sleep through one with no penalty.
Rules and Regulations

You may collaborate with classmates on homework.

Each paper turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.

Don’t cheat: if you’re stupid enough to try, we’re smart enough to catch you.

Tests will be closed-book with a one-page “cheat sheet” of your own devising.
David Harris and Sarah Harris.

Digital Design and Computer Architecture.

Almost precisely right for the scope of this class: digital logic and computer architecture.
There are only 10 types of people in the world: Those who understand binary and those who don't.
Which Numbering System Should We Use?
Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60
The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0 = 730_{10}

9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0 = 990_{10}

Why base ten?
<table>
<thead>
<tr>
<th>Hex</th>
<th>Dec</th>
<th>Oct</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>12</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>13</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>14</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>15</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>16</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>17</td>
<td>1111</td>
</tr>
</tbody>
</table>
Binary and Octal

<table>
<thead>
<tr>
<th>Oct</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>

\[\text{PC} = 0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]

\[= 2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0 \]

\[= 1469_{10} \]
Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D₁₆ = 12 × 16⁷ + 10 × 16⁶ + 15 × 16⁵ + 14 × 16⁴ + 15 × 16³ + 0 × 16² + 0 × 16¹ + 13 × 16⁰
= 3, 405, 705, 229₁₀

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
<th>F</th>
<th>E</th>
<th>F</th>
<th>0</th>
<th>0</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>110010101011111101111000000001101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Hex

Binary

Octal
Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you represent with 5
 binary
t octal
decimal
 hexadecimal digits?
Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")
Decimal Addition Algorithm

\[
\begin{align*}
434 \\ +628 \\
\hline
1062
\end{align*}
\]

\[4 + 8 = 12\]
Decimal Addition Algorithm

\[
\begin{array}{c}
434 \\
+ 628 \\
\hline
2762
\end{array}
\]

4 + 8 = 12
1 + 3 + 2 = 6

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

+ 0 1 2 3 4 5 6 7 8 9
+ 1 2 3 4 5 6 7 8 9 10
+ 2 3 4 5 6 7 8 9 10 11
+ 3 4 5 6 7 8 9 10 11 12
+ 4 5 6 7 8 9 10 11 12 13
+ 5 6 7 8 9 10 11 12 13 14
+ 6 7 8 9 10 11 12 13 14 15
+ 7 8 9 10 11 12 13 14 15 16
+ 8 9 10 11 12 13 14 15 16 17
+ 9 10 11 12 13 14 15 16 17 18
+ 10 11 12 13 14 15 16 17 18 19
Decimal Addition Algorithm

\[
\begin{array}{c}
\text{1} \\
\text{434} \\
\downarrow \\
\text{628} \\
\hline \\
\text{62}
\end{array}
\]

\[
\begin{align*}
4 + 8 &= 12 \\
1 + 3 + 2 &= 6 \\
4 + 6 &= 10
\end{align*}
\]
Decimal Addition Algorithm

\[
\begin{array}{c}
11 \\
434 \\
+628 \\
\hline
062
\end{array}
\]

\[
\begin{align*}
4 + 8 & = 12 \\
1 + 3 + 2 & = 6 \\
4 + 6 & = 10
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Decimal Addition Algorithm

\[\begin{array}{c c c c c c c c c c}
+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
4 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
6 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
7 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
8 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
9 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
10 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\end{array} \]

\[
\begin{align*}
4 + 8 & = 12 \\
1 + 3 + 2 & = 6 \\
4 + 6 & = 10 \\
\end{align*}
\]
Binary Addition Algorithm

10011
+11001

\[1 + 1 = 10\]

\begin{array}{c|cc}
+ & 0 & 1 \\
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11 \\
\end{array}
Binary Addition Algorithm

\[
\begin{array}{c}
1 \\
10011 \\
+11001 \\
\hline \\
10010
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline \\
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]

\[
1 + 1 = 10 \\
1 + 1 + 0 = 10
\]
Binary Addition Algorithm

\[
\begin{array}{c}
11 \\
10011 \\
+11001 \\
\hline
00 \\
\end{array}
\]

\[
\begin{align*}
1 + 1 & = 10 \\
1 + 1 + 0 & = 10 \\
1 + 0 + 0 & = 01 \\
\end{align*}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
011 \\
10011 \\
+11001 \\
\hline \\
\underline{100}
\end{array}
\]

\[
\begin{array}{c}
1 + 1 = 10 \\
1 + 1 + 0 = 10 \\
1 + 0 + 0 = 01 \\
0 + 0 + 1 = 01
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline \\
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
\begin{array}{c}
0011 \\
10011 \\
+11001 \\
\hline
1100 \\
\end{array}
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- \(1 + 1 = 10\)
- \(1 + 1 + 0 = 10\)
- \(1 + 0 + 0 = 01\)
- \(0 + 0 + 1 = 01\)
- \(0 + 1 + 1 = 10\)
Binary Addition Algorithm

\[
\begin{array}{c}
10011 \\
10011 \\
+11001 \\
\hline
101100
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11 \\
\end{array}
\]

\[
\begin{align*}
1 + 1 &= 10 \\
1 + 1 + 0 &= 10 \\
0 + 0 + 1 &= 01 \\
0 + 1 + 1 &= 10 \\
\end{align*}
\]
Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be represented?
Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading $-$. In binary, a leading 1 means negative:

- $0000_2 = 0$
- $0010_2 = 2$
- $1010_2 = -2$
- $1111_2 = -7$

$1000_2 = -0$?

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.
One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One’s Complement number.

To negate a number, complement (flip) each bit.

0000₂ = 0
0010₂ = 2
1101₂ = −2
1000₂ = −7
1111₂ = −0?

Addition is nicer: just add the one’s complement numbers as if they were normal binary.

Really annoying having a −0: two numbers are equal if their bits are the same or if one is 0 and the other is −0.
NOT ALL ZEROS ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI TASTE.
Two’s Complement Numbers

Really neat trick: make the most significant bit represent a *negative* number instead of positive:

\[1101_2 = -8 + 4 + 1 = -3 \]
\[1111_2 = -8 + 4 + 2 + 1 = -1 \]
\[0111_2 = 4 + 2 + 1 = 7 \]
\[1000_2 = -8 \]

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s complement) then add 1.

Very good property: no \(-0\)

Two’s complement numbers are equal if all their bits are the same.
Number Representations Compared

<table>
<thead>
<tr>
<th>Bits</th>
<th>Binary</th>
<th>Signed Mag.</th>
<th>One’s Comp.</th>
<th>Two’s Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>−0</td>
<td>−7</td>
<td>−8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>−1</td>
<td>−6</td>
<td>−7</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>−6</td>
<td>−1</td>
<td>−2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>−7</td>
<td>−0</td>
<td>−1</td>
</tr>
</tbody>
</table>

Smallest number: 0
Largest number: 15
Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

\[
31.4159 = 3 \times 10^1 + 1 \times 10^0 + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4}
\]

The same trick works in binary:

\[
1011.0110_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4}
\]

\[
= 8 + 2 + 0.25 + 0.125
\]

\[
= 11.375
\]
Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus
Floating-point Numbers

How can we represent very large and small numbers with few bits?

Floating-point numbers: a kind of scientific notation

IEEE-754 floating-point numbers:

\[
\begin{array}{c}
\text{sign} \ \ \ \text{exponent} \ \ \ \text{significand} \\
1 \ 10000001 \ 01100000000000000000000
\end{array}
\]

\[
= -1.011_2 \times 2^{129-127} \\
= -1.375 \times 4 \\
= -5.5
\]
Humans prefer reading decimal numbers; computers prefer binary.

BCD is a compromise: every four bits represents a decimal digit.

<table>
<thead>
<tr>
<th>Dec</th>
<th>BCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>1</td>
<td>0000 0001</td>
</tr>
<tr>
<td>2</td>
<td>0000 0010</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>0000 1000</td>
</tr>
<tr>
<td>9</td>
<td>0000 1001</td>
</tr>
<tr>
<td>10</td>
<td>0001 0000</td>
</tr>
<tr>
<td>11</td>
<td>0001 0001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>19</td>
<td>0001 1000</td>
</tr>
<tr>
<td>20</td>
<td>0010 0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
158 \\
+242
\end{array}
\]
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
0001 & 0101 & 1000 \\
+0010 & 0100 & 0010 \\
\hline
1010 \\
+0110 \\
\hline
0100 & 0000
\end{array}
\]

First group Correction

\[
\begin{array}{c}
0100 & 0000 \\
\hline
0000
\end{array}
\]

Result
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
1 \\
158 \\
+242 \\
\hline
0
\end{array}
\]
Binary addition followed by a possible correction.
Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
1 \\
158 \\
+242 \\
0
\end{array}
\]
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
11 \\
158 \\
+242 \\
00
\end{array}
\]

\[
\begin{array}{c}
1 \\
00101011000 \\
+ 001001000010 \\
\hline
10100000 \\
+ 0110 \\
\hline
01000000
\end{array}
\]

First group correction
Second group correction
Third group
BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

\[
\begin{array}{c}
11 \\
158 \\
+242 \\
400
\end{array}
\]

\[
\begin{array}{c}
\text{1 1} \\
00101011000 \\
+001001000010 \\
\hline
1010 \\
+ 0110 \\
\hline
10100000 \\
+ 0110 \\
\hline
01000000
\end{array}
\]

First group Correction
Second group Correction
Third group (No correction)
Result