Review for the Midterm

Stephen A. Edwards

Columbia University

Fall 2008

The Midterm

70 minutes

4-5 problems

Closed book

One sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game
Little, if any, programming.

Details of O’Caml/C/C++/Java syntax not required

Broad knowledge of languages discussed

Topics

Structure of a Compiler
Scanning and Parsing
Regular Expressions
Context-Free Grammars
Bottom-up Parsing
ASTs

Name, Scope, and Bindings

Partl

Structure of a Compiler

Compiling a Simple Program

int gcd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

return a;

}

What the Compiler Sees
int gcd(int a, int b)

while (a '= b) {
if (a > b) a -= b;

else b -= a;

b

return a;
¥
in tsp g cd (i n tsp a ,
n tsp b)nl {nlspsp w h i 1
(asp ! =sp b)sp { nl spspsp
fsp (asp >sp b)sp asp - =
;nl spspspsp e 1 s esp bsp -
a ;nlspsp }nlspsp r e t ur

a ;nl } nl

Text file is a sequence of characters

sp i
e sp
sp i
sp b
= Sp
n sp

Lexical Analysis Gives Tokens

int gcd(int a, int b)

while (a !'= b) {
if (a > b) a -= b;
else b -= a;

}

return a,;

}

int_gcd ‘int‘@D int @E while E@
=16 | (€]][(=] 7o) D) o [T BT T et
o] [=[[a] [;] [3] [zeturn] [a] [+] 3]

A stream of tokens. Whitespace, comments removed.

Parsing Gives an AST

func\
int” gcd args se
g / g\ / q\ :'{int gcd(int a, int b)
arg arg while return while (a != b) {

/ \ / \ / \ | } gséa;_f)a;a -= b;

int a int b !=

/\ / \) return a;

a b > =

ANAR

a

/u

Abstract syntax tree built from parsing rules.

Semantic Analysis Resolves Symbols

func

ng/argS/ \
arg arg while return
A \ .
int a int 1= if
Symbol / \
Table: b

Types checked; references to symbols resolved

Translation into 3-Address Code

10:

14:
L5:
L1:

Idealized assembly language w/ infinite registers

sne
seq
btrue
sl
seq
btrue
sub
Jjmp
sub
Jjmp
ret

$1,
$0,
$0,
$3,
$2,
$2,

[=n

% while (a != b)

% if (a < b)
% a-=>b

% b -= a

int gecd(int a, int b)

while (a != b) {
if (a > b) a -= b;
else b -= a;

return a;

}

Generation of 80386 Assembly

ged:

.L8:

L5:

.L3:

pushl
mov1l
mov1l
mov1l
cmpl
je
jle
subl
Jjmp
subl
Jjmp
leave
ret

%ebp % Save FP
%esp, %ebp

8(%ebp) ,%eax % Load a from stack
12 (%ebp) ,%edx % Load b from stack
%edx, %eax

.L3 % while (a'!=Db)
L5 % if (a<Db)
%edx, %eax %a-=b

.18

%eax, %edx %b-=a

.18

% Restore SP, BP

PartIl

Scanning

Describing Tokens

Alphabet: A finite set of symbols

Examples: {0,1},{A, B,C, ..., Z}, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: € (the empty string), Stephen, afy
Language: A set of strings over an alphabet

Examples: @ (the empty language), {1, 11, 111, 1111}, all English
words, strings that start with a letter followed by any sequence of
letters and digits

Operations on Languages

LetL={e,wo}, M ={man, men}

Concatenation: Strings from one followed by the other
LM = { man, men, woman, women }

Union: All strings from each language

Lu M = {e, wo, man, men }

Kleene Closure: Zero or more concatenations

M ={etUMUMMUMMM:---=
{e¢, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, Ianmenman, ...}

Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eis aregular expression that denotes {€}
2. If ae X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

> (r)|(s) denotes L(r) U L(s)
> (1r)(s) denotes{tu:.teL(r),ueL(s)} .
> (r)* denotes U2 L' (L° ={e} and L' = LL'")

Nondeterministic Finite Automata

1. Set of states S: {, , @, @}

“All strings containing an Set of input symbols X: {0, 1}

even number of 0'sand 1’s”

N

3. Transition function o : § x = — 25
state ‘ e 0 1
start A - {B} {C}
B - {A (D}
C - {D} {A}
D - {C (B}

4. Start state sp :
5. Set of accepting states F: {}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start
state to an accepting state that “spells out” x.

Show that the string “010010” is
accepted.

Translating REs into NFAs
start a

a O {:)

rra

rilro

(r) * start € €

Translating REs into NFAs

Example: translate (a|b)* abb into an NFA

Show that the string “aabb” is accepted.

O D@ @ D@

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is
accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state
2. For each character c,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

Simulating an NFA: -aabb, e-closure

Simulating an NFA: a-abb

Simulating an NFA: a-abb, e-closure

Simulating an NFA: aa-bb

Simulating an NFA: aa-bb, e-closure

Simulating an NFA: aab-b

Simulating an NFA: aab-b, e-closure

Simulating an NFA: aabb-

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on ¢

» For each state s and symbol q, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current
state. Accept if you end up on an accepting state. Reject if you end
on a non-accepting state or if there is no transition from the current
state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF
}

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

%
O

Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| [’a’-"z’] [’a’-"z’ ’'0’-"9’]% as lit { ID(lit) }
| [’0’-"9°]+ as num { NUM(num) }

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states that
appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for (a|b)*abb (1)

o5 Dpooo)-"{cdgmhseco

Subset construction for (a|b)*abb (2)

Subset construction for (a|b)*abb (3)

Subset construction for (a|b)*abb (4)

Part II1

Parsing

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing
3-4%2+5

with the grammar

e—e+e|le—e|exe|ele| N

+ - * x X
/'/\5 3/*\ f<,\>\ 3/>’ <\5
3 \“ “/ 5 3 4 2 5 4 \+ / 2

/\ /\ /\ /\
4 2 4 2 2 5 3 4

Fixing Ambiguous Grammars

A grammar specification:

expr PLUS expr {}
expr MINUS expr {}
expr TIMES expr {}
expr DIVIDE expr {}
NUMBER {}

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr {}
| expr MINUS expr {}
| term {}

term : term TIMES term {}
| term DIVIDE term {}
| atom {}

atom : NUMBER {}

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term {}
| expr MINUS term {}
| term {3

term : term TIMES atom {}
| term DIVIDE atom {}
| atom {3

atom : NUMBER {}

This is left-associative.

No shift/reduce conflicts.

Rightmost Derivation

e—t+e
e—t
t—Id = ¢
t—Id

The rightmost derivation for Id * Id + Id:

=W N -

At each step, expand the rightmost
nonterminal.

nonterminal

“handle”: the right side of a production

Fun and interesting fact: there is exactly
one rightmost expansion if the grammar
is unambigious.

Rightmost Derivation

l1: e—t+e
2: e—t
3: t—Id x¢
4: t—Id
The rightmost derivation for Id * Id + Id:
€]
£ +[e]
t+ Tokens on the right are all terminals.
In each step, nonterminal just to the left
is expanded.
+1d
+Id

Reverse Rightmost Derivation

Beginning to look like a
parsing algorithm: start
with terminals and reduce
them to the starting
nonterminal.

Reductions build the parse

1: e—t+e
2: e—t
3: t—Id =t
4: t—Id
The reverse rightmost derivation for Id * Id + Id:
Id « [Id]+ Id Id
L |
ST
I +[1d| Id
- |
r+ |t
L+[e] t+ e

i
N

tree starting at the leaves.

Reverse Rightmost Derivation

e—t+e
e—t
t—Id =t
t—Id

=W N =

The reverse rightmost derivation for Id * Id + Id:

Id «[Id]+1d Big question: where are the handles?
+1d A handle is the right side of a production, but

not always vice-versa.
+ , o
> A handle is the result of an expansion in the

rightmost derivation.

Every step in a rightmost derivation is a right
sentential form.

Ao, A

Handle Hunting

The basic trick, due to Knuth: build an automaton that tells us
where the handle is in right-sentential forms.

Represent where we could be with a dot.

e—-t+e

e—-t The first two come from expanding e. The
= 'Ig * 1 second two come from expanding ¢.
t—-1

Consider the expansion of e first. This gives two possible positions:

e—t-+e when e was expanded to £+ e
e—t when e was expanded to just ¢; ¢ is a handle

The expanded- ¢ case also gives two possible positions:

t—1Id- =t when f was expanded to Id + ¢
t—1d- when y was expanded to just Id; Id is a handle

S7:e' — e-

a2

e—-e
e—-t+e
S0: e— -t
t— - Id=*t
r—-Id

Constructing the LR(0) Automaton

e—t-+e
e—t-

| a

t—Id-*t

S1: o 1d-

Id || *

t—Id=-t
S3:t— - Idx*t
t—-Id

Id

e—t+-e
e—-t+e
S4:e— -t
t—-Id=*t
t—-Id

e

S6:e—t+e:

S5 t—Id = t-

Shift-reduce Parsing

stack input action
Id«Id+1Id shift
Id *Id+1Id shift
) Id = Id+1Id shift
1: e—t+e Id <71 +Id reduce (4)
2: e—t +Id reduce (3)
3: t—Id x¢ t +Id shift
N t+ Id shift
4: 1~ t +tl reduce (4)
t+0 reduce (2)
reduce (1)
e accept

Scan input left-to-right, looking for handles.
An oracle says what to do

LR Parsing

stack input action

li Id*Id+1Id$ shift, goto 1
1.'L

k at state on top of stack

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0]sl 72
1 m\
2 s4 12
3 sl 5
4|sl 6 2
5 13 13
6 rl
7 v

2. “and the next input token

| 3—to find the next action

4. In this case, shift the token onto the stack
and go to state 1.

LR Parsing

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0|sl 72
1 r4 s3 r4
2 s4 12
3 sl 5
4|sl 62
5 13 13
6 rl
7 v

stack input action
[] Id*Id+Id$ shift, goto 1
[*Id+Id$ shift, goto 3
Id+Id$ shift, goto 1
LI G +Id$ reducew/ 4

Action is “reduce with rule 4 (¢t — Id).” The

right side is removed from the stack to

reveal state 3. The goto table in state 3 tells

us to go to state 5 when we reduce a t:
stack input action

LIMGIE +Id$

LR Parsing

l1: e—t+e
2: e—t
3: t—Id ¢
4: t—Id
action goto

Id + = $|et
0|sl 72
1 r4 s3 r4
2 s4 12
3 sl 5
4|sl 62
5 13 13
6 rl
7 v

stack

[o]

[o] (]

Lol [3]
Lol [G108
Lol [E1E]
[oJ[2]

o]][]
o] 21 H
LJEIEIE
LJEIG
[o][£]

input
Id*Id +Id $
*Id+Id $
Id+Id$
+Id$
+Id$
+Id$
Id$
$

$
$
$

action

shift, goto 1
shift, goto 3
shift, goto 1
reduce w/ 4
reduce w/ 3
shift, goto 4
shift, goto 1
reduce w/ 4
reduce w/ 2
reduce w/ 1
accept

Building the SLR Parse Table from the LR(0) Automaton

S7:e' —e-

et

SO:

e—-e
e—-t+e
e— -t
t—-Id=t
t—-Id

t e—t-+e
e—t-

| 1a

Id

S1

t—Id-xt
Tt —Id-

Id || *

t—Id=-t

S3:t— - Idx*t

t—-Id

S5 t—1Id =t

S4.

e—1t+-e
e—-t+e
e— -t
t— Id=*t
t—-Id

e

S6:

e—1r+e-

Id

action
+ x $|et

NO G W = O

sl

sl

4 s3 rd
s4 12

13 13
rl
v

Part IV

Name, Scope, and Bindings

Names, Objects, and Bindings

Name?2

binding
Object4 Namel
I wnd :

Activation Records

argument 2
argument 1
return address — frame pointer
old frame pointer

local variables

temporaries/arguments

— stack pointer
| growth of stack

Activation Records

Return Address
Old Frame Pointer
int AQ) {
X int x;
A’s variables BO);
Return Address }
Old Frame Pointer int BO {
int y;
y cO;
B’s variables }
Return Address int cO {
0Old Frame Pointer) int z;
z
C’s variables

Nested Subroutines in Pascal

procedure mergesort;
var N : integer;

procedure split;
var I : integer;
begin

end
procedure merge;
var J : integer;
begin
end

begin

end

Nested Subroutines in Pascal

procedure A;
procedure B;
procedure C;
begin

end
procedure D;
begin

C
end

begin
D
end

procedure E;
begin

B

end

begin
E
end

E/

B/

D/

C/

Static vs. Dynamic Scope

program example;
var a : integer; (x Outer a =)

procedure seta;
begin

a :=1 (% Which a does this change? =)
end

procedure Iocala;
var a : integer; (+ Inner a =)
begin
seta
end

begin
a := 2;
if (readln() = ’'b’)
locala
else
seta;
writeln(a)
end

Symbol Tables in Tiger

parent
parent H_lt
a string
let // parent
var n := 8 n
var X := 3 / X
function sqr(a:int) / sqr
=a+*a
type ia = array of int
in
n := sqr(x)

end

	Parsing

