COMS W4115 Language Reference Manual
CSSLang

Wayne Yang (wy2149@Qcolumbia.edu)
June 25, 2010

1 Introduction

This manual describes CSSLang language which implements a subset of the
syntax of CSS 2.1 specification, and it follows closely with the descriptions of
CSS syntax on http://www.w3.org/TR/CSS2/ and the SASS directives syn-
tax described on http://sass-lang.com/docs/yardoc/file. SASS_ REFERENCE. html.

2 Lexical Conventions

A CSSLang source file has file extension .csslang and it contains one or
more CSS rules. The CSSLang compiler transforms a .csslang file into a
valid CSS file by carrying out variable expansions and directives introduced
by lines beginning with the @ character. Any valid CSSLang source file can
be compiled into a valid CSS 2.1 file, but not vice versa.

2.1 Tokens

There are four classes of tokens: identifiers, values, and operators.

2.2 White space

Characters "space” (U40020), "tab” (U+0009), ”line feed” (U4000A), ”car-
riage return” (U4000D), and ”form feed” (U+000C) are considered ”white
space” in CSSLang. White space and comments are ignored unless they
separate tokens.

2.3 Comments

The characters /* introduce a comment and the characters */ terminate a
comment. Comments do not nest.

2.4 Identifiers

CSSLang supports a subset of identifiers in CSS specification 2.1. In CSS-
Lang, identifiers are sequences of characters [a-zA-Z], digits [0-9], hyphen
(-), and the underscore (). They can not start with a digit, or a hyphten fol-
lowed by a digit. identifiers can appear as variable names, template names,
property names, and selectors.

3 Selectors

In CSS, a selector is a pattern matching rule which determines which elements
to apply the style rule to. The version of selector syntax implemented by
CSSLang can be described in the following Yacc-like grammar:

type_selector: identifer;

universal_selector: ’*’;
id_selector: ’#’ identifier;
class_selector: ’.’ identifier;

simple_selector: type_selector

| universal_selector

| id_selector

| class_selector

| type_selector id_selector

| type_selector class_selector;
selector: simple_selector

| selector white_space simple_selector

4 Rule sets

A rule set is a selector followed by a declaration block. A declaration block
begins with a left curly brace ({) and ends with a matching right curly brace
(}). A declaration block can contain zero or more pairs of property name
and value. The property name and value are separated by a colon (:) and
terminated by a semicolon (;). A property name is an identifier. The syntax
of values will be described in details in section Values.

The following is the format of a rule set:

rule_set:

selector left_brace properties right_brace
properties:

property_name_value

| properties property_name_value
property_name_value:

property_name colon property_value semicolon

The following is an example of a rule set:

div.header {
float: left;
color: #FFFFFF;

5 Values

CSSLang supports four main types of values: numbers, strings, colors, and
booleans. The values can appear on the right-hand side of variable assign-
ment.

5.1 Numbers

Numbers can have integer values or floating values. An integer constant con-
sists of a sequence of digits and is taken to be decimal. A floating constant
consists of an integer part, a decimal point, and a fraction part. Either the
integer part or the fraction part (not both) may be missing. Numbers may
be preceded by a ”-” or "4” to indicate the sign. -0 is equivalent to 0. Num-
bers may be immediately followed by a unit. There are two types of units:
relative and absolute. Relative units are em, ex, and px. Absolute units are
in, cm, mm, pt, and pc. For details on these length units, please refer to
the CSS 2.1 specification.

Only numbers of the same relative unit can appear as operands of an arith-
metic operator. Conversion happens when numbers of different absolute units
appear in an arithmetic expression. The unit of the left operand will be used
as the base unit for conversion.

5.2 Boolean

There are two Boolean values: true and false.

5.3 Colors

A color value can be one of the predefined colors or a RGB speficiation. The
list of predefined colors is: aqua, black, blue, fushsia, gray, green, lime,
maroon, navy, olive, organge, purple, red, silver, teal, white, and
yellow. An RGB value can be in either hexadecimal or functional notation
and it is case-insensitive. The hexadecimal notation is a '#’ immediately fol-
lowed by either three or six hexidecimal characters. The functional notation
is 'rgb(’ followed by a comma-separated list of three integer values or three
percentage values followed by) .

The examples below are colors in RGB hexadecimal notation:

#f11
#f£f£f111
#FFFFFF

The examples below are colors in functional notation:

rgb(255,211,0)
rgb(100%, 33%, 0%)
5.4 Strings

String literals can be specified with double quotes (”), single quotes (’), or
without quotes. If string literals are quoted, they must have matching quotes.

6 Operators

6.1 Parentheses ()

Parentheses are used to group expressions. A parenthesized expression is a
primary expression whose type and value are identical to those of the original
expression.

6.2 Negation operator (!)

Negation operator is an unary operator that converts a non-false operand to
true, and false operand to true.

6.3 Arithmetic operators (+ - * /)

Arithmetic operators are binary operators that must have operands that can
be evaluated to numeric values. Division by 0, and all floating-point excep-
tions are treated as error by the CSSLang compiler. Operands of different
units are subject to the conversion mentioned in the Numbers sectcion.

6.4 Relational operators (< <= > >=)

Relational operators only work for operands that can be evaluated to num-
bers. Operands of different units are subject to the conversion mentioned in
the Numbers sectcion.

6.5 Equality operators (== !=)

Equality operators work with all types of values. The operator == converts
two operands to true if and only if both operands have the same unit and
values. Conversion does not happen for expressions with equality operators.

6.6 Precedence & Associativity

The table below summarizes the rules for precedence and associativity of all
operators. Operators on the same line have the same precedence; rows are
in decreasing precedence:

OPERATORS | ASSOCIATIVITY
0 left to right
! right to left
*/ left to right
+ — left to right
< <= > >= left to right
== = left to right

7 Expressions

Expressions are identifiers, strings, numbers or expressions in parentheses.
Expressions are evaluated according to the associativity and precedence of
operators involved. Parentheses can be used to change the order of evalua-
tions in expressions.

Primary expressions are identifiers, values, or expressions in parentheses.

8 Variables

Variables are identifiers preceded with a dollar sign ($). Variables are de-
clared outside of a rule set and the values are set using the same syntax as
the properties:

$variable-name : expressions semicolon

The values of variables persist after the variable declarations until the end of
the file. Variables inside rule sets and templates, and on the right-hand side
of assignments are substituted with their values.

9 Directives

CSSLang adds support for directives that allow conditional styles and rule
templates. Here are the directives: Qif, Qelse, Qdef, and @inc.

9.1 @if and @elseif, and Qelse

The @Qif directive is used inside a rule set or a rule template and is used to
choose style declarations depending on the result of expression:

Q@if expression {
properties

} @elseif {
properties

} @else {
properties

by

If the expression is not evaluated to false, then the first declaration block
is used. Otherwise the next immediate expression in the Qelseif is evaluated
until @else is reached.

9.2 @def and @Qinc

@def is used to define templates for rule sets. The templates can take pa-
rameters which are given the values when the template is included using
the directive @Qinc. A template is declared with a template name follwed by
parentheses and a declaration block. The parentheses can contain a comma-
separated list of parameters in variable notation:

@def template_name($paraml, $param2) {
properties

by

A template can be used inside a declaration block of rule sets or templates by
using the @inc directive followed by the template name and its parameters
in parentheses.

selector {
@inc template_name($paraml, $param?);

by

@inc directive should be terminated by a semicolon.

