
Scanning and Parsing

Stephen A. Edwards

Columbia University

Fall 2008

Part I

Lexical Analysis and Ocamllex

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

f o o = a + bar (0 , 42 , q) ;

ID EQUALS ID PLUS ID LPAREN NUM COMMA ID

LPAREN SEMI

Token Lexemes Pattern

EQUALS = an equals sign

PLUS + a plus sign

ID a foo bar letter followed by letters or digits

NUM 0 42 one or more digits

Lexical Analysis

Goal: simplify the job of the parser.

Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g., whitespace,

comments).

Parser does not care that the the identifer is

“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.

Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ǫ (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ; (the empty language), { 1, 11, 111, 1111 }, all English

words, strings that start with a letter followed by any sequence of

letters and digits

Operations on Languages

Let L = { ǫ, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L∪M = {ǫ, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ǫ}∪M ∪M M ∪M M M · · · =

{ǫ, man, men, manman, manmen, menman, menmen,

manmanman, manmanmen, manmenman, . . . }

Kleene Closure

The asterisk operator (*) is called the Kleene

Closure operator after the inventor of

regular expressions, Stephen Cole Kleene,

who pronounced his last name “CLAY-nee.”

His son Ken writes “As far as I am aware this

pronunciation is incorrect in all known

languages. I believe that this novel

pronunciation was invented by my father.”

Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ǫ is a regular expression that denotes {ǫ}

2. If a ∈Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r) and L(s),

Ï (r)|(s) denotes L(r)∪L(s)
Ï (r)(s) denotes {tu : t ∈ L(r),u ∈ L(s)}
Ï (r)∗ denotes ∪∞

i=0
Li (L0 = {ǫ} and Li = LLi−1)

Regular Expression Examples

Σ= {a,b}

RE Language

a|b {a,b}

(a|b)(a|b) {aa, ab,ba,bb}

a∗ {ǫ, a, aa, aaa, aaaa, . . .}

(a|b)∗ {ǫ, a,b, aa, ab,ba,bb, aaa, aab, aba, abb, . . .}

a|a∗b {a,b, ab, aab, aaab, aaaab, . . .}

Specifying Tokens with REs

Typical choice: Σ= ASCII characters, i.e.,

{ , !,",#,$, . . . ,0,1, . . . ,9, . . . ,A, . . . ,Z, . . . ,~}

letters: A|B| · · · |Z|a| · · · |z

digits: 0|1| · · · |9

identifier: letter (letter |digit)∗

Implementing Scanners Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata

Subset Construction

Deterministic Finite Automata

Tables

Nondeterministic Finite Automata

“All strings containing an

even number of 0’s and 1’s”

A B

C D

0

0

0

0

11 11

start

1. Set of states S:
{

A , B , C , D
}

2. Set of input symbols Σ: {0,1}

3. Transition function σ : S ×Σǫ → 2S

state ǫ 0 1

A – {B} {C}

B – {A} {D}

C – {D} {A}

D – {C} {B}

4. Start state s0 : A

5. Set of accepting states F :
{

A
}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start

state to an accepting state that “spells out” x.

A B

C D

0

0

0

0

11 11

start

Show that the string “010010” is

accepted.

A B D C D B A
0 1 0 0 1 0

Translating REs into NFAs

a
start a

r1r2 i fr1 r2
start

r1|r2 i f

r1

r2

start
ǫ

ǫ

ǫ

ǫ

(r)∗ i fr
start ǫ ǫ

ǫ

ǫ

Translating REs into NFAs

Example: translate (a|b)∗abb into an NFA

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Show that the string “aabb” is accepted.

0 1 2 3 6 7 8 9 10
ǫ ǫ a ǫ ǫ a b b

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is

accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ǫ-closure of the start state

2. For each character c ,

Ï New states: follow all transitions labeled c
Ï Form the ǫ-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: ·aabb, ǫ-closure

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: a·abb

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: a·abb, ǫ-closure

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aa·bb

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aa·bb, ǫ-closure

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aab·b

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aab·b, ǫ-closure

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aabb·

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Simulating an NFA: aabb·, Done

0 1

2 3

4 5

6 7 8 9 10
ǫ

ǫ

a

ǫ

b

ǫ

ǫ

ǫ a b b

ǫ

ǫ

Deterministic Finite Automata

Restricted form of NFAs:

Ï No state has a transition on ǫ

Ï For each state s and symbol a, there is at most one edge

labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,

Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current

state. Accept if you end up on an accepting state. Reject if you end

on a non-accepting state or if there is no transition from the current

state for the next symbol.

Deterministic Finite Automata

{

type token = ELSE | ELSEIF

}

rule token =

parse "else" { ELSE }

| "elseif" { ELSEIF }

e l s e

i

f

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =

parse "if" { IF }

| [’a’­’z’] [’a’­’z’ ’0’­’9’]* as lit { ID(lit) }

| [’0’­’9’]+ as num { NUM(num) }

ID IF

ID

NUM

i

f

a-z0-9

a-eg-z0-9

a-z0-9
a-hj-z

0-9

0-9

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states that

appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for (a|b)∗abb (1)

a

b

Subset construction for (a|b)∗abb (2)

a

b

a

b

b

a

Subset construction for (a|b)∗abb (3)

a

b

a

b

b

a

a

b

Subset construction for (a|b)∗abb (4)

a

b

a

b

b

a

a

b
a

b

Subset Construction

An DFA can be exponentially larger than the corresponding NFA.

n states versus 2n

Tools often try to strike a balance between the two representations.

Constructing Scanners with Ocamllex

scanner.mll scanner.ml
ocamllex

(subset construction)

An example:

scanner.mll

{ open Parser }

rule token =
parse [’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf }

| ’+’ { PLUS }
| ’­’ { MINUS }
| ’*’ { TIMES }
| ’/’ { DIVIDE }
| [’0’­’9’]+ as lit { LITERAL(int_of_string lit) }
| eof { EOF }

Ocamllex Specifications
{

(* Header: verbatim OCaml code; mandatory *)

}

(* Definitions: optional *)

let ident = regexp

let ...

(* Rules: mandatory *)

rule entrypoint [arg1 ... argn] =

parse pattern { action (* OCaml code *) }

| ...

| pattern { action }

and entrypoint [arg1 ... argn] =

...

and ...

{

(* Trailer: verbatim OCaml code; optional *)

}

Patterns (In Order of Decreasing Precedence)
Pattern Meaning

’c’ A single character

_ Any character (underline)

eof The end-of-file

"foo" A literal string

[’1’ ’5’ ’a’­’z’] “1,” “5,” or any lowercase letter

[^ ’0’­’9’] Any character except a digit

(pattern) Grouping

identifier A pattern defined in the let section

pattern * Zero or more patterns

pattern + One or more patterns

pattern ? Zero or one patterns

pattern1 pattern2 pattern1 followed by pattern2

pattern1 | pattern2 Either pattern1 or pattern2

pattern as id Bind the matched pattern to variable id

An Example

{ type token = PLUS | IF | ID of string | NUM of int }

let letter = [’a’­’z’ ’A’­’Z’]
let digit = [’0’­’9’]

rule token =
parse [’ ’ ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace *)

| ’+’ { PLUS } (* A symbol *)

| "if" { IF } (* A keyword *)
(* Identifiers *)

| letter (letter | digit | ’_’)* as id { ID(id) }
(* Numeric literals *)

| digit+ as lit { NUM(int_of_string lit) }

| "/*" { comment lexbuf } (* C­style comments *)

and comment =
parse "*/" { token lexbuf } (* Return to normal scanning *)

| _ { comment lexbuf } (* Ignore other characters *)

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by whitespace

and comments, which are both ignored.

Ï keywords (if while)

Ï punctuation (, (+)

Ï identifiers (foo bar)

Ï numbers (10 ­3.14159e+32)

Ï strings ("A String")

Free-Format Languages

Java C C++ Algol Pascal

Some deviate a little (e.g., C and C++ have a separate preprocessor)

But not all languages are free-format.

FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. ’Y’ .OR. IN .EQ. ’y’ .OR.

$ IN .EQ. ’T’ .OR. IN .EQ. ’t’) THEN

1 · · · 5
︸ ︷︷ ︸

Statement label

6
︸︷︷︸

Continuation

7 · · · 72
︸ ︷︷ ︸

Normal

When column 6 is not a space, line is considered part of the

previous.

Fixed-length line works well with a one-line buffer.

Makes sense on punch cards.

Python

The Python scripting language groups with indentation

i = 0

while i < 10:

i = i + 1

print i # Prints 1, 2, ..., 10

i = 0

while i < 10:

i = i + 1

print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.

The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.

Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language with its

own character set. Here is program that returns all primes ≤ R

PRIMES : (~R�RÆ.#R)/R_1�
R
There are no APL programs, only puzzles.

Syntax and Language Design

Some syntax is error-prone. Classic FORTRAN example:

DO 5 I = 1,25 ! Loop header (for i = 1 to 25)

DO 5 I = 1.25 ! Assignment to variable DO5I

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;

vector<vector<int>> foo; // Syntax error

C distinguishes > and » as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

Part II

Syntactic Analysis and Ocamlyacc

Parsing

Objective: build an abstract syntax tree (AST) for the token

sequence from the scanner.

2 * 3 + 4 ⇒

+

*

2 3

4

Goal: discard irrelevant information to make it easier for the next

stage.

Parentheses and most other forms of punctuation removed.

Grammars

Most programming languages described using a context-free

grammar.

Compared to regular languages, context-free languages add one

important thing: recursion.

Recursion allows you to count, e.g., to match pairs of nested

parentheses.

Which languages do humans speak? I’d say it’s regular: I do not not

not not not not not not not not understand this sentence.

Languages

Regular languages (t is a terminal):

A → t1 . . . tnB

A → t1 . . . tn

Context-free languages (P is terminal or a variable):

A → P1 . . . Pn

Context-sensitive languages:

α1 Aα2 →α1Bα2

“B → A only in the ‘context’ of α1 · · ·α2”

Issues

Ambiguous grammars

Precedence of operators

Left- versus right-recursive

Top-down vs. bottom-up parsers

Parse Tree vs. Abstract Syntax Tree

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing

3 ­ 4 * 2 + 5

with the grammar

e → e +e | e −e | e ∗e | e /e | N

+

­

3 *

4 2

5

­

3 +

*

4 2

5

*

­

3 4

+

2 5

­

3 *

4 +

2 5

+

*

­

3 4

2

5

Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions

Like you were taught in elementary school:

“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition and

subtraction.

Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*
1 +

2 3

4

Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 ­ 2 ­ 3 ­ 4

­

­

­

1 2

3

4

­

1 ­

2 ­

3 4

((1 - 2) - 3) - 4 1 - (2 - (3 - 4))

left associative right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr {}

| expr MINUS expr {}
| expr TIMES expr {}
| expr DIVIDE expr {}
| NUMBER {}

;

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr {}
| expr MINUS expr {}
| term {}

;

term : term TIMES term {}
| term DIVIDE term {}
| atom {}

;

atom : NUMBER {}
;

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term {}
| expr MINUS term {}
| term {}

;

term : term TIMES atom {}
| term DIVIDE atom {}
| atom {}

;

atom : NUMBER {}
;

This is left-associative.

No shift/reduce conflicts.

The Dangling Else Problem

Who owns the else?

if (a) if (b) c(); else d();

if

a if

b c() d()

or if

a if

b c()

d()

?

Grammars are usually ambiguous; manuals give disambiguating

rules such as C’s:

As usual the “else” is resolved by connecting an else with the

last encountered elseless if.

The Dangling Else Problem

stmt : "if" expr "then" stmt iftail

| other­statements ;

iftail

: "else" stmt

| /* nothing */

;

Problem comes when matching “iftail.”

Normally, an empty choice is taken if the next token is in the “follow

set” of the rule. But since “else” can follow an iftail, the decision is

ambiguous.

The Dangling Else Problem

Some languages resolve this problem by insisting on nesting

everything.

E.g., Algol 68:

if a < b then a else b fi;

“fi” is “if” spelled backwards. The language also uses do–od and

case–esac.

Statement separators/terminators

C uses ; as a statement terminator.

if (a<b) printf("a less");

else {

printf("b"); printf(" less");

}

Pascal uses ; as a statement separator.

if a < b then writeln(’a less’)

else begin

write(’a’); writeln(’ less’)

end

Pascal later made a final ; optional.

Parsing Context-Free Grammars

There are O(n3) algorithms for parsing arbitrary CFGs, but most

compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have O(n) parsing

algorithms. People use these in practice.

Rightmost Derivation

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

The rightmost derivation for Id∗ Id+ Id:

e

t + e

t + t

t + Id

Id∗ t + Id

Id∗ Id + Id

At each step, expand the rightmost

nonterminal.

nonterminal

“handle”: the right side of a production

Fun and interesting fact: there is exactly

one rightmost expansion if the grammar

is unambigious.

Rightmost Derivation

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

The rightmost derivation for Id∗ Id+ Id:

e

t + e

t + t

t + Id

Id∗ t +Id

Id∗ Id + Id

Tokens on the right are all terminals.

In each step, nonterminal just to the left

is expanded.

Reverse Rightmost Derivation

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

The reverse rightmost derivation for Id∗ Id+ Id:

Id∗ Id + Id

Id∗ t +Id

t + Id

t + t

t + e

e e

t

Id ∗ t

Id

+ e

t

Id

Beginning to look like a

parsing algorithm: start

with terminals and reduce

them to the starting

nonterminal.

Reductions build the parse

tree starting at the leaves.

Reverse Rightmost Derivation

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

The reverse rightmost derivation for Id∗ Id+ Id:

Id∗ Id + Id

Id∗ t +Id

t + Id

t + t

t + e

e

Big question: where are the handles?

A handle is the right side of a production, but

not always vice-versa.

A handle is the result of an expansion in the

rightmost derivation.

Every step in a rightmost derivation is a right

sentential form.

Handle Hunting

The basic trick, due to Knuth: build an automaton that tells us

where the handle is in right-sentential forms.

Represent where we could be with a dot.

e →·t +e
e →·t
t →·Id∗ t
t →·Id

The first two come from expanding e . The

second two come from expanding t .

Consider the expansion of e first. This gives two possible positions:

e → t ·+e when e was expanded to t +e
e → t · when e was expanded to just t ; t is a handle

The expanded-t case also gives two possible positions:

t → Id ·∗t when t was expanded to Id+ t
t → Id· when y was expanded to just Id; Id is a handle

Constructing the LR(0) Automaton

S7: e ′ → e ·

S0:

e ′→·e

e → ·t +e

e → ·t

t →·Id∗ t

t →·Id

S2:
e → t ·+e

e → t ·
S4:

e → t +·e

e →·t +e

e →·t

t →·Id∗ t

t →·Id

S1:
t → Id ·∗t

t → Id·
S6: e → t +e ·

S3:

t → Id∗·t

t →·Id∗ t

t →·Id

S5: t → Id∗ t ·

Id

e

t

∗

+

Id

t

e

t

Id

Shift-reduce Parsing

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

stack input action
Id∗ Id+ Id shift

Id ∗ Id+ Id shift
Id∗ Id+ Id shift
Id∗ Id + Id reduce (4)
Id∗ t + Id reduce (3)
t + Id shift
t+ Id shift
t + Id reduce (4)
t + t reduce (2)
t +e reduce (1)
e accept

Scan input left-to-right, looking for handles.

An oracle says what to do

LR Parsing

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

action goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4

2 s4 r2

3 s1 5

4 s1 6 2

5 r3 r3

6 r1

7 X

stack input action

0
Id * Id + Id $ shift, goto 1

1. Look at state on top of stack

2. and the next input token

3. to find the next action

4. In this case, shift the token onto the stack

and go to state 1.

LR Parsing

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

action goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4

2 s4 r2

3 s1 5

4 s1 6 2

5 r3 r3

6 r1

7 X

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

Action is “reduce with rule 4 (t → Id).” The

right side is removed from the stack to

reveal state 3. The goto table in state 3 tells

us to go to state 5 when we reduce a t :

stack input action

0
Id
1

*
3

t
5

+ Id $

LR Parsing

1 : e→t +e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

action goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4

2 s4 r2

3 s1 5

4 s1 6 2

5 r3 r3

6 r1

7 X

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

0
Id
1

*
3

t
5

+ Id $ reduce w/ 3

0
t
2

+ Id $ shift, goto 4

0
t
2

+
4

Id $ shift, goto 1

0
t
2

+
4

Id
1

$ reduce w/ 4

0
t
2

+
4

t
2

$ reduce w/ 2

0
t
2

+
4

e
6

$ reduce w/ 1

0
e
7

$ accept

Building the SLR Parse Table from the LR(0) Automaton

S7: e ′ → e ·

S0:

e ′→·e

e → ·t +e

e → ·t

t →·Id∗ t

t →·Id

S2:
e → t ·+e

e → t ·
S4:

e → t +·e

e →·t +e

e →·t

t →·Id∗ t

t →·Id

S1:
t → Id ·∗t

t → Id·
S6: e → t +e ·

S3:

t → Id∗·t

t →·Id∗ t

t →·Id

S5: t → Id∗ t ·

action goto
Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Id

e

t

∗

+

Id

t

e

t

Id

The Punchline

This is a tricky, but mechanical procedure. The Ocamlyacc parser

generator uses a modified version of this technique to generate fast

bottom-up parsers.

You need to understand it to comprehend error messages:

Shift/reduce conflicts are caused

by a state like

t →·Else s

t →·

If the next token is Else, do you

reduce it since Else may follow a

t , or shift it?

Reduce/reduce conflicts are

caused by a state like

t → Id∗ t ·

e → t +e ·

Do you reduce by “t → Id∗ t ” or

by “e → t +e”?

Ocamlyacc Specifications

%{

(* Header: verbatim OCaml; optional *)

%}

/* Declarations: tokens, precedence, etc. */

%%

/* Rules: context­free rules */

%%

(* Trailer: verbatim OCaml; optional *)

Declarations

Ï %token symbol . . .

Define symbol names (exported to .mli file)

Ï %token < type > symbol . . .

Define symbols with attached attribute (also exported)

Ï %start symbol . . .

Define start symbols (entry points)

Ï %type < type > symbol . . .

Define the type for a symbol (mandatory for start)

Ï %left symbol . . .

Ï %right symbol . . .

Ï %nonassoc symbol . . .

Define predecence and associtivity for the given symbols,

listed in order from lowest to highest precedence

Rules

nonterminal :

symbol ... symbol { semantic­action }

| ...

| symbol ... symbol { semantic­action }

;

Ï nonterminal is the name of a rule, e.g., “program,” “expr”

Ï symbol is either a terminal (token) or another rule

Ï semantic-action is OCaml code evaluated when the rule is

matched

Ï In a semantic-action, $1, $2, . . . returns the value of the first,

second, . . . symbol matched

Ï A rule may include “%prec symbol” to override its default

precedence

An Example .mly File
%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN
%token EOL
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main

%%

main:
expr EOL { $1 }

;
expr:

INT { $1 }
| LPAREN expr RPAREN { $2 }
| expr PLUS expr { $1 + $3 }
| expr MINUS expr { $1 ­ $3 }
| expr TIMES expr { $1 * $3 }
| expr DIV expr { $1 / $3 }
| MINUS expr %prec UMINUS { ­ $2 }

;

	Lexical Analysis and Ocamllex
	Syntactic Analysis and Ocamlyacc

