GRAPL: A GRAph Processing Language

COMS4115 (PLT) Final Project Report
December 22,2010

1 Introduction

This report is the definitive reference on the motivation history, usage, and development of
the GRAPL (GRAph Processing Language), a simple user-friendly language designed to
simplify the creation and navigation of directed graphs. We are confident that you will not
find a more thoroughly researched compendium of GRAPL information anywhere.

1.1 White Paper

We reprint here—unedited and in its original format—the GRAPL white paper / project
proposal from September 29, 2010. Note that the Language Reference Manual (Section 3)
contains more up-to-date information on GRAPL’s modern incarnation.

PLT Project Proposal: GRAPL (Graph Processing Language)
September 29, 2010

1. Introduction & Motivation

GRAPL (GRAph Processing Language) is a user-friendly language designed to simplify the creation and
navigation of directed graphs. Creating graphs in existing languages generally requires building node
objects and maintaining arrays or lists of pointers to other nodes (along with weights); keeping track of
this information can be cumbersome. In addition, the structure of the graph (in the general case where
any node may be connected to any other node) takes a good deal of code to set up. GRAPL is intended
to hide the complexity of graph navigation and to make creating graphs and adding nodes as simple as
possible.

2. Language Features

GRAPL provides the following features:

Graph construction primitives. Many difficulties arise from trying to specify in a language a simple
drawing. Having this in mind, GRAPL aims to make the construction of a graph as simple as drawing one.
With GRAPL you can build a complex graph with as few as a pair of lines of code, using convenient
operators such as >w> for directed edges and <w> for bidirectional edges with weights. The nodes and
edges are automatically induced by the GRAPL compiler.

Easy graph manipulation. Built in control flow routines make graph algorithm programming as simple as
writing a typical hello world program.

Four different data types. Graph manipulation shouldn't deal with various different data types. The only
data types a GRAPL programmer should worry about are the basics: Node, Edge, Graph, and Number.

User defined functions. The user can build his own function to later reuse in his programs as many
times as he likes.

3. Language Overview

3.1 Identifiers, Operators, and Data Types

3.1.1 Identifiers. Identifiers are a sequence of English characters (both upper and lower case), digits and
underlines. The first token of an identifier should be a character. Other special symbols such as &, *, and !
are not allowed in identifiers.

3.1.2 Operators

3.1.2.1 Arithmetic Operators

"ot mand /" are used in numeric calculations. "<", ">" "<=" ">=""==" gre used arithmetically in
number comparisons.

3.1.2.2 Special Operators

"Node1" + "<" + "Weight" + ">" + "Node2" are used in graph generations, meaning creation of two new
nodes and a new bidirectional edge connecting them with weight shown in the middle.

"Node1" + ">" + "Weight" + ">" + "Node2" are used in graph generations, meaning creation of two new
nodes and a new unidirectional edge from "Node1" to "Node2" with weight shown in the middle.

"List" + "+" + "Node" are used to mean adding a node to the end of a list.
3.1.3 Data Types / Objects

3.1.3.1 A number data type is a primitive declared using the keyword Number. This data type contains
integer part and decimal fraction. Example: Number num = 5.3.

3.1.3.2 A string data type is a primitive declared using the keyword String.
Example: String str = "Big Panda!"

3.1.3.3 Node objects are created automatically in the creation of a new graph, without explicit declaration.
They can also be declared individually. Nodes have a few built-in methods and/or public attributes,

including:
. node.visit () // marks node as visited
. node.isVisited () // returns Boolean
. node.unvisit () // removes visitor marking
. node.print () // prints the name of the node
o - node.id () // returns a unique identifier for the node

3.1.3.4 Like nodes, Edges are also created automatically (implicitly) in the creation of a new graph, but
may be declared explicitly. Edges have an edge weight, which defaults to zero if not specified.

3.1.3.5 A List data type is declared using the keyword List. This data type represents lists of nodes.
Example: L.ist 1ist = {Node nodel, Node node2}. Lists may have a few public attributes and/or

methods, e.g:
- - list.length () // get the length of a list
- - list.print () // print out the contents of a list

3.1.3.6 A Graph data type is declared using the keyword Graph. This data type represents graphs
composed of nodes and edges.

Example: Graph g = [A <2> B >3> C <4> D <5> B, C <1> E]; // A, B, C, D, E are
nodes

This example a graph with nodes A, B, C, D, E. A is connected to B with one (weight = 2) bidirectional
edge. B is connected to C with one (weight = 3) unidirectional edge from B to C. The other nodes and
edges are created in the same mechanism. Graphs have a few built-in methods and/or public attributes,
including:

. - graph.clearVisited () // clears Visited flag on all nodes in graph
. - graph.print () // prints some reasonably useful representation of the graph
LI graphl.insert (graph2) // inserts the argument into graph1. graph2 could be a single

node or a graph structure. Nodes with the same names as those in the graph1 are considered to
be the same objects.

3.2 Control Structures
3.2.1 If-then-else. This works exactly as the if-then-else structure in languages like C and JAVA.

3.2.2 forEach iterator. This special iterator at the heart of GRAPL vastly simplifies graph traversal. The
syntax is as follows:

forEach { <optionally> visited | unvisited } node1 { from | to } node0 { <optionally> withEdge (operator
Number, operator Number...) }

forEach loops through all nodes "node1" that are either parents or children of node0 (depending on the
“from” or “to” keyword) and satisfy the conditions (visited, unvisited, or with a constraint on edge weight).
"Operator"isone of { <, >,=,<=,>=}

Example:
forEach unvisited child from startNode withEdge (>10)

{
/* do something */
}

3.3 User Functions. Users are allowed to create their own functions and implement their algorithms
using this language. Function declarations are in the C style.

3.4 Recursion. Obviously, GRAPL supports recursive function calls; most algorithms are expected to be
recursive. No “rec” keyword is needed.

4. Sample Code
4.1. Initialize and Modify Graph
void main () { // Add some edges to the graph
graph g = [a >3> b >4> ¢ <5> d];
// Modify the graph later if we want add more things.

g.insert (b>4>a);
// We can store node information in list

List 11 = null; 11 + a; // append node a 11 + b;

// append node b 1l.print; // output : { a, b}.

// Build a empty list to store the results for dfs List 1 =
null; 1 = dfs(l,a); // output: a,b,c,d l.print(); List
myPath = null; myPath = path(path,a ,c); // output a, b, c

myPath.print () ; }

4.2 Depth First Search
list dfs (list 1, node n) {

n.visit();
1 + n; // appends current node n to the list
forEach unvisited m from n { dfs (1, m); } return 1; }

4.3 Finding A Path To A Node
list path(list 1, node n, node m) {
n.visit();
1 + n;
if (n.id() == m.id())
return 1; else
forEach unvisited temp from n
{
path(l, temp, m);
}

4.4, Finding the node with most related nodes. Starting with node ny, look for the node n such that

1) the distance between ny and n is less than 1800; and 2) n is the node in the graph (except ng) that has
the most related nodes (related nodes mean that n has at least one path to arrive at) within the distance
of 100. This might be used, for example, to model the density of surrounding living areas in order to
choose the best site for a new business.

void FindOptimalNode (Node startNode)
{
Node nOpt;
Number num = 0;
forEach n from nO withWeight (<1800)
{
Number num’=0;
forEach n’ from n withWeight (<100)
{
num’= num’ + 1;
}
}

if (num’ > num)
{
num = num';
nOpt = n’;
}
nOpt.print () ;
}

5.0 Future Directions and Add-ons

If time permits, we have a number of ideas for extending the language. These include:

1. 1. Including standard library functions like depth-first-search, BFS, Dijkstra, etc. (Some of
these may be built in to the language).
2. 2. Extending the language to permit creation of text-based-adventure games. This would

require storing additional information at each node (probably in a dictionary of some kind), and an
additional notion of a User object that would navigate through the graph in an interpreted session.
3. 3. Building a simple GUI to display a created graph in a readable fashion.
4. 4. Building a GUI that allows the creation of nodes and edges graphically. (Yeah, right.)

6.0 Team Information

Team GRAPL (aka Mandarin Express) consists of:

. - Di Wen (dw2464@columbia.edu)
. - Yang Yi (yy2339@columbia.edu)
. - Lili Chen (Ic2737@columbia.edu)
. Andres Uribe (au2158@columbia.edu)
. - Ryan Turner (rct2115@columbia.edu)

2 Language Tutorial

2.1 Using Primitive types
GRAPL has number as the primitive types, and allow arithmetic operators, plus(+), minus(-
), multiple(*), divide(/) for the number.

Example 2.2 - Using number:
void main () {

number nl;
number n2;
number n3;

nl=4;

n2=6;
n3 = 3 * 4;
print (n3);
n3 = 3 / 4;
print (n3);
n3 = nl * n2;
print (n3);

n3 = n2 / nl;
print (n3);

n3 = n2 + nl;
print (n3);

n3 = n2 - nl;
print (n3);

Output:
12.0
0.75
24.0
1.5

10.0
2.0

2.2 Using Comments
GRAPL uses C-style, un-nested comments; that is, the characters / * introduce a comment,
which terminates with the characters */.

2.3 Using Node and List

GRAPL has node. A List is a collection of nodes. Each node has its own name. GRAPL is able
to initialize a List with pre-defined nodes, or add new nodes to it using the concatenation
operator ::. GRAPL can also tell the length of a list by calling the length function. Node has a
property indicating if the node itself is visited or not. Just use visit() or unvisit() function.

Example 2.4- Using node and List:

void main () {

node nl;
node n2;
node n3;
node n4;
number nn;
list 13;
list 11;
list 12;
12 [nl,n2];

13 [n2, n3, n4d];
nn length (13);
13 nl :: 13;

n2 head (13) ;
12 tail (13);

print (nn)
print (13)
}

Output:
3.0
list: n3 n4 n1l

2.4 Build a Graph

GRAPL’s main feature now!! GRAPL provides a simple way to initialize a graph. With node
A << weight Node B, Node A >> weight Node B, Node A <> weight Node B represents the
following relationships between Node A and Node B respectively.

We will show the usage of graph initialization in later example combined with other

statements.

2.5 Control Statement
GRAPL provides if-then-else and while to control the program flow. The following
examples combined the usage of list with these two control statements.

WEIGHT

A <<weight Node B

WEIGHT

A >>weight Node B

WEIGHT

A <> weight Node B

Example 2.6.1- Using if-then-else:

void main ()
{

node nl;
node n2;
node n3;
node n4;
number len;

list 11;
list 12;

11 = [nl,n2,n3,n4];

visit n4;
len = length(1l1);

if (len == 3) then
{
print (11);

}

else

{

if (len > 3) then
{

print(len);
}
else {}

}

}

Output:
4.0

Example 2.6.2- Using while

void main () {

node nl;
node n2;
node n3;
node n4;
node n;
list 11;
11 = [nl,n2,n3,n4];

while (length(11l) > 1)
{
11 = tail(1ll);
print (11);
print (head(11l));

Output:

list: n2 n3 n4

node nZ2: not visited.
list: n3 n4

node n3: not visited.
list: n4

node n4: not visited

2.6 Traverse a Graph
GRAPL provides a really simple way to traverse a graph with specified properties. The
basic usage of the forEach function is:
foreach-statement:
foreach node-control { statements }

node-control:
qualifiers_opt id fromTo id withStmt

qualifiers_opt:
visited
unvisited

fromTo:
from
to

withStmt:
with (predicate)

predicate:
binary-operator expression

Example:
forEach visited leaf from root with (<= 1000)

{

/*do something*/

}

Example 2.7 - Using forEach to traverse a graph
node nl;
void main ()

{
graph [nl <<1 n2 <>2 n3, n4 <>2 n2, n5 >>3 n2];
forEach unvisited n from n2 with (< 2) {

print (n);
visit n;

}

forEach unvisited n from n2 with (<=1) {
print (n);
unvisit n;

visit nb5;
visit n3;
forEach visited n to n2 with (> 2) {

print (n);
}
forEach visited n to n2 with (>= 3) {

print (n);

Output:

node n1: not visited.
node nb5: visited.
node nb5: visited.

2.7 The Print function

In GRAPL we have the build-in print function to print help print different kinds of types,
number, node, list, graph. Later example will show the usage of the print function.

2.8 More advanced algorithms
GRAPL enables people to build more advanced algorithm using recursion. Here are two
simple examples.

Example 2.8.1 - a simple recursive function

volid simpleRecursive (node finish)
{
visit finish;
forEach unvisited n to finish
{
print (n);
visit n;
simpleRecursive (n);
}
}
void main ()
{
graph [a <> b, z <> Db, a >> ¢, c<>d, z<>el;
simpleRecursive (b) ;

}

Output:
node a: not visited.

node z: not visited.
node e: not visited.

Example 2.8.2- a depth first search algorithm implementation using recursion

void main () {

graph [a >>b >>c>>e>>f];
print (dfs(a, £f));

}

list dfs (node start, node finish) {
list 1;
unvisitAll () ;
return dfs helper(start, finish,1);
}
list dfs _helper (node start, node finish, list 1)
{
visit start;
if (start != finish) then
{
forEach unvisited n from start
{
n::1;
if (n!=finish) then{
dfs helper(n, finish,1);
}
else
{ return 1; }

H}

else

{}

return 1;

}

Output:
list:bcef

2.9 Standard Library

To facilitate users, GRAPL has a standard library, implemented simple algorithms such as
the depth first search algorithm, un-Visit a certain sequence of node, etc. See section 3.7 of
the LRM.

3 GRAPL Language Reference Manual

revised and updated 12/22/10

3.1 Introduction

GRAPL (GRAph Processing Language) is a user-friendly language designed to simplify the
creation and navigation of directed graphs. Creating graphs in existing languages generally

requires building node objects and maintaining arrays or lists of pointers to other nodes
(along with weights); keeping track of this information can be cumbersome. In addition, the
structure of the graph (in the general case where any node may be connected to any other
node) takes a good deal of code to set up. GRAPL is intended to hide the complexity of
graph navigation and to make creating graphs and adding nodes as simple as possible.

This manual describes the syntax and use of the GRAPL language. It is an unabashed
plagiarism of the C Language Reference Manual (CLRM), published as Appendix A in
Kernighan and Ritchie’s “The C Programming Language.” Where GRAPL and C share
common features, we have sometimes reproduced the corresponding text from the CLRM
verbatim rather than attempt to paraphrase an identical idea.

3.2 Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, strings, operators, and
other separators. As in C, whitespace characters are ignored except insofar as they serve to
delineate other tokens in the input stream. If the input stream has been parsed into tokens
up to a given character, the next token is taken to include the longest string of characters
which could possibly constitute a token.

3.2.1 Comments
GRAPL uses C-style, un-nested comments; that is, the characters /* introduce a comment,
which terminates with the characters */.

3.2.2 Identifiers

A GRAPL identifier must meet the same requirements as a C identifier; that is, it consists of
a sequence of letters, digits, and underscore characters, where the first character must be
either a letter or an underscore. Identifiers are case-sensitive.

3.2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

boolean length unvisit
else list unvisited
forEach node visit
from number visited
head print
if return with
isvisited tail
graph to

3.2.4 Literals

The only literals in GRAPL are of type number and boolean. A number is analogous to a
double representation in C.

3.3 Expressions
Expressions, along with operators, are essential elements in the formation of code in the
GRAPL language. Here we try to specify all of the expressions with operators.

The precedence of all the operators is the same as the order of the subsections here, that is
to say, all operators in sections 3.1 - 3.5 have higher precedence in comparison with
operators in section 3.6. Besides, all operators in the same subsection have the same
precedence.

We don't assume either left or right associativity for the expressions. For evaluation of
expressions, the order is also set to be undefined.

For handling arithmetic problems, we define that overflow of numbers will be discarded. In
addition, problems like “divided by zero” will cause exception and be handled in library

functions.

The following table summarizes the rules:

Tokens Operators Associativity
Identifiers, parenthesized | Primary

expression

() Function calls Left
head List access (head) Left
tail List access (tail) Left
visit unvisit Node Visitation Right
isvisited

! Negation Right
* / Multiplicative Left
+ - Additive Left
< <= > >= Relational Left
== |= Equality Left
5 List concatenation Right
= Assignment Right

3.3.1 Primary Expressions
Primary expressions are identifiers, constants, or expressions in parentheses.

primary-expression:
identifier
literal
(expression)

An identifier is a primary expression, with its type specified by its declaration.

A literal constant is a primary expression.

An expression inside parentheses is a primary expression.

3.3.2 Function calls

Expressions involving function calls associate from left to right. The following is the syntax
used:

fcall-expression:
function-identifier(argument-list-opt)

argument-list-opt:
nothing
argument-list

argument-list:
expression
argument-list, expression

The function call will return the type specified by the function declaration. In order to be
correctly evaluated the function has to be in scope.

3.3.3 Node operators
There are three unary node operators, visit, unvisit, isVisited. The are all right-
associative. The first two operators mark a node as having been visited or unvisited,

respectively, while the last returns a Boolean value indicating the visitation status of the
node.

visit-expression:
visit node-identifier

unvisit-expression
unvisit node-identifier

isVisited-expression:
isVisited node-identifier

3.3.4 Negation Operator

The negation operator returns the opposite boolean value of its argument. The right hand
side must evaluate to a Boolean type.

negation-expression:
! expression

3.3.5 Multiplicative Operators
The multiplicative operators * and / group left-to-right.

multiplicative-expression:
expression * expression
expression / expression
The operands of * and / must have number type.
Operations are carried on the operands and the result value is returned.

The binary * operator denotes multiplication of the left and right operands.

The binary / operator denotes division. The left operand is divided by the right operand. If
the right operand is 0, the value is undefined and an exception will be caught.

3.3.6 Additive Operator
The additive operators + and - group left-to-right.

additive-expression:
expression + expression
expression - expression

The operands of + and - should have number type.
Operations are carried on the operands and the result value is returned.
The binary + operator denotes adding the two operands and getting the sum.

The binary - operator denotes subtracting the right operand from the left operand and
getting the difference between the two.

3.3.7 Relational Operator
The relational operators group left-to-right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operands must have number type here. The return value also has type number. For
all of the operators < (less than), > (greater than), <= (less than or equal to), >= (greater

than or equal to), the return value is set to be 1 if the specified relation is true, and it's set
to be 0 if the specified relation is false.

3.3.8 Equality Operator
The equality operators group left-to-right.

equality-expression:
expression == expression
expression != expression

The operands must have number type here. The return value also has type number. For
the operators == (equal to) and != (not equal to), the return value is set to 1 if the specified
relation is true, and it's set to 0 if the specified relation is false.

In addition, equality operators have lower precedence than relational operators.

3.3.9 Logical AND Operator
The logical AND operators group left-to-right.

logical-and-expression:
expression && expression

The operands and the result should have number type.

The evaluation of the expressions is also left-to-right. The left operand is firstly evaluated.
[f its value is 0, then the result value is set to 0. If its value is 1, then the right operand is
evaluated. If the value of the right operand is also 1, then the result value is set to 1. If the
value of the right operand is 0, then the result value is set to 0.

3.3.10 Logical OR Operator
The logical OR operators group left-to-right.

logical-or-expression:
expression [[expression

The operands and the result should have number type.

The evaluation of the expressions is also left-to-right. The left operand is firstly evaluated.
[f its value is 1, then the result value is set to 1. If its value is 0, then the right operand is
evaluated. If the value of the right operand is also 0, then the result value is set to 0. If the
value of the right operand is 1, then the result value is set to 1.

3.3.11 Assignment Expressions
The assignment operators group right-to-left.

assignment-expression:
identifier = expression

Assignments can be made to identifiers of types 1ist, number, boolean, or node. The
expression on the right-hand side must evaluate to the same type as the identifier on the
left. Besides, the value of the assignment expression is the value of the left operand after
the assignment process.

3.3.12 List Concatenation Operator
Additional nodes may be concatenated onto the front of an existing list using the ::
operator.

list-concatenation-expression:
node-identifier :: list-identifier
Example:
list 1 = a :: 1; // a is a node; 1 is a list

3.3.13 List Access Operators
The first node in a list can be accessed with the head operator. The expression returns a
node type.

head-expression:
head list-identifier

Example:
node h = head 1; // h is a node; 1 is a list

The tail of a list can be accessed with the tail operator. The expression returns a list type.

tail-expression:
tail list-identifier

Example:
list t = tail 1; // t and 1 are lists

3.4 Declarations

A variable should always be declared first before it can be used. Declarations have the
form:

declaration:

type-specifier declarator ;

type-specifier:
node
graph
list
number
boolean

A variable name cannot be declared twice. It is also illegal to declare multiple variables in
the same line.

The declaration contains exactly one type specifier and one declarator. Each declarator
contains exactly one identifier. Each declarator is taken to be an assertion that when a
construction of the same form as the declarator appears in an expression, it yields an object
of the indicated type.

3.4.1 Node

Node objects are created automatically in the creation of a new graph, without explicit
declaration (see 4.2). They can also be declared individually. A node identifier is implicitly a
reference to a node, and multiple references may point to the same node.

Node-declaration:
node identifier
node identifier = node-identifier

Example:
node A; // declare node individually

Nodes can be initialized in the same line in which they are assigned; for instance, by setting
the identifier to point to the same node as another identifier.

Example:
node x = lastNode; // lastNode is already in existence

3.4.2 Graph

In our compiler, a graph declaration is actually an initialization of the graph at the same
time. Each program has one or zero graphs; because of this, the type-specifier graph is not
followed by an identifier in the declaration/initialization. To define a graph, one or more
nodes must be simultaneously defined, as follows. If more than one node is defined, then
edge definitions are required between each sequential node in the declaration.

A graph can be declared as follows:
graph-declaration :
graph [constructor-declarations |;

constructor-declarations:
constructor-declaration
constructor-declaration, constructor-declarations

constructor-declaration:
node-id
node-id edge-definitions

edge-definitions:
edge-definition
edge-definitions edge-definition

edge-definition:
>> node-identifier
<< node-identifier
<> node-identifier
>> Jiteral node-identifier
<< literal node-identifier
<>literal node-identifier

Example:
graph [A <<3 B];
graph [A <>2 B >3 C <>4 D <>5 B, C <>1 EJ;
// A, B, C, D, E are nodes

3.4.3 List
List are like arrays. They are assemblies of Nodes. Lists are declared with the keyword
list:

List-declaration:
list identifier
list identifier = [list |

list:
<nothing>
node-identifiers

node-identifiers:
node-identifier
node-identifiers, node-identifier

Example:
list 1 = [A, B, C, DJ];

3.5 Statements
In GRAPL, statements are of five different types:

* Expression

* Compound

* Conditional
¢ [teration

¢ Return

3.5.1 Expression
An expression statement has the form:

Expression-statement:
expression ;

[t is important to note that the expression is not optional, so an instruction consisting of a
single semicolon is not considered correct.

3.5.2 Compound Statements
Compound statements (blocks) are used to group a set of different type of one or more
statements. They follow the form:

compound-statement:
{ statement-list }

statement-list
statement
statement statement-list

Each of the statements in this compound-statement will be executed sequentially starting
from left to right.

3.5.3 Conditional Statements
Selection statements are used to select which block of statements to execute based on the
evaluation of a controlling expression. They follow the following form:

conditional-statement:
if (expression) then { statements } else { statements }

The else clause in the if-then-else statement is not optional and cannot be omitted;
however, an empty statement may follow the else.

Examplel:
if (nodel == node2) then
{
print(nodel);

}
else { }

ExampleZ:
if (length(listl) < length(list2)) then
print(list2);
else

{

nodel :: listl;
print(listl);

}

3.5.4 Iteration

GRAPL has a single iteration statement to iterate through the nodes of a given graph: the
foreach statement. This statement allows a user to specify an instruction set to execute
for each of the nodes on the other side of an edge with a weight that satisfies certain
conditions (the predicate) inside a graph. The general form of the foreach loop is:

iteration-statement:
foreach node-control { statements }

node-control:
qualifiers_opt id fromTo id withStmt

qualifiers_opt:
visited
unvisited

fromTo:
from
to

withStmt:
with (predicate)

predicate:
binary-operator expression

Example:
forEach visited leaf from root with (<= 1000)

{

/*do something*/

}

3.5.5 Return Statement
The return statement returns a function’s value to its caller by means of one of the
following forms:

return-statement:
return;
return expression ;

The expression must evaluate to the correct return type for the function.

3.6 Scope

The scope rules in GRAPL follow these guidelines. An identifier is available after it has been
declared. Additionally, an identifier that was used in a graph initialization need not be
initialized. Every identifier is available from the point where it was used in the graph
initialization until the end of the statement group enclosing it. Subsequent nested blocks
have access to identifiers defined by any parent block. A variable with the same name as in
a parent block cannot be declared.

A function identifier is available at any point after the left bracket of the function definition
starts. After a function is declared, the identifier is locked and cannot be used to define a
variable.

3.6.1 Built-in Functions
GRAPL a number of built-in functions, as follows:

3.6.2 number length(list 1) : returnsthelength of a list

3.6.3 void print(node n) : prints the name and status (visited, unvisted) of a node
3.6.4 void print(list 1) : prints the contents of a list

3.6.5 void print(number n): printsthe value of a literal

3.6.6 node head(list 1) : returnsthe node at the head of a list

3.6.7 list tail(list 1) : returns the tail of alist. It will fail if called on a list of one or
zero elements.

3.6.8 boolean isVisited(node n): returns true if the node is marked as visited; false
otherwise

3.6.9 void unvisitAll(n) : auseful feature for resetting all markings in the graph to
unvisited

3.7 Standard Library Functions

In addition to the built-in functions, the GRAPL compiler automatically imports a GRAPL
Standard Library with a number of useful functions. These functions are written in GRAPL
and must be pre-compiled. The GRAPL user can add additional functions to this library
with only a few trivial changes to the compiler.

The Standard Library functions include:

3.7.1 number numChildren(node n) : returns the number of (immediate) children of
a node

3.7.2 number numAncestors(node n) : returnsa count of all ancestors accessible
from a node

3.73 1list dfs(node start, node end) : returns a list of nodes in the path from
start to end

3.74 list reverse(list old list): returnsareversed list

4 Project Plan

Our long-range plan to implement the whole project was comprised of three stages:

1. Parser/Scanner development, with output routed to grapl-printer (intermediate
product)

2. Compiler and java-printer development

3. Testing and debugging

4. Upgrades, refinements, standard library functions

4.1 Process

The process we used for project is that we meet every Thursday for at least two hours. In
every meeting, we discuss about the solutions for problems, assign tasks for every team
member and ask for suggestions from our team TA. If anyone has questions about his or
her part, we will focus on it and try to solve it effectively.

For proposal and reference manual parts, we have discussions about ideas and then every
team member complete several parts. After that, we mainly work on how to implement our
language - GRAPL. We always get together in CS lounge or TA room, working on each part.
Over the course of the project, we derived a number of development best-practices,
including:

* Informing every team member by emails when there are any important changes in
the code

* Assigning each part of the documentation to a different member and integrating the
result.

* Sharing word processing templates to that styles and numbering are consistent
when different chapters are integrated

¢ Always updating to the latest version on SVN before beginning work on the project.

4.2 Programming style guide

We also set some conventions for our programming:

1. Providing relevant descriptive comments before every function declaration so that every
team member can understand it quickly.
Example:
(* Returns a function call to create a new edge in the
graph *)
let jast of edge def edge def = match edge def with
| (sl1l, Ast.Redge(w), s2) ->
Jast.Expr(Jast.Call(Jast.Id("graph"),
"addEdge", [Jast.StringLit(sl); Jast.StringLit(s2);
Jast.Literal(w)]))
| (sl1l, Ast.Ledge(w), s2) ->
Jast.Expr(Jast.Call(Jast.Id("graph"),
"addEdge", [Jast.StringLit(s2); Jast.StringLit(sl);
Jast.Literal(w)]))
| (sl1l, Ast.Bedge(w), s2) ->

Jast.Expr(Jast.Call(Jast.Id("graph"), "addBEdge",
[Jast.StringLit(sl); Jast.StringLit(s2); Jast.Literal(w)]))
(sl, Ast.NoEdge(w), s2) -> Jast.Nostmt

2. For every variable name, function name and code name, we try to make them easy to
understand and self-explanatory. For example, method names in Java use camel-case; in
O’Caml, underscores (ironically, perhaps).

Example:
addEdge()
getNode ()

.
14
.
14

4.3 Project timeline

What language do we want to create?

Sep 13th - Sep 20th

Project Proposal Sep 29th
Language Reference Manual Nov 3rd
Scanner works, begin work on parser Nov 10th
Parser and Ast Nov 22nd

Java backend files

Dec 1st - Dec 21st

GRAPL pretty printer Dec 7th

Java AST Dec 8 th - Dec 19th
Compiler Dec 9th- Dec 21st
Java pretty printer Dec 9th- Dec 21st
Makefile Dec 18th

Test Dec 6th - Dec 22nd

Standard library functions and integration

Dec 20th — Dec 22nd

Final Report

Dec 22nd

4.4 Roles and Responsibilities of each team member

Member Roles and Responsibilities

Ryan Turner parser, compiler, team leader

Andres Uribe parser, compiler, standard library

Yi Yang Java backend, standard library

Lili Chen scanner, grapl- and java-printers, testing
Di Wen parser, testing suite

4.5 Software development environment used
1. Environment:
Operating System: We do our projects on windows, MAC and Linux.

2. Language:
Ocamllex is used for scanner; Ocamlyacc is used for parser and rest compiler codes are
implemented In Ocaml.

Java is used to build the java backend classes.

3. Tools:
IDE: By initializing OCaml plug - in, we use IDE eclipse to write OCmal code.

SVN: SVN is really helpful for team project since we can share the code together. Every
team member can check latest code, revise, debug and commit it.

Command-line with Makefile: Compile Ocaml

Netbeans: Coding for Java

5 Architectural Design

The GRAPL compiler architecture was designed to be a translator that converts a grapl
program file (extension .gp1l) to a Java source code file. The output is then compiled and
run using the Java compiler and Java virtual machine respectively. The architecture was
divided into different components which are described in the following sections.

5.1 Components

The main components in GRAPL are:
* scanner (scanner.mll)
* parser (parser.mly)

e grapl pretty printer (gpp.m1)
* translator (translate.ml) (sometimes referred to as “compiler”)

* Java pretty printer (jpp.ml)
* Java back-end
* grapl compiler (graplc.ml).

Figure 1 illustrates the process of compiling a GRAPL program.

5.2 Interfaces
The interfaces created were ast.mli, jast.mli, Graph.java, and GraplLib. java.

The ast.mli interface was offered by the Parser and consumed by the Translator and the
Gpp components. It gives a description of the types of the elements inside a GRAPL abstract
syntax tree.

The jast.mli interface was offered by the Translator and was consumed by the Jpp
component. It gives a description of the types of the elements inside a stripped down
version of a Java abstract syntax tree.

The Graph. java was offered by the Graph Java class in the Java back-end and consumed

by the Translator. The GraplLib. java was offered by the GraplLib Java class in the Java

back-end and consumed by the Converter. Both of these classes listed the available method
calls into which a GRAPL AST type could be converted.

5.3 Implementation
The following table shows what files are included in each component and who
implemented them.

Component File name LC RT AU DW YY
scanner scanner.mll X
parser parser.mly X X X
Gpp gpp-ml X
translator compile.ml X X
Jpp jpp.ml X
back-end java/lib/*.java X
testing test/*.gpl X X
compiler X
Interface ast.mli X X

jast.mli X

Graph.java X X

GraplLib.java X X

example.gpl

GraplStdLib.gpl

Grapl Compiler

Scanner

Translator

Gpp example.gpl

Jpp

Vi

GraplProgram java

AN

GraplStdLib java

|

Java Back-end

I~
2
(V)

GraplProgram.class

Figure 1: an overview of the GRAPL compiler architecture.

6 Test Plan

In testing, we mainly did two kinds of tests: functional testing and semantic testing.

For functional testing, we write a small source code, run it, and check whether the GRAPL
code is accepted (by printing it using GRAPL pretty printer) and translated into JAVA (by
printing it using JAVA pretty printer). In this procedure, parsing errors and functional
errors are caught.

In semantic testing, we write small segments of erroneous source code which include some
semantic errors, run it, and check whether the exceptions are caught.

Every member in the group contributes to testing. Andres and Di did the semantic
checking.

For functional testing, we keep testing our functions in the process of development. Di
wrote some test cases for different basic components of GRAPL, Ryan and Andres wrote
some functions based on the basic components for testing, Yi and Lili made the list of the
examples which were shown to Professor Edwards in presentation.

6.1 Representative Source Language Programs & The Target
Language Programs

6.1.1 helloWorld.gpl

void main()

{
}

print(helloWorld());

list helloWorld()
{
node Hello;
node World;
list 1;
1l = [Hello, World];
return 1;

6.1.2 helloWorld.java

import 1lib.*;

public class GraplProgram

{
public static GraplLib library;

public static Graph graph;

public static List helloWorld()
{

Node g Hello new Node("Hello");

Node g World = new Node("World");

List g 1 = new List();

g 1 = library.buildList(g_Hello,g World);
return g 1;

}

public static void main(String[] args)

{

library = new GraplLib();

graph = library.createEmptyGraph();
GraplStdLib.initialize(graph,library);
library.print (helloWorld());

}

}

6.1.3 forEach.gpl

node nl;
void main()

{

node n2;
node n3;
node n4;
node n5;
number x;

x=0;

6.1.4

graph [nl <<1 n2 <>2 n3, n4 <>2 n2,

forEach unvisited n from n2

{
X =X + 1;
print(x);

}
x=0;

forEach unvisited n to n2

{
X =X + 1;
print(x);

>>3 n2];

forEach unvisited n from n2 with (< 2) {

visit n;

}

forEach unvisited n from n2 with (<=1) {

unvisit n;

}

visit n5;
visit n3;

forEach visited n to n2 with (> 2) {

print(n);

}

forEach visited n to n2 with (>= 3) {

print(n);

forEach.java

import 1lib.*;

public class GraplProgram

{

public static Node g nl;

public static GraplLib library;
public static Graph graph;

public static void main(String[] args)

{

g nl = new Node("g nl");

library = new GraplLib();

graph = library.createEmptyGraph();
Node g n2 = new Node("n2");

Node g n3 = new Node("n3");

Node g n4 = new Node("n4");

Node g n5 = new Node("n5");

double g x;
GraplStdLib.initialize(graph,library);
gx=0.;

graph.addEdge("n2","nl",1.);
graph.addBEdge("n2","n3",2.);
graph.addBEdge("n4","n2",2.);
graph.addEdge("n5","n2",3.);
for (Node g n :
graph.getNodesFromWith(g n2,null, "unvisited","",1.))
{

{

gx=9gx+ 1.;
library.print(g x);

}

}

gx=0.;

for (Node g n :
graph.getNodesToWith(g n2,null, "unvisited","",1.))
{

{

gx=9gx+ 1.;

library.print(g x);

}

}

for (Node g n :
graph.getNodesFromWith(g n2,null, "unvisited", "<",2.))
{

{

g n.visit();

6.1.5

}
}

for (Node g n :
graph.getNodesFromWith(g n2,null, "unvisited", "<=",1.))
{

{

g n.unvisit();

}

}

g n5.visit();
g n3.visit();

for (Node g n :
graph.getNodesToWith(g n2,null, "visited",">",2.))
{

{

library.print(g n);

}

}

for (Node g n :
graph.getNodesToWith(g n2,null, "visited",">=",3.))
{

{

library.print(g n);

}

}

}
}

dfsTest.gpl

void main(){
graph [a <> b <> c <> a<>d<>e<>f<>d<>ce <cf <>
bl;
print(dfs(a, f));
}
list dfs (node start, node finish) {
unvisitAll();
return dfs helper(start, finish);

list dfs _helper(node start, node finish){
list 1;
visit start;

if (start == finish) then {
start::1;

}
else {
forEach unvisited n from start{
1 = dfs(n, finish);
if(length(1) != 0) then{
return 1;
}
else {}
}
}

return 1;

6.1.6 dfsTest.java

import 1lib.*;

public class GraplProgram

{

public static GraplLib library;
public static Graph graph;

public static List dfs _helper(Node g start,Node g finish)
{

List g 1 = new List();

g start.visit();

if (g _start == g finish)
{

{

g_l.addNew(g start);

}

}

else

{

{
for (Node g n :

graph.getNodesFromWith(g start,null, "unvisited","",1.))

{

{

g 1l = dfs(g n,g finish);
if (g _l.size() != 0.)

{

{

return g 1;

}
}

else

N N N A A

}
}

return g 1;

}

public static List dfs(Node g start,Node g finish)
{

graph.unvisitAll();
return dfs helper(g _start,g finish);

}

public static void main(String[] args)

{

library = new GraplLib();

graph = library.createEmptyGraph();
GraplStdLib.initialize(graph,library);
graph.addBEdge("a","b", 1)
graph.addBEdge("b","c"
graph.addBEdge("c",
graph.addBEdge("a" ,"d"
graph.addBEdge("d","e"
graph.addBEdge("e", "f"
graph.addBEdge("£f","d",
graph.addBEdge("d","c"
graph.addBEdge("c", "f"
graph.addBEdge("£f","b",
library.print(dfs(graph g
}

}

»—-»—-»—-»—-»—-»—-»—-

<)
<)
<)
<)
<)
<)
<)
<)
<)
etNode("a"),graph.getNode("f")));

6.2 Functional Test Cases

We write a lot of test cases to test the functions of different basic components of GRAPL. In
order to avoid interference from unwanted independent variables, we try to make the test
cases relatively small and progress from testing the simplest files to testing the complicated
functions step by step.

6.2.1 simplestFile.gpl

node main(){

}

This is to test the main() function.

6.2.2 number.gpl
void main(){
number nl;
number n2;
nl = 1;
n2 = 2;

print(nl);
print(n2);

}

This is to test the numbers.

6.2.3 AddandSub.gpl
void main(){
number nl;
number n2;

number n3;

nl = 2
n2 = 3

~e wo

n3 =1 + 2;
print(n3);

n3 =1 - 2;
print(n3);

n3 = nl + n2;

print(n3);

n3 = n2 - nl;
print(n3);

}

This is to test Addition and Subtraction.

6.2.4 MultandDiv.gpl
void main(){
number nl;

number n2;
number n3;

nl = 2;
n2 = 3;
n3 = 3 * 4;

print(n3);

n3 = 3 / 4;
print(n3);

n3 = nl * n2;
print(n3);

n3 = n2 / nl;
print(n3);

}

This is to test Multiplication and Division.

6.2.5 boolean.gpl
void main() {
number nl;
number n2;

boolean b;

nl = 1;
n2 = 2;

b = nl < n2;
b = nl > n2;
b = nl <= n2;

b = nl >= n2;

}

This is to test Boolean.

6.2.6 logicalOp.gpl
void main() {

number nl;
number n2;
boolean bl;
boolean b2;
boolean b;

nl = 1;

n2 = 2;

bl = true;

b2 = false;

b = bl == b2;

b =1 (nl < n2);

b = bl && b2;

b = (nl < n2) & (nl > n2);

b = (nl <n2) || (nl > n2);

}

This is to test the logical operators: !, && and ||.

6.2.7 node.gpl

node global;
void main() {

node nl;
node n2;

print(nl);
print(n2);

n2 = nl;
visit nl;
visit n2;
unvisit nl;
unvisit n2;

}

This is to test node, and the operations (visit, unvisit) on node.

6.2.8 list.gpl
void main() {

node nl;

node n2;

node n3;

node n4;

list 13;

number nn;

list 11;

list 12;

nl = n3;

12 [nl,n2];

13 [n2, n3, n4];
nn length(13);
nl :: 13;

n2 head(13);
12 tail(13);

This is to test list, and the operations (head, tail, length) on list.

6.2.9 function.gpl

node nl;
number testFunction (node n){
node n2;
list 1;
1 =[n];
1 =n2 :: 1;
if(length(l) >= 2) then
{
print(1l);
}

else

{

}
/*return length(l);*/

print(n);

}

void main(){

number num;
num = testFunction(nl);

}

This is to test calling another function in the main function.

6.2.10 graph.gpl

void helloGraph()

{

node nl;

node n2;

graph [nl >>1 n2];
}

void main(){

helloGraph();

This is to test construction of a graph.

6.2.11 ifthenelse.gpl

void main()

{

node nl;
node n2;
node n3;
node n4;
number len;

list 11;
list 12;

11 = [nl1,n2,n3,n4];

visit n4;

len = length(1l1l);
if(len == 3) then
{

print(1l1l);

}

else

{

if (len > 3) then

{
print(len);

}

else {}
}

}

This is to test the if-then-else data flow.

6.2.12 while.gpl

void main() {

node nl;

node n2;

node n3;

node n4;

node n;

list 11;

11 = [nl,n2,n3,n4];

while(length(1l1l) > 1)

{
11 = tail(1ll);
print(1l1l);
print(head(1l1l));

}

}

This is to test the while loop.

6.2.13 forEach.gpl

node nl;
void main()

{

node n2;
node n3;
node n4;
node n5;
number x;

x=0;

graph [nl <<1 n2 <>2 n3, n4 <>2 n2, n5 >>3 n2];
forEach unvisited n from n2

{
X =X + 1;
print(x);
}
x=0;

forEach unvisited n to n2

{
X =X + 1;
print(x);

forEach unvisited n from n2 with (< 2) {
visit n;

}

forEach unvisited n from n2 with (<=1) {
unvisit n;

}

visit n5;

visit n3;

forEach visited n to n2 with (> 2) {
print(n);

}

forEach visited n to n2 with (>= 3) {
print(n);

}

}

This is to test the forEach loop.

6.2.14 Other functions

Now that all the data structures and flows are tested, we also write many programs based
on these data types, functions and flows. We recursively test the cases, find problems and
record problems, then correct them. Below is an example of tables showing the result of
tests.

AddandSub. gpl
forEach.gpl

function.gpl
graph.gpl

helloWorld. gpl

ifthenelse.gpl

list.gpl
logicalOp.gpl
logicalOp2.gpl
MultandDiv. gpl

node.gpl

number.gpl

simpleForEach. gpl

simpleRecursive. gpl

simplestFile.gpl
unaryBinary.gpl

-a

Good

Nothing inside the forEach
loop is shown

Nothing inside the if { }
else { }is shown
Good

Good

Nothing inside the if { }
else { } is shown

Good
Good
Parse_Error
Good

Good

Good
Nothing inside the forEach
loop is shown

Nothing inside the forEach
loop is shown

Good
Parse_Error

6.3 Semantic Test Cases

We also write some test cases for semantic checking. These programs are “wrong” and will

-C
Can't Run

Can't Run

Fatal error: exception Compile.AssignmentException
("Type error: I' cannot be as signed to [n]'.")

Good

This function has nothing to do with graphs, but graph
library and graph declarations are still called

Fatal error: exception Compile.AssignmentException
("Type error: 'node4’ cannot be assigned to I1(tail).")
Fatal error: exception Compile.AssignmentException
("Type error: 'nn' cannot be assigned to length(13)".")
Can't Run

Parse_Error

Can't Run

This function has nothing to do with lists and graphs,
but lists and graphs are still included

This function has nothing to do with graphs, but graph
library and graph declarations are still called

This function has nothing to do with lists, but lists are
still included

This function has nothing to do with lists, but lists are
still included

This function has nothing to do with lists and graphs,
but lists and graphs are still included

Parse_Error

cause corresponding exceptions defined in compile.ml.

6.3.1 Return Value

void main(){

}

number n;

foo();

number foo(){

node a;
return a;

Here, a node is returned while the wanted return value is a number. We also write other
test cases, such as return number while wanting boolean, return number while wanting
node, return number while wanting list, etc.

6.3.2 If
void main(){
if(1){
}
}

Here, the predicate of if is an number, while it should be boolean. Similar tests, for instance,
putting a node in predicate, are also used.

6.3.3 While
void main(){
while(3){
}
}

Similarly, the predicate of while-loop should be of boolean value. We use number instead to
do semantic checking.

6.3.4 forEach

In forEach, the structure should be forEach + visited /unvisited + <node> + from/to +
<node> + with + (==/!=/</>/<=/>= + <number>)

We write following test cases to check different tokens:

6.3.4.1 Check visited/unvisited
void main(){
node nl;

forEach 1 n from nl{

6.3.4.2 Check <node>
void main(){
node nl;

forEach visited 3 from nl{

}

6.3.4.3 Check from/to
void main(){
node nl;

forEach visited n 2 nl{

}

6.3.4.4 Check <number>
void main(){

node nl;
node n2;

graph [nl <>1 n2];
forEach unvisited n from nl with (3){

print(1);

7 Lessons Learned

7.1 Advice to future teams

7.1.1 Start early

As is the case on any design project, team GRAPL only gradually became aware of
imperfections in both the design of the language and the implementation of the grapl-ast to
java-ast compiler. (For example, the handling of variable declarations as in separate node
in the ast, rather than as a type of statement, created complexities in the compiler.) In a
real-world development environment, the current product would be only a prototype, and
a final product would be built from the ground up to sidestep the issues that were
discovered along the way. (Of course, on a large project, even more iterations would be
performed.) Naturally, the pace of the course did not allow for this; however, had we gotten
more of a jump on the project, we might have been able to revise the compiler
incrementally.

The authors find that this particular lesson needs to be learned many, many times before it
sticks.

7.1.2 Understand MicroC

A complete understanding of the microc compiler is recommended before writing your
own compiler. It is explained in class, but takes time to digest. This will ultimately produce
good component and interface design, wchich results in better division of labor between
team members. We understood most, but not all, of what was going on in this compiler, and
later found that we had reinvented the wheel in some places.

7.1.3 Synchronize your operating systems

Team members had varying degrees of ability to run executables natively or on Unix
emulators as well as inside the Eclipse IDE. This made it difficult to share information
quickly.

7.1.4 Use shell scripts

Though we always intended to automate the testing process by revising the existing Microc
shell script, a combination of mishaps delayed delivery of this product until it was no
longer practical to use it. We would also have benefited from simple scripts to run the
compiler and produce a correctly named Java file.

7.1.5 Lock down file names and folder hierarchy

Though we did all of our file-sharing through SVN, we did not specify folder names and
hierarchies strictly, and the changes to these along the way made committing and updating
files—as well as simply locating the current test files and Java backend classes—needlessly
difficult.

7.1.6 Synchronize data structures whenever possible

Inconsistencies in names and data structures between modules slowed development. In
particular, declarations in the grapl-ast were stored as a (type, id) tuple; in the java-ast, for
use with List lookup functions, they are converted to a tuple of (id, type). Because both the
grapl-ast and the java-ast tuples appear in several places in the compiler, this simple
flipping of the tuple created trivial but highly annoying headaches. We would have been
much better served to revise the grapl-ast for consistency.

7.2 Team Member Statements

7.2.1 Lili Chen

This project makes me understand more about compiler. Though we learned a lot of
knowledge in the class, when we are facing to design our own language, it is a challenging
work. As far as | am concerned, the following three aspects are most important for me:

First, we should understand the principles of compiler deeply before implementing our
project. In order to know much more about it, we should not only focus on the lectures
related to it, but also analysis the micro C example provided by professor. It is a nice
example for us to know the real world design and implement.

Secondly, in order to implement the project, OCaml is really important but new language
for us. I feel difficult to learn it at first. However, I feel it is really useful afterwards.

Finally, effective communications among team members is necessary for the teamwork. We
can always conclude the best ideas after our discussions and meetings.

7.2.2 Andres Uribe

[learned the basic process of how a decent compiler should work and the ins and outs of
doing semantic checking. I learned a new programming paradigm with O’Caml. I also
learned that for any problem when implementing the converter we could just defer the
problem to the next component. Ultimately everything could be solved in Java, but we tried
to avoid this and to do the right work in the right places. Finally, I'd recommend two things
for future teams. First, understand the microc compiler before writing your own compiler.
It is explained in class, but takes time to digest. This will ultimately produce good
component and interface design, wchich results in better division of labor between team
members. Second, write a substantial number of sample programs that your language is
intended to work for before writing the LRM.

7.2.3 Ryan Turner

[t goes without saying that [learned a heck of a lot about syntax and regular expressions
and about issues of language design, especially scoping rules and semantic analysis.
Probably more importantly for my future in programming, I came to really appreciate and
enjoy the power of functional programming, What was a totally alien style of thought and
syntax at the beginning of the semester now comes to me pretty easily. This being one of

the larger and longer programming projects ['ve worked on, I also came to see the value of
an iterative development approach; because it simply isn’t possible to anticipate all the
consequences of a design decision, missteps are inevitable.

At the risk of kissing a little too much ass, I really had a blast on this project. 0’Caml is
certainly the most interesting language I've learned in a while, and the discussions and
debates we had over issues of language and compiler design were the liveliest and most
engaging that I've enjoyed to date in my career in computer science. Would that rest of my
coursework were more like this.

7.2.4 DiWen
1) I should have spent more time on practice on 0'Caml besides this project.

Familiarity with O'Caml will greatly improve the understanding of the
project; however, to become familiar with a new language do take a lot
of time, especially for O'caml because this language's syntax and
structure is quite different from some languages we're used to: C,
JAVA, etc.

2) I should have paid more attention to what other group members are doing.

This is an integrated project. Having full knowledge on other members'
parts will benefit working on one's own part because all parts will
finally be connected.

7.2.5 YiYang

In this course I first learned about the process of building a compiler, which is obvious. We
implemented a lot of stuff, scanner, parser, abstract syntax tree, pretty printer, etc. By
doing the project, it makes me understand the importance of semantic checking, and how
hard it is to check the correct semantic, which I took for granted during my past
programming experience. I think actually the semantic checking stuff took us much more
time than other part.

During the project, I also learned the power of another functional language, I also do LISP
for artificial intelligence for this semester. Sometimes I just got Ocaml and Lisp mixed up
since they have a lot of in common. But LISP is based on lambda calculus, while Ocaml
not. I'd like to say, to do functional programming, recursion is necessary. But at the
beginning, those recursion caused a lot of headaches, but when I get used to it in the
process of doing the project. Recursion reveals its charming, it’s really elegant and make
codes simple.

8 Appendix A — Code Listing

(* scanner.mll *)
(* @authors: Steven Edwards, Lili Chen, Di Wen *)

{ open Parser }

(* letter, digit, and definition of number in GRAPL *)
let letter = ['a'- -'7"]

let digit = ['0'-"9"]

let num = digit+ | digit*'.'digit+

rule token = parse

"X { comment lexbuf }

L] { token lexbuf }
{ LPAREN
{ RPAREN
{ LBRACE
{ RBRACE
{ LBRACK
{

N e e]

I

I

I

I

I

I

I

I RBRACK
| { NEQ }
I {GT }

I { LT}

I { LEQ }

| ">=" { GEQ }

| {EQ1?}

I { ASSIGN }
I { NOT }

I { INC }

I { DEC }

| "<<" { LEDGE }
| ">>" { REDGE }
| "<>" { BEDGE }
["::" { CONS }
| "while" { WHILE }
| "graph" { GRAPH }
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

"node" { NODE }
"list" { LIST }
"number" { NUMBER }
"boolean" { BOOLEAN }
"bool" { BOOLEAN }
"void" { VOID }

Ui { IF }

"then" { THEN }
"else" { ELSE }
"forEach" { FOREACH }
"foreach" { FOREACH }
"from" { FROM }

"to" {T0}

"with" { WITH }
"return” { RETURN }
"visited" { VISITED }
"visit" { VISIT }
"unvisit" { UNVISIT }
"isVisited" { ISVISITED }

"unVisited" { UNVISITED }

| "unvisited" { UNVISITED }
I { SEMICOLON }
I { COMMA }
I { PLUS }
I { MINUS }
I { TIMES }
I { DIVIDE }
| "&&" { AND }
["1™ { OR }
| num as s { LITERAL(float_of_string(s)) }
| letter (letter | digit |)* as identi { ID(identi) }
| eof { EOF }
| "true" { BOOLEAN_LITERAL("true") }
| "false" { BOOLEAN_LITERAL("false") }
(* comment *)
and comment = parse
"*/" { token lexbuf }
| _ { comment lexbuf }

3k %k 3k 3k 3k %k %k 3k %k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k %k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k %k %k 3k 3k %k %k 3k 3k %k %k %k 3k 3k %k %k 5k %k %k K 3k %k %k Kk %k k

3% 3k %k 3k %k %k k

/* parser.mly */
/* @authors: Di Wen, Andres Uribe, Ryan Turner */

%{ open Ast %}

%token LBRACK RBRACK LPAREN RPAREN LBRACE RBRACE
%token SEMICOLON COMMA

%token PLUS MINUS TIMES DIVIDE AND OR

%token EQ NEQ LT LEQ GT GEQ NOT ASSIGN CONS INC DEC
%token VOID GRAPH NODE LIST NUMBER BOOLEAN
%token REDGE LEDGE BEDGE HEAD TAIL

%token IF THEN ELSE FOREACH WITH RETURN WHILE
%token FROM TO

%token VISITED ISVISITED UNVISITED VISIT UNVISIT
%token <string> ID

%token EOF

%token <float> LITERAL

%token <string> BOOLEAN_LITERAL

%¥nonassoc ELSE
%right ASSIGN
%¥right CONS

%¥left OR

%left AND

%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%right NOT

%left INC

%left DEC

%start program
%type < Ast.program> program

%%

program:
/* nothing */ { [1, [1}
| program vdecl { ($2 :: fst $1), snd $1 }
| program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

types ID LPAREN formals_opt RPAREN LBRACE vdecls stmts RBRACE
{ { rettype = $1;
fname = $2;
formals = $4; (* a list of tuples *)
locals = List.rev $7; (* a list of tuples *)
body = List.rev $8 (* a list of statements *)} }

types: /*

note that graph is not a type */
NUMBER { "number" }

NODE { "node" }

BOOLEAN { "boolean" }

LIST { "list" }

VOID { "void" }

formals_opt:
/* nothing */ { [}
| formal_list { List.rev $1 }

formal_list:
types ID { 081, $20] 3
| formal_list COMMA types ID { ($3, $4) :: $1 }

vdecls:
/*nothing*/ { [1 }
| vdecls vdecl { $2::%$1 }
vdecl:
| types ID SEMICOLON { ($1, $2) }
stmts:
/* nothing */ { [}
| stmts stmt { $2::$1 }
stmt:
| LBRACE stmts RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN THEN stmt ELSE stmt { IfThenkElse($3, $6, $8) }
/*| IF LPAREN expr RPAREN THEN stmts %prec NOELSE { IfThenElse($3, $6, Block([1)) }*/
| FOREACH qualifiers ID fromTo ID withStmt stmt { Foreach($2, $3, $4, $5, $6, $7)%
| expr SEMICOLON { Expr($1) }
| GRAPH LBRACK consdecls_opt RBRACK SEMICOLON { Graph(List.rev $3)}
| RETURN expr SEMICOLON { Return($2) }
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
qualifiers:
| /* nothing */ { "null" }
| VISITED { "visited" }
| UNVISITED{ "unvisited" }
fromTo:
| FROM { "from" }
| TO { "to" }
withStmt:
| /*nothing */ {(Noop, Literal(1.0)) }
| WITH LPAREN pred RPAREN { $3 }
pred:

EQ expr { (Equal, $2) }
NEQ expr { (Neq, $2) }

LT expr { (Less, $2) }
LEQ expr { (Leq, $2) }

GT expr { (Greater, $2) }
GEQ expr { (Geq, $2) }

consdecls_opt: /* a list of triples */
| /*nothing*/ { [}
| consdecl_list { $1 }

/*| consdecls COMMA consdecl { $3 @ $1 }*/

consdecl_list:
| consdecl{ List.rev $1 }
| consdecl_list COMMA consdecl { List.rev $3 @ $1 }

consdecl: /* a list of triples */
| ID edgeDefs
{ let rec help a b = match b with
I [J -> [Ca,NoEdge(0.0),a)]
| head :: tail -> (a, fst head, snd head) :: help (snhd head) (tail) in help $1
(List.rev $2)
}

edgeDefs: /* a list of tuples*/
/*nothing*/ { [1 }
| edgeDefs edgeDef { $2::$1 }

edgeDef: /* a tuple of the form (<<3 , b) */
REDGE ID { (Redge(1.0), $2) }
LEDGE ID { (Ledge(1.0), $2) }
BEDGE ID { (Bedge(1.0), $2) }
REDGE LITERAL ID { (Redge($2), $3) }
LEDGE LITERAL ID { (Ledge($2), $3) }
BEDGE LITERAL ID { (Bedge($2), $3) }

expr:

ID { Id($D) 3

expr PLUS expr { Binop($1, Add, $3) }
expr MINUS expr { Binop($1, Sub, $3) }

Binop($1, Geq, $3) }
expr CONS expr Binop($1l, Cons, $3) }
LITERAL Literal($1) }
BOOLEAN_LITERAL { BooleanLiteral($1l) }
LPAREN expr RPAREN { $2 }

ID ASSIGN expr { Assign($1, $3) }

ID LPAREN actuals_opt RPAREN { Call($1, $3) }
VISIT ID { Visit($2) }

UNVISIT ID { Unvisit($2) }

LBRACK node_ids RBRACK { List($2) }

expr INC { Unop(Inc, $1) }

expr DEC { Unop(Dec, $1) }

NOT expr { Unop(Not, $2) }

expr GEQ expr

expr TIMES expr { Binop($1, Mult, $3) }
expr DIVIDE expr { Binop($1, Div, $3) }
expr EQ expr { Binop($1, Equal, $3) }
expr NEQ expr { Binop($1l, Neq, $3) }
expr LT expr { Binop($1, Less, $3) }
expr LEQ expr { Binop($1, Leq, $3) }
expr GT expr { Binop($1l, Greater, $3) }

{

{

{

/* list of node ids */
node_ids:
| /* nothing */ { [] }
| ID { [Id($1D)] }
| ID COMMA node_ids { Id($1)::$3 }

actuals_opt:
/* nothing */ { [}
| actuals_list { List.rev $1 }

actuals_list:
| expr { [$1]1 }
| actuals_list COMMA expr { $3 :: $1 }

3k %k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k %k %k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k %k %k %k 3k %k %k %k 3k %k %k K 3k %k %k K k k k
% 3k %k 3k %k %k %

(* ast.ml *)
(* An abstract syntax tree representing the GRAPL language *)
(* @authors Team GRAPL *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | Noop | Cons | Inc | Dec | Not

type expr =
Literal of float

| BooleanLiteral of string
Id of string
Binop of expr*op*expr

| Unop of op*expr
Assign of string*expr
Call of string*expr list
Unvisit of string
Visit of string
Noexpr
List of expr list

type edge =
| Redge of float
| Ledge of float
| Bedge of float
| NoEdge of float

type stmt =
Block of stmt list (* Statements *)
Expr of expr *{...}} %
Foreach of string*string*string*string*(op*expr)*stmt (* foreach Unvisited/visited A from with B <10
{...3
While of expr*stmt
| IfThenElse of expr*stmt*stmt (* if (foo == 42) then {} else {} *)
Graph of (string*edge*string) list (* graph [a >>4 b <>3 c << d];*)
| Return of expr

type func_decl = {
rettype: string;
fname : string;
formals : (string*string) list;
locals : (string*string) list;
body : stmt list;
3

type program = (string*string) list * func_decl list

3k 3k 3k 3k 3k ok 3k ok %k ok 3k ok 3k ok ok sk sk ok ok ok sk ok %k ok sk ok %k ok 3k sk 3k ok ok ok sk ok ok 3k sk ok ok ok Sk ok %k ok 3k ok ok %k ok k sk ok ok 3k sk ok ok ok sk sk %k ok 3k sk 3k ok ok k sk ok ok 3k sk ok ok ok sk sk %k ok 3k ok 3k ok 3k sk sk %k ok 3k ok k ok ok Sk ok ok ok 3k ok %k ok ok ok ok ok ok ok ok
% %k 3k %k k Kk

(* jast.ml *)

(* An abstract syntax tree representing Java constructs. More or less generic. *)

(* @authors Team GRAPL *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | Not | Inc | Dec | Noop

type expr =

| Literal of float

| BooleanLiteral of string

| Id of string
Binop of expr*op*expr
| Unop of op*expr

Assign of string*expr
Call of expr*string*expr list (* implicit-param * function-name * arg-list *)
Noexpr
List of expr list
Stringlit of string

type stmt =
| New of string*string*expr list (* e.g. n = new Node(); *)
| NewDecl of string*string*expr list (* e.g. Node n = new Node(); *)

| Decl of string*string (* e.g. number x *)
| Block of stmt list (* Statements *)
| Expr of expr G {... "
| Foreach of string*string*expr*stmt (* e.g. for (Node n : graph.getNode("a", "<", 6, "visited")) { stmt } *)
| While of expr*stmt (* predicate * body *)
| IfThenElse of expr*stmt*stmt (* e.g. if (foo == 42) then {} else {} *)
| Return of expr
| Nostmt

type method_decl = {
jrettype: string;
jfname : string;
jformals : (string*string) list;
jlocals : (string*string) list;
jbody : stmt list;
}

(* class-name * globals-list * method-decls-list) *)
type java_class = string * string list * method_decl list

(* imports-list * class-list *)
type program = string list * java_class list

3k 3 3k 3 3k 3 3k 3 3k 3 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k ok 3k >k 3k >k 3k >k 3k %k 3k %k 3k %k 3k >k 3k %k 3k %k 3k >k 3k %k 3k %k 3k >k 3k %k 3k >k 3k %k 3k %k 3k %k 3k %k 3k %k 3k 5k 3k %k 3k %k 3k %k 3k %k 3k %k 5k %k 3k %k 3k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k % 5k %k k k
% % % %k k %

* gpp.ml *)

(* GRAPL Pretty Printer. Generates GRAPL code from a grapl-ast. For debugging purposes. *)
(* @author: Lili Chen *)

open Ast

let string_of_operator = function

| Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"

| Equal -> "==" | Neq -> "I=" | Less -> "<" | Leq -> "<="
| Greater -> ">" | Geq -> ">=" | Noop -> "" | Cons -> "::"
| Not -> "!" | Inc -> "++" | Dec -> "--"

let rec string_of_expr = function
Literal(l) -> string_of_float 1
| BooleanLiteral(s) -> s

| Id(s) -> s
| Binop(el, o, e2) ->
string_of_expr el A " " A string_of_operator(o) A " " A string_of_expr e2
| Assign(v, €) -> v A " =" A string_of_expr e
| Call(f, el) ->
f A "(" A String.concat ", " (List.map string_of_expr el) A ")"
| Noexpr -> ""

Unvisit(e) -> "unvisit " A e

Visit(e) -> "visit " A e
| List(l) -> "[" A String.concat "," (List.map string_of_expr 1) A "J"
| Unop(Not, e) -> "!" A string_of_expr e
| Unop(op, e) -> string_of_expr e A string_of_operator op

let string_of_pred = function
I (Noop, Literal(1.0)) -> ""
I (p,e) -> "with (" A string_of_operator(p) A " " A string_of_expr e A ")"

let string_of_edge = function
| Redge(w) -> ">>" A string_of_float(w)
| Ledge(w) -> "<<" A string_of_float(w)
| Bedge(w) -> "<>" A string_of_float(w)
| NoEdge(w) -> ""

let rec string_of_graph = function
| [(n1, NoEdge(0.0), n2)] -> n1 A "™ "
| (nl, NoEdge(0.0), n2) :: tail -> n1 A ", " A string_of_graph(tail)
| (nl, edge, n2) :: tail -> n1 A " " A string_of_edge(edge) A " " A string_of_graph(tail)
I ->""

let rec string_of_stmt = function
Block(stmts) ->
"{\n" A String.concat "" (List.map string_of_stmt stmts) A "}\n"
| Expr(expr) -> string_of_expr expr A ";\n";
| IfThenElse(e, s1, s2) -> "if (" A string_of_expr e A ")\n" A
string_of_stmt s1 A "else\n" A string_of_stmt s2 A "\n"
| Foreach(q,nl,ft,n2,(s,e),st) -> "foreach " A gA "™ " Anl A" " Aft A" " An2A""A
string_of_pred((s,e)) A string_of_stmt(st) A "\n"
| Graph(ses_list) -> "graph [" A string_of_graph(ses_list) A "J;\n"
| Return(e) -> "return " A string_of_expr e A ";\n"
| WhileCe,s) -> "while (" A string_of_expr e A ")\n" A string_of_stmt s

let string_of_vdecl var = fst(var) A " " A sndCvar) A ";\n"

let string_of_fdecl f =

f.rettype A " " A f.fname A "(" A String.concat "," (List.map (fun t -> fst t A" " A snd t)
f.formals) A ")\n{\n" A
String.concat "\n" (List.map (fun t -> fst t A " " Asnd t A ";") f.locals) A "\n" A

String.concat "" (List.map string_of_stmt f.body) A "}\n"

let string_of_program (vars, funcs) =
String.concat "" (List.map string_of_vdecl vars) A "\n" A
String.concat "\n" (List.map string_of_fdecl funcs)

3k %k %k 3k 3k 3k %k 3k 3k %k 3k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k %k 3k 3k %k %k 3k 3k 3k %k 3k 3k %k %k %k 3k %k %k %k 5k %k %k %k 3k %k %k Kk %k k

% %k %

¢ jpp.ml *)

(* Java Pretty Printer. Generates java code from a Java ast *)
(* @author: Lili Chen *)

open Jast

let default_keyword = "public static"
let default_implicit_param = "null"

let string_of_operator = function

| Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
| Equal -> "==" | Neq -> "!=" | Less -> "<" | Leq -> "<="

| Greater -> ">" | Geq -> ">=" | Noop -> ""

| Not -> "1" | Inc -> "++" | Dec -> "--"

let rec string_of_expr = function
| Literal(l) -> string_of_float 1
| BooleanLiteral(s) -> s
| Id(s) -> s
| Unop(Not, e) -> "I" A "(" A string_of_expr e A ")"
| UnopCop, €) -> "(" A string_of_expr e A ")" A string_of_operator(op)
| Binop(el, o, e2) ->
string_of_expr el A " " A string_of_operator(o) A " " A string_of_expr e2
| Assign(v, e€) -> v A " =" A string_of_expr e
| Noexpr -> "fix_me"
| Call(f,f_Name,f_List) -> (if ((string_of_expr f) <> default_implicit_param) then ((string_of_expr f) A
L") else "") A

f_Name A "(" A String.concat "," (List.map string_of_expr f_List) A ")"
| List(l) -> "[" A String.concat "," (List.map string_of_expr 1) A "]"
| StringLit(l) -> "\"" A 1 A "\""

let rec string_of_stmt = function
Block(stmts) ->
"{\n" A String.concat "" (List.map string_of_stmt stmts) A "}\n"
| Expr(expr) -> string_of_expr expr A ";\n";
| Return(e) -> "return " A string_of_expr e A ";\n";

| NewCn,m,e_list) ->m A " =new " A n A "(" A String.concat "," (List.map string_of_expr e_list) A ");\n"
| WhileCe, s) -> "while (" A string_of_expr e A ")\n" A string_of_stmt s
| NewDecl(t,id,e_list) -> t A " " Aid A " =new " At A "(" A String.concat "," (List.map
string_of_expr e_list) A ");\n"
| DeclCt, id) -> t A " " Aid A ";\n"

* | IfCe, s) -> "if (" A string_of_expr e A ")\n" A string_of_stmt s *)

| IfThenElse(e, s1, s2) -> "if (" A string_of_expr e A ")\n" A
string_of_stmt s1 A "else\n" A string_of_stmt s2
| Foreach(t, id, e, stmt) ->

"for (" At AT " AdAd A" " A string_of_expr e A "D\n" A string_of_stmt stmt A "\n"
(* e.g. Foreach n : graph.getNode("a", "< 6", "visited") *)
I Nostmt -> ""
let string_of_formal (t, id) =t A " " A id

let string_of_global vdecl = snd(vdecl) A " " A fst(vdecl) A ";"

let string_of_method_decl method_decl =
default_keyword A " " A method_decl.jrettype A " " A method_decl.jfname A "(" A
(String.concat "," (List.map string_of_formal method_decl.jformals))
A "ION\n{\n\n" A
(String.concat
A "H\n"

nwn

(List.map string_of_stmt method_decl. jbody))

(* class-name * globals-list * method-decls-list *)
(* type java_class = string * string list * method_decl list *)
let string_of_jclass extra_string java_class =
"\npublic class " A
(fun(x, y, z) -> x A "\n{\n" A String.concat "\n" (List.map string_of_global y) A "\n\n" A
String.concat "\n\n" (List.map string_of_method_decl z) A extra_string) java_class A "}\n\n"

(* e.g., import lib.*; *)
let string_of_imports import_list =
String.concat ";\n" import_list A ";\n"

let string_of_program (import_list, java_class_list, extra_string) =
"\n" A string_of_imports import_list A "\n" A
String.concat "\n\n" (List.map (string_of_jclass extra_string) java_class_list) A "\n\n\n"

3k 3 3k 3 3k 3 3k 3k 3k 3k 3k 3 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k >k 3k >k 3k %k 3k %k 3k %k 3k %k 3k >k 3k %k 3k %k 3k >k 3k %k 3k %k 3k >k 3k >k 3k %k 3k >k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 5k %k 5k %k 3k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k % %k %k k >k
* % % % %k k %

(* translate.ml *)
(* Translates a GRAPL AST to a Java AST and performs semantic checking.*)
(* @authors Ryan Turner, Andres Uribe *)

type mode = Quiet | Verbose (* compiler directives *)

open Ast
open Jast

(* Function symbol table *)
module FuncMap = Map.Make(struct

type t = string

let compare x y = Pervasives.compare x y
end)

(* Exception types *)

exception ReturnException of string
exception VariableNotFoundException of string
exception FunctionNotFoundException of string
exception BinopException of string

exception VisitUnvisitException of string
exception OtherException of string

exception AssignmentException of string
exception FunctionException of string
exception WhileExprException of string
exception ForeachNodeException of string
exception ForeachPredException of string
exception IfExprException of string
exception ReturnTypeException of string
exception MainNotFoundException of string

(* Default information for the backend java class that will run the GRAPL programs *)

(* let grapl_std_lib = GraplStdLib.string_of_library *)

let grapl_std_lib = "GraplStdLib"

let default_imports = ["lib.*"; grapl_std_lib] (* Java Backend classes *)

let default_lib = "library" (* Java Backend classes *)

let default_graph = "graph" (* Java Backend classes *)

let default_createGraph = "createEmptyGraph" (* Java Backend classes *)

let default_vars = [("GraplLib", default_lib); ("Graph", default_graph)] (* library must be created first *)
let default_keywords = "public static"

let null_implicit_param = "null"

let main_formals = [("String[]", "args")]

let main_rettype = "void"

let default_prefix = "gpl_" (* prefix ensures that backend Java identifiers cannot conflict with the user's
identifiers *)

let java_globals_prefix = ""

(* Built-in functions are implemented in Java *)

let built_in_functions = [

rettype = "number"; fname = "length"; formals = [("list", "1")]; locals = []; body = [] } ;
rettype = "node"; fname = "head"; formals = [("list", "1")]; locals = []; body = [
rettype = "list"; fname = "tail"; formals = [("list", "1")]; locals = []; body = [
rettype = "void"; fname = "unvisitAll"; formals = []; locals = []; body = [1 } ;
rettype = "boolean"; fname = "isVisited"; formals = [("node", "n")]; locals = []; body = [] } ;

11
11

[e

(* Library functions are written in GRAPL and defined in the GRAPL Standard Library. The user can extend *)
(* the standard library as needed and record the function definitions here. *)
let library_functions = [
rettype = "number"; fname = "numChildren"; formals = [("node", "n")]; locals = []; body = [] } ;
rettype = "number"; fname = "numAncestors"; formals = [("node", "n")]; locals = []; body = [] } ;
rettype = "void"; fname = "unvisitAllFrom"; formals = [("node", "n")]; locals = []; body = [] } ;
rettype = "void"; fname = "visitAllFrom"; formals = [("node", "n")]; locals = []; body = [] } ;
rettype = "list"; fname = "dfs"; formals = [("node", "start"); ("node", "finish")]; locals = [];
body = [1} ;

{ rettype = "list"; fname = "reverse"; formals = [("list", "old_lidt")]; locals = []; body = [] } ;

B e

]

let libTable_data = (* Put standard library function declarations in a symbol table *)
List.fold_left (fun funcs fdecl -> FuncMap.add fdecl.fname fdecl funcs)
FuncMap .empty (library_functions)

let initialize_standard_library = Jast.Expr(Jast.Call(Jast.Id(grapl_std_lib), "initialize",
[Jast.Id(default_graph); Jast.Id(default_1ib)]))

(* Functions to extract the correct data structure from env tuple *)
(* env = (var_list, sp, funcTable, libTable, mode) *)

let var_list (v, s, f, 1, m) = v

let sp (v, s, f, 1, m) =s

let funcTable (v, s, f, 1, m) = f

let libTable (v, s, f, 1, m) =1

let mode (v, s, f, 1, m) =m

(* Utility functions for pushing and popping local vars into symbol table var_list *)
(* var_list is the symbol table; sp keeps track of how many locals are currently in scope *)
let push_symbols env vars =

let var_list = ((List.append vars (var_list env)))

and sp = ((List.length vars) :: (sp env))

in (var_list, sp, funcTable env, libTable env, mode env)

let pop sp = ((List.hd sp)-1)::(List.tl sp)
let rec pop_sym var_list sp = match var_list with
I [O-> [0 (* failwith "empty" *)
| hd::tl-> if(List.hd sp)>0 then pop_sym tl1 (pop sp) else hd::tl
let pop_symbols env = ((pop_sym (var_list env) (sp env)), (List.tl (sp env)), funcTable env, libTable env,
mode env)

(* Other utility functions *)
let flip_append_list string_tuple_list = List.map (fun (t, id) -> (default_prefix A id, t)) string_tuple_list

let flip (x, y) = (y, X
let flip_list string_tuple_list = List.map flip string_tuple_list
let rec string_of_var_list var_list =

let string_of_tuple (t, id) = "(" At A "," Aid A ")" in

string_of_tuple (List.hd var_list) A (if (List.length var_list = 1) then "" else string_of_var_list
(List.tl var_list))
let append_keywords_list string_tuple_list = List.map (fun (id, t) -> (id, default_keywords A " " A t))
string_tuple_list

let java_type_for_type t = match t with
| "node" -> "Node"

| "graph"™ -> "Graph"

| "number" -> "double"

| "list" -> "List"

| "void" -> "void"

| "boolean" -> "boolean"

| > "

let java_operator_for_operator o = match o with
| Ast.Add -> Jast.Add

| Ast.Sub -> Jast.Sub

| Ast.Mult -> Jast.Mult

| Ast.Div -> Jast.Div

| Ast.Equal -> Jast.Equal

| Ast.Neq -> Jast.Neq

| Ast.Greater -> Jast.Greater
| Ast.Geq -> Jast.Geq

| Ast.Less -> Jast.Less

| Ast.Leq -> Jast.Less

| Ast.Noop -> Jast.Noop

| Ast.Cons -> Jast.Noop

| Ast.Not -> Jast.Not

| Ast.Inc -> Jast.Inc

| Ast.Dec -> Jast.Dec

let node_name_for_string s = default_prefix A s

(**)

(* SEMANTIC CHECKING *)

let print_warning mode w = match mode with
| Verbose -> print_string("/* WARNING: " A w A "*/\n")
| Quiet -> print_string ""

(* Translating functions *)

(* Returns the type for a grapl expression, or raises exception for an invalid type. *)
let rec get_type_for env e = match e with
| Ast.Literal(l) -> "number"
| Ast.BooleanLiteral(s) -> "boolean"
| Ast.Call(f, e_list) ->
(let fdecl = try FuncMap.find f (funcTable env)
with Not_found -> raise(FunctionNotFoundException(f A" has not been declared"))
in fdecl.rettype)
Ast.Noexpr -> "noexpr"
Ast.Unvisit(e) -> "node"
Ast.Visit(e) -> "node"
Ast.List(l) -> "list"
Ast.Unop(op, e) -> get_type_for env e
Ast.Binop(el, op, e2) -> (match op with
| Ast.Equal | Ast.Neq | Ast.Less | Ast.Leq | Ast.Greater | Ast.Geq -> "boolean"
| _ -> get_type_for env e2)

| Ast.Assign(v, e) -> get_type_for env e

(* Implicit global declaration of nodes inside the "graph" statement means that nodes are created
dynamically. The compiler *)

(* cannot guarantee in all cases that a reference to an implicitly declared node will be valid; thus a
warning is generated. *)

| Ast.Id(s) ->

(try (List.assoc s (var_list env))
with Not_found -> print_warning (mode env) (“"reference to implicitly declared node
\'"" A's A"\' may not be valid at run-time."); "node")

(* returns boolean after checking *)
let rec check_expr env e =
match e with
| Ast.Id(s) -> ((List.mem_assoc s (var_list env)) || ((get_type_for env (Ast.Id(s))) = "node"))
| Ast.Unop(Ast.Not, e) -> get_type_for env e = "boolean"
| Ast.Unop(op, e) -> get_type_for env e = "number"
| Ast.Binop(el,o,e2) ->
if (check_expr env el && check_expr env e2)
then
(match o with
| Ast.Cons -> get_type_for env el = "node" && get_type_for env e2 = "list"

I _ -> ((get_type_for env el) = (get_type_for env e2))

bl
else
false
| Ast.Assign(v,e) -> if (check_expr env e)
then
(get_type_for env (Ast.Id(v))) = (get_type_for env e)
else

false
| Ast.Call("print", e_list) -> true

| Ast.Call(f, e_list) -> (FuncMap.mem f (funcTable env)) || (FuncMap.mem f (libTable env)) (* TODO: check
argument list *)

| Ast.List(e_list) -> List.fold_left (fun a e -> a & (check_expr env e)) true e_list

| Ast.Literal(f) -> true

| Ast.BooleanLiteral(s) -> true

| Ast.Unvisit(n) -> true
Ast.Visit(n) -> true
| Ast.Noexpr -> true

(* Raises an exception for an invalid expression *)
let consistent_expr env e =
let inner = check_expr env e
in
if (inner) then true
else match e with
| Ast.Id(s) -> raise(VariableNotFoundException("The variable \'" A s A "\' was not declared or is out of
scope."))
| Ast.Binop(el,op,e2) -> raise(BinopException("Problem with the binary expression: \'" A
Gpp.string_of_expr(Ast.Binop(el,op,e2)) A "\'."))
| Ast.Unop(op,e2) -> raise(BinopException("Problem with the unary expression: \'" A
Gpp.string_of_expr(Ast.Unop(Cop,e)) A "\'."))
| Ast.Assign(v,el) -> raise(AssignmentException("Type error: \'" A v A "\' cannot be assigned
to " A Gpp.string_of_expr(el) A "\'."))
| Ast.Call(f, e_list) -> raise(FunctionNotFoundException("The function \'"A f A"\' has not been
declared."))
| Ast.List(Ce_list) -> raise(OtherException("Undefined exception in list."))
| Ast.Literal(f) -> raise(OtherException("Undefined exception in literal \'" A string_of_float f A "\'."))
| Ast.BooleanLiteral(s) -> raise(OtherException("Undefined exception in boolean \'" A s A "\'."))
| Ast.Unvisit(n) -> raise(OtherException("Cannot call function 'unvisit' on non-node \'" A n A
"\"."))
| Ast.Visit(n) -> raise(OtherException("Cannot call function 'visit' on non-node \'" A n A "\'."))
| Ast.Noexpr -> raise(OtherException("Undefined exception in Noexpr."))

(**)
(* CONVERTING AST --> JAST (Java-Ast) *)

(* Returns a Jast.expr for a given Ast.expr *)

let rec jast_of_expr env e =

let jast_e expr = jast_of_expr env expr in
if not(consistent_expr env e) then

Jast.Noexpr (* invalid expressions should throw exceptions before reaching this point *)

else
match e with
| Ast.Literal(l) -> Jast.Literal(l)
| Ast.BooleanLiteral(s) -> Jast.BooleanLiteral(s)
| Ast.Id(s) ->

if (not(List.mem_assoc s (var_list env)) && (get_type_for env (Ast.Id(s)))

"node™)
then Jast.Call(Jast.Id(default_graph), "getNode", [Jast.StringLit(s)])
else Jast.Id(default_prefix A s)
| Ast.Unop(op, e) -> Jast.Unop(java_operator_for_operator op, jast_e e)
| Ast.Binop(el, Ast.Cons, e2) -> Jast.Call(jast_e e2, "addNew", [jast_e el])
Ast.Binop(el, op, e2) -> Jast.Binop(jast_e el, (java_operator_for_operator op), jast_e e2)
Ast.Assign(v, e) -> Jast.Assign(default_prefix A v, jast_e e)
Ast.Noexpr -> Jast.Noexpr
Ast.Unvisit(e) -> Jast.Call(jast_e (Ast.Id(e)), "unvisit", [])
Ast.Visit(e) -> Jast.Call(jast_e (Ast.Id(e)), "visit", [1)
Ast.List(l) -> Jast.Call(Jast.Id(default_1ib), "buildList", List.map jast_e 1)

(* Built-in functions *)
| Ast.Call("print", e_list) -> Jast.Call(Jast.Id(default_lib), "print", List.map jast_e e_list)
| Ast.Call("unvisitAll", e_list) -> Jast.Call(Jast.Id(default_graph), "unvisitAll", [])
| Ast.Call("length", e_list) -> let e = List.hd e_list in let x = get_type_for env e in
if (x = "list")
then Jast.Call(jast_e e, "size", [1)
else raise (FunctionException("Error: Cannot call built-in 'length' on non-
list \'" A Gpp.string_of_expr(e) A "\'."))
| Ast.Call("head", e_list) -> let e = List.hd e_list in let x = get_type_for env e in
if (x = "list")
then Jast.Call(Jast.Id(default_lib), "head", [jast_e e])
else raise (FunctionException("Error: Cannot call built-in 'head' on non-
list \'" A Gpp.string_of_expr(e) A "\'."))
| Ast.Call("tail", e_list) -> let e = List.hd e_list in let x = get_type_for env e in
if (x = "list")
then Jast.Call(Jast.Id(default_lib), "tail", [jast_e e])
else raise (FunctionException("Error: Cannot call built-in 'tail' on non-
list \'" A Gpp.string_of_expr(e) A "\'."))
| Ast.Call("isVisited", e_list) -> let e = List.hd e_list in let x = get_type_for env e in
if (x = "node")
then Jast.Call(Jast.Id(default_lib), "isVisited", [jast_e e])
else raise (FunctionException("Error: Cannot call built-in 'isVisited' on
non-node \'" A Gpp.string_of_expr(e) A "\'."))

(* Other functions. Check the locally-declared functions first; this way, the user can
override library functions if desired.*)
(* If the function is not found in the local function table, it must be a library function
(since it is a valid expression). *)
| Ast.Call(f, e_list) ->
if (FuncMap.mem f (funcTable env))
then Jast.Call(Jast.Id(null_implicit_param), f, List.map jast_e e_list) (*
user-defined functions *)
else Jast.Call(Jast.Id(grapl_std_lib), f, List.map jast_e e_list) (*
standard library functions *)

(* Returns a function call to create a new edge in the graph *)
let jast_of_edge_def edge_def = match edge_def with
| (s1, Ast.Redge(w), s2) ->
Jast.Expr(Jast.Call(Jast.Id("graph™), "addEdge", [Jast.StringlLit(sl);
Jast.Stringlit(s2); Jast.Literal(w)]))
| (s1, Ast.Ledge(w), s2) ->
Jast.Expr(Jast.Call(Jast.Id("graph™), "addEdge", [Jast.StringlLit(s2);
Jast.Stringlit(sl); Jast.Literal(w)]))
| (s1, Ast.Bedge(w), s2) ->
Jast.Expr(Jast.Call(Jast.Id("graph"),"addBEdge", [Jast.StringlLit(sl);
Jast.Stringlit(s2); Jast.Literal(w)]))
| (s1, Ast.NoEdge(w), s2) -> Jast.Nostmt

(* Returns a Jast.stmt list ** NOT a Jast.stmt ** for each Ast.stmt *)
let rec jast_of_stmt rettype env stmt =

let jast_s s = jast_of_stmt rettype env s in
(*let jfold s_list = List.fold_left (jast_of_stmt env) s_list in*)
let rec jast_of_foreach env (q, nl, ft, n2, (op,e), s) =
let env = push_symbols env [(nl, "node")] in
let jast_e e = jast_of_expr env e in
match ft with
| "from" ->
[Jast.Foreach("Node",

default_prefix A nl,
Jast.Call(Jast.Id("graph™),
"getNodesFromWith",
[(jast_e (Ast.Id(n2)));
Jast.Id("null™);
Jast.Stringlit(q);
Jast.Stringlit(Gpp.string_of_operator(op));
jast_of_expr env e

1D,

Jast.Block(jast_of_stmt rettype env s)

bl
1
| "to" ->
[Jast.Foreach("Node",
default_prefix A nl,
Jast.Call(Jast.Id("graph™),
"getNodesToWith",

[(jast_e (Ast.Id(n2)));
Jast.Id("null™);
Jast.Stringlit(q);
Jast.Stringlit(Gpp.string_of_operator(op));
jast_of_expr env e

1D,

Jast.Block(jast_of_stmt rettype env s)

D)
]

| _ -> [Jast.Nostmt]
in
let jast_e e = jast_of_expr env e in
match stmt with

| Ast.Expr(e) -> [Jast.Expr(jast_e e)]

| Ast.Graph(edge_defs) -> List.map jast_of_edge_def edge_defs

| Ast.Block(stmts) -> [Jast.Block(List.fold_left (fun a b -> a @ b) [] (List.map

(jast_of_stmt rettype env) stmts))]
| Ast.Return(e) -> if (not(rettype = get_type_for env e))

then raise(ReturnTypeException("Error: Return type of the function doesn't match with
the return type in \'"AGpp.string_of_expr eA"\'."))

else [Jast.Return(jast_e e)]

| Ast.IfThenElse(e, sl1, s2) ->
if (not(get_type_for env e = "boolean"))
then raise(IfExprException("Error: Expresion inside the if clause must evaluate to a boolean in
\""A Gpp.string_of_expr eA"\'."))
else [Jast.IfThenElse(jast_e e, Jast.Block(jast_s s1), Jast.Block(jast_s s2))]
| Ast.Foreach(q,nl,ft,n2,(o,e),s) ->
if(not(get_type_for env (Ast.Id(n2)) = "node"))
then raise(ForeachNodeException("Error: Identifier after the from/to has to resolve to a node type."))
else if (not(get_type_for env e = "number"))
then raise(ForeachPredException ("Error: Predicate expression: \'"AGpp.string_of_expr eA"\'. doesn't
evaluate to a number inside foreach loop"))
else jast_of_foreach env (g, nl, ft, n2, (o,e), s)
| Ast.While(e,s) ->
(* type checking *)
if (get_type_for env e = "boolean") then
[Jast.While(jast_e e, Jast.Block(jast_s s))]
else
raise(WhileExprException("Error: Expresion inside the while loop has to evaluate to a boolean in
\""AGpp.string_of_expr eA"\"'."))

(* Works on Java types. Java primitives do not need to be instantiated; objects do. *)
let instantiate prefix (id, t) = match t with

| "Node" -> Jast.New(t, prefix A id, [Jast.StringLit(id)])

| "List"™ -> Jast.New(t, prefix A id, []1)

| "GraplLib" -> Jast.New(t, prefix A id, [])

| "Graph" -> Jast.Expr(Jast.Assign(default_graph, Jast.Call(Jast.Id(default_lib), default_createGraph,
1)

| _ -> Jast.Decl(java_type_for_type t, prefix A id)

(* Works on grapl types only *)

let declare_and_instantiate prefix (t, id) = match t with
| "node" -> Jast.NewDecl(java_type_for_type t, prefix A id, [Jast.StringLit(id)])
| "list" -> Jast.NewDecl(java_type_for_type t, prefix A id, [])
| _ -> Jast.Decl(java_type_for_type t, prefix A id)

(* Returns a Jast.method_decl for each function in the grapl file *)
let jast_of_function globals_list env func =
{
jrettype = if func.fname = "main" then main_rettype else java_type_for_type
func.rettype;
jfname = func.fname;
jformals =
if func.fname = "main"
then main_formals
else List.map (fun (t, id) -> (java_type_for_type t, default_prefix A id))
func.formals;
jlocals = List.map (fun (t, id) -> (java_type_for_type t, default_prefix A id))
func.locals;
(* push extra initializations when doing the main *)

jbody =
let env = push_symbols env ((List.map flip func.locals) @ (List.map flip
func.formals))
in
if (func.fname = "main")
then
(List.map (instantiate java_globals_prefix) globals_list) @
(List.map (declare_and_instantiate default_prefix) func.locals) @
([initialize_standard_library]) @
(List.fold_left (fun a b -> a @ b) [] (List.map (jast_of_stmt
func.rettype env) func.body))
else

(List.map (declare_and_instantiate default_prefix) func.locals) @
(List.fold_left (fun a b -> a @ b) [] (List.map (jast_of_stmt
func.rettype env) func.body))
}

(* Where the magic happens *)
let translate vars funcs program_name mode_data =
let ft = (* Put function declarations in a symbol table *)

(List.fold_left (fun funcs fdecl -> FuncMap.add fdecl.fname fdecl funcs)
FuncMap.empty (funcs @ built_in_functions))
in let env = ([], [], ft, libTable_data, mode_data)
in let env = push_symbols env (List.map flip vars) (* returns updated variable symbol table & stack-
pointer list *)
in let jast_of_program env globals_list func_list =

(* Java program is a tuple (imports-list, class-list, default_lib) *)

let globals = (flip_append_list (List.map (fun (t,id) -> (java_type_for_type t, id))
globals_list)) @ (flip_list default_vars)

in

if not(FuncMap.mem "main" (funcTable env))

then raise(MainNotFoundException("Error: main function was not found in the input file"))

else [(program_name, append_keywords_list globals, List.map (jast_of_function globals

env) func_list)]

in jast_of_program env vars funcs

3k 3 3k 3 3k 3k ok 3 3k 3 3k 3 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k ok 3k ok 3k >k 3k >k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k %k 3k >k 3k >k 3k ok 3k >k 3k >k 3k >k 3k >k 3k %k 3k %k 5k 3k 5k %k 5k %k 5k %k 3k %k 5k %k 3k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k 5k %k %k %k k >k
* % % %k %k k %

(* graplc.ml *)

(* @authors Steven Edwards, Ryan Turner, Di Wen *)

(* Runs the parser, scanner, and compiler on an input program.*)

(* Command line flags: *)

(* The following flags may be combined into a single argument in any order, e.g. -aq *)

(* -a : grapl pretty printer output (for debugging purposes)*)

(* -c : compile to class GraplProgram (default setting). User should redirect this output to GraplProgram.java

(* -n myClass : compile to class MyClass. User should redirect this output to MyClass.java. *)

(* -1 : compile the standard library, GraplStdLib. User should redirect this output to GraplStdLib.java. NOTE:
the library *)

(* will not function correctly unless compiled with this setting. *)

(* -q : quiet mode -- suppresses warnings *)

(* -v : verbose mode (default setting) *)

(* Note: some of us still have issues with compiling the Standard Library. This may not work correctly. *)
type action = Ast | Compile | NamedCompile | LibraryCompile

let default_program_name = "GraplProgram"

let standard_library_name = "GraplStdLib"

let default_imports = ["import lib.*"]

let std_lib_imports = ["package 1ib"]

let std_lib_init_string = "void initialize(Graph g, GraplLib 1) \n{\n graph = g; \n library = 1; \n}\n"

let _ =
if Array.length Sys.argv > 1 then let flags = Sys.argv.(1) in
let mode =
if String.contains flags 'q' then Translate.Quiet else
if String.contains flags 'v' then Translate.Verbose else Translate.Verbose
and action =
if String.contains flags 'a' then Ast else
if String.contains flags 'c' then Compile else
if String.contains flags 'n' then NamedCompile else
if String.contains flags 'L’ then LibraryCompile else Compile
in
let lexbuf = Lexing.from_channel stdin in
let (vars, funcs) = Parser.program Scanner.token lexbuf in

match action with

(* Grapl pretty printer -- for debugging purposes *)
| Ast -> let listing = Gpp.string_of_program (vars, funcs)
in print_string listing

(* Normal compile with default output name. User must redirect output to GraplProgram.java. *)
| Compile -> let listing = Jpp.string_of_program (default_imports, (Translate.translate vars funcs

default_program_name mode), "")
in print_string listing

(* Compile with named output. User must redirect output to a Java file with same name as the argument.
*)

| NamedCompile -> let listing = Jpp.string_of_program (default_imports, (Translate.translate vars funcs

(Sys.argv.(2))) mode, "")
in print_string listing

(* Library compile. Incoporates a dirty little hack that allows global params to be passed to the
standard library class. *)
| LibraryCompile ->
let listing = Jpp.string_of_program (std_lib_imports, (Translate.translate vars funcs
standard_library_name mode), std_lib_init_string)
in print_string listing

* NOTE: not all tested.

/** visitAl1lFrom(node n)
/* Visits all ancestors of a node
/* @args node n
/* @return void
/**/
void visitAllFrom(node n)
{
forkEach c from n
{
visit c;
visitAllFrom(c);
ks
ks

/** numChildren(node n)

/* Counts the immediate children of a node
/* @args node n

/* @return number

/**/
number numChildren(node n)
{

number x;

X = 0;

forkEach c from n

{

X++;

}

return Xx;

}

/** numAncestors(node n)
/* Counts the immediate children of a node
/* @args node n
/* @return number count
/**/
number numAncestors(node n)
{
number count;
count = 0;
unvisitAllQ);

return numAncestorsHelper(n,count);

}

number numAncestorsHelper(node n, number x)
{

visit n;

forEach unvisited c from n

{

return x + numAncestorsHelper(c, x);

}

return 0;

}

/** reverse(list 1)
/* Returns a reversed list
/* @args list old_list
/* @return list new_list
/**/
list reverse(list old_list)
{

list new_list;

number length;

new_list = [];

length = length(old_list);

while (length > 1)

{
head(old_list) :: new_list;
old_list = tail(old_list);
length = length - 1;

}

new_list = head(old_list) :: new_list;
return new_list;

}

/** visitAllFrom(node start)

/* wvisits all nodes reachable from n
/* @args node start

/* @return void

/**/

void visitAllFrom(nhode start)

{

visit start;

forEach unvisited x from start
{
visitAllFrom(x);
}
}

/** unvisitAllFrom(node start)

/* unvisits all nodes reachable from n
/* @args node start

/* @return void

/**/

void visitAllFrom(nhode start)

{

unvisit start;

forEach visited x from start
{
unvisitAllFrom(x);
ks
ks

/** dfs(node n)
/* Finds the shortest path from a given node to another
/* @args node start, node end
/*¥ @return list path
/¥*/
list dfs (node start, node finish) {
list 1;

unvisitAllQ);
return dfs_helper(start, finish,1);
}

list dfs_helper(node start, node finish, list 1)
{

visit start;

if (start != finish) then

{
forEach unvisited n from start
{
n::1;
if(n!'=finish)then{
dfs_helper(n, finish,1);
ks
else
{
return 1;
ks
ks
ks
else
{
ks
return 1;

}

void main() {} /* dummy function to avoid compiler error */

9 Appendix B —Java Backend Classes

/*
* To change this template, choose Tools | Templates
* and open the template in the editor.

*/

package lib;

*/

public interface GraplFacade {
Graph createEmptyGraph();
Node head(List 1);
List tail(List 1);
List buildList(Node... n);
void print(List 1);
void print(Node e);
void print(Graph p);
void print(boolean b);
void print(double 1i);
void print(String s);
int lengthList(List 1);

/**
%k %k %k %k %k k

* To change this template, choose Tools | Templates

* and open the template in the editor.

*/

package lib;

import java.util.Arraylist;
import java.util.HashSet;
import java.util.Iterator;

/**
%
* @author _yy
*/
public class Graph {

private ArraylList<Node> nodes = new ArraylList<Node>();
private Arraylist<Edge> edges = new Arraylist<Edge>(Q);

public Graph(String name) {
this.addNode(new Node(nhame));
}

public Graph() {
}

public Graph(String[] args) {
System.out.println(args);
}

//add a single Node into the graph
public void addNode(Node e) {
boolean nel = false;
Iterator it = nodes.iterator();
while (it.hasNext()) {
Node n = (Node) it.next();
if (n.getName().equals(e.getName())) {
// System.out.println("The Node: " + e.getName() + " 1is already existed in the
Graph.");
nel = true;
break;

}
}
if (nel == false) {
nodes.add(e);
}
}

public void addNode(String s) {
boolean nel = false;
Iterator it = nodes.iterator();
while (it.hasNext()) {
Node n = (Node) it.next();
if (n.getName().equals(s)) {
nel = true;
break;
}
}
if (nel == false) {
nodes.add(new Node(s));
}
}

public void visitAl1(Q) {
Iterator it = nodes.iterator();
while (it.hasNext()) {
Node n = (Node) it.next();
n.visit(Q);

}

public void unvisitAllQ) {
Iterator it = nodes.iterator();
while (it.hasNext()) {
Node n = (Node) it.next();
n.unvisit(Q);

}

public void addEdge(String nl, String n2, double weight) {
addNode(nl);
addNode(n2);
//add new edge
Edge e = new Edge(nl, n2, weight);
edges.add(e);
}

public void addBEdge(String nl, String n2, double weight) {
//add new edge
addNode(nl);
addNode(n2);
Edge e = new Edge(nl, n2, weight);
Edge el = new Edge(n2, nl, weight);
edges.add(e);
edges.add(el);
}

public Node getNode(String e) {
//check if the Node is in the graph
Iterator it = nodes.iterator();
while (it.hasNext()) {

Node n = (Node) it.next(Q);
if (e.equals(n.getName())) {

return n;
}

}

return null;
}
public ArraylList<Node> removeDups(ArraylList<Node> 1)
{

HashSet<Node> temp = new HashSet<Node>();

temp.addA11(1);

l.clear(Q);

1.addAl1(temp);

return 1;
}

public ArraylList<Node> getNodesFromWith(String name, ArraylList<Node> path, String qualifier,
String predicate) {
return removeDups(getNodesFromWith(getNode(name), path, qualifier, predicate));

}

public ArraylList<Node> getNodesFromWith(Node e, ArraylList<Node> path, String qualifier,
String predicate) {

boolean visited = false;
if (path == null) {
path = new ArraylList<Node>();
}
if (qualifier.tolLowerCase().equals("unvisited™)) {
visited = false;
} else if (qualifier.toLowerCase().equals("visited")) {
visited = true;
} else {
System.err.println("qualifier error.");
}
Iterator it = edges.iterator();
if (predicate == null) {
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName())
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}
}
return path;
} else if (predicate.contains("==")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() == inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}

} else if (predicate.contains("!=")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {

Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() != inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}
}
} else if (predicate.contains("<=")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() <= inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}
}
} else if (predicate.contains(">=")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() >= inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}
}
} else if (predicate.contains("<")) {
String num = predicate.substring(l);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() < inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));
}
}
} else if (predicate.contains(">")) {
String num = predicate.substring(l);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getStartNode().equals(e.getName()) && ed.getEdgeweight() > inum
&& getNode(ed.getEndNode()).isVisit() == visited) {
path.add(getNode(ed.getEndNode()));

3
}

return path;

}

public ArraylList<Node> getNodesToWith(String name, ArraylList<Node> path, String qualifier,
String predicate) {
return removeDups(getNodesToWith(getNode(name), path, qualifier, predicate));
}

public ArraylList<Node> getNodesToWith(Node e, ArraylList<Node> path, String qualifier, String
predicate, double weight) {
if (predicate.equals("")) {
return getNodesToWith(e, path, qualifier, null);
} else {

return getNodesToWith(e, path, qualifier, predicate + weight);

}

public ArraylList<Node> getNodesFromWith(Node e, ArraylList<Node> path, String qualifier,
String predicate, double weight) {
if (predicate.equals("")) {
return getNodesFromWith(e, path, qualifier, null);
} else {
return getNodesFromWith(e, path, qualifier, predicate + weight);
}
}

public ArraylList<Node> getNodesToWith(Node e, ArraylList<Node> path, String qualifier, String
predicate) {
boolean visited = false;
Iterator it = edges.iterator();

if (path == null) {
path = new ArraylList<Node>();

}

if (qualifier.tolLowerCase().equals("unvisited™)) {
visited = false;

} else if (qualifier.toLowerCase().equals("visited")) {
visited = true;

} else {
System.err.println("qualifier error.");

}

if (predicate == null) {
while (it.hasNext()) {

Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName())
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}
}
return path;
} else if (predicate.contains("==")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() == inum
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}
}
} else if (predicate.contains("<=")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() <= inum
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}
}

} else if (predicate.contains(">=")) {

String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() >= inum
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}
}
} else if (predicate.contains("!=")) {
String num = predicate.substring(2);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() != inum
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}
}
} else if (predicate.contains("<")) {
String num = predicate.substring(l);
double inum = Double.parseDouble(num);
while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() < inum
&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));
}

} else if (predicate.contains(">")) {

String num = predicate.substring(l);

double inum = Double.parseDouble(num);

while (it.hasNext()) {
Edge ed = (Edge) it.next();
if (ed.getEndNode().equals(e.getName()) && ed.getEdgeweight() > inum

&& getNode(ed.getStartNode()).isVisit() == visited) {
path.add(getNode(ed.getStartNode()));

3
}

return path;

}

public int numNodes() {
return nodes.size();

}

public int numEdges() {
return edges.size();

}

public void infoGraph() {
System.out.print("Graph: ");
System.out.println("node: "

+ numNodes() + ", edge " + numEdges() + ".");

}

public void nameNodes() {
Iterator it = nodes.iterator();
System.out.println("This graph contains following Nodes:");
while (it.hasNext()) {

Node n = (Node) it.next();
System.out.println(n.getName() + " ");

}

public boolean Siblings(Node e) {
boolean el = false;
boolean e2 = false;
Iterator it = nodes.iterator();
while (it.hasNext()) {
Node n = (Node) it.next();
if (e.getName().equals(n.getName())) {
el = true;
}
}
if (el == false) {
System.out.println("Node
} else {
Iterator it2 = edges.iterator();
while (it2.hasNext()) {
Edge ed = (Edge) it2.next();
if (ed.getStartNode().equals(e.getName())) {
e2 = true;
System.out.println("Node: + e.getName() +
ed.getEndNode() + " with weight " + ed.getEdgeweight());
}

+ e.getName() + " is not found in the graph.");

connected to Node " +

}

}

if (e2 == false) {
System.out.println("Node:
return false;

} else if (e2 == true) {
return true;

+ e.getName() + " does not connect to any other node.");

}
return false;
}
// public void add(Node nl, Node n2, String ed) {
// String sub = ed.substring(@, 2);
// double weight = Double.parseDouble(ed.substring(2));
/777 int weight = Integer.parselnt(ed.substring(2));
// if (sub.equals("<>")) {
// addBEdge(nl, n2, weight);
// } else if (sub.equals("<<")) {
// addEdge(nl, n2, weight);
// } else if (sub.equals(">>")) {
// addEdge(n2, nl, weight);
// } else {
// System.out.println("Error initialize the graph");
// }
// }

}

/**
%k %k %k %k %k k

* To change this template, choose Tools | Templates

* and open the template in the editor.

*/

package lib;

import java.util.Arraylist;

/**

*

* _yy

*/

public class List extends ArraylList<Node>{

}

/**
3k %k %k %k %k %k

package lib;

/**

*
* -yy

*/

public class Edge {

private double edgeweight = 0;
private String startNode = null;
private String endNode = null;

public Edge(String nl, String n2, double i) {
this.startNode = nil;
this.endNode = n2;
this.edgeweight = 1i;

public double getEdgeweight() {
return edgeweight;

}

public void setEdgeweight(int edgeweight) {
this.edgeweight = edgeweight;
}

public String getEndNode() {
return endNode;

}

public void setEndNode(String endNode) {
this.endNode = endNode;
}

public String getStartNode() {
return startNode;

}

public void setStartNode(String startNode) {
this.startNode = startNode;

}

/**
%k %k %k %k %k k

* To change this template, choose Tools | Templates

* and open the template in the editor.

*/
package lib;

/**

*

* @author _yy

*/

public class Node {

private String name;
private boolean visit = false;

public Node() {
}

public Node(String s) {
this.name = s;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public boolean isVisit() {
return visit;

}

public void visit() {
this.visit = true;

}

public void unvisit(Q) {
this.visit = false;

}

/**
%k %k %k %k %k k

* To change this template, choose Tools | Templates

* and open the template in the editor.

*/

package 1lib;

import java.util.Arraylist;

import java.util.Arrays;

import java.util.Iterator;

/**

*
*

*/
public class GraplLib implements GraplFacade {

-yy

public Graph createEmptyGraph() {
return (new Graph());
}

public void print(List 1) {
Iterator it = 1l.iterator();
System.out.print("list: ");
while (it.hasNext()) {
Node n = (Node) it.next();
System.out.print(n.getName() + " ");
}
System.out.println();
}

public void print(Node e) {
if Ce.isVisit()) {
System.out.println("node

}
else
{
System.out.println("node " + e.getName() +
}

}

public List buildList(Node... n) {
List 1 = new List(Q);
1.addA11(Arrays.asList(n));
return 1;

}

public void print(Graph p) {
p.infoGraphQ);
}

public int lengthList(List 1) {
return 1l.size();

}

public void print(boolean b) {
System.out.println(b);
}

public void print(double i) {
System.out.println(i);
}

public void print(String s) {
System.out.println(s);
}

public Node head(List 1) {
return (Node) 1.get(@);
}

+ e.getName() +

: visited.");

: not visited.");

public List tail(List 1) {
Object temp = 1.get(0);
1.remove(temp);
return 1;

10 Appendix C — Project Log

10.1.1.1 Today
3 hours ago

r263 (a little shell script to make and compile a file) committed by rct189 - a little shell script to make and compile a
file

3 hours ago
r262 ([No log message]) committed by rct189 - [No log message]
3 hours ago
r261 ([No log message]) committed by rct189 - [No log message]
3 hours ago
r260 (upgrades to graplc) committed by rct189 - upgrades to graplc
21 hours ago
r259 (fixed pretty printer foreach case.) committed by andresuribe87 - fixed pretty printer foreach case.
21 hours ago
r258 ([No log message]) committed by rct189 - [No log message]
22 hours ago
r257 (renaming of files) committed by andresuribe87 - renaming of files
22 hours ago
r2

(o

6 ([No log message]) committed by srci114 - [No log message]

22 hours ago
r255 ([No log message]) committed by srct114 - [No log message]
22 hours ago

r254 (Compiler with semantic checking added.) committed by andresuribe87 - Compiler with semantic checking
added.

22 hours ago

r253 ([No log message]) committed by srct114 - [No log message]
22 hours ago

r252 (nomain submitted for testing.) committed by andresuribe87 - nomain submitted for testing.
22 hours ago

r251 ([No log message]) committed by gingfeng...@gmail.com - [No log message]

22 hours ago

r250 ([No log message]) committed by gingfeng...@gmail.com - [No log message]

22 hours ago

r249 ([No log message]) committed by gingfeng...@gmail.com

[No log message]

22 hours ago

r248 ([No log message]) committed by gingfeng...@agmail.com - [No log message]

22 hours ago

r247 ([No log message]) committed by gingfeng...@gmail.com

[No log message]

22 hours ago

r246 ([No log message]) committed by gingfeng...@gmail.com

[No log message]

22 hours ago

r245 ([No log message]) committed by rct189 - [No log message]
22 hours ago

r244 ([No log message]) committed by srct114 - [No log message]
22 hours ago

r243 ([No log message]) committed by rct189 - [No log message]
23 hours ago

r242 ([No log message]) committed by rct189 - [No log message]
23 hours ago

r241 ([No log message]) committed by rct189 - [No log message]

10.1.1.2 Yesterday
32 hours ago

r240 (std lib now pasted in as string in all grapl programs) committed by rct189 - std lib now pasted in as string in
all grapl programs

33 hours ago
r239 (some crazy std lib stuff) committed by rct189 - some crazy std lib stuff

33 hours ago

r238 ([No log message]) committed by gingfeng...@gmail.com [No log message]

33 hours ago

r237 ([No log message]) committed by gingfeng...@gmail.com [No log message]

34 hours ago

r236 ([No log message]) committed by gingfeng...@agmail.com - [No log message]

34 hours ago
r2

W

5 ([No log message]) committed by gingfeng...@gmail.com [No log message]

34 hours ago

r234 ([No log message]) committed by gingfeng...@gmail.com [No log message]

34 hours ago

r233 (new std lib functions) committed by rct189 - new std lib functions

34 hours ago

r232 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
34 hours ago

r231 ([No log message]) committed by rct189 - [No log message]

34 hours ago

r230 ([No log message]) committed by gingfeng...@agmail.com - [No log message]

35 hours ago
r229 ([No log message]) committed by rct189 - [No log message]
35 hours ago

r228 ([No log message]) committed by rct189

[No log message]
35 hours ago

r227 ([No log message]) committed by rct189

[No log message]
35 hours ago

r226 ([No log message]) committed by rct189

[No log message]
36 hours ago

r225 (fixed variable declaration) committed by rct189 - fixed variable declaration
36 hours ago

r224 ([No log message]) committed by rct189 - [No log message]
36 hours ago

r223 ([No log message]) committed by gingfeng...@gmail.com - [No log message]

37 hours ago

r222 ([No log message]) committed by rct189 - [No log message]
37 hours ago

r221 ([No log message]) committed by rct189 - [No log message]
37 hours ago

r220 ([No log message]) committed by rct189 - [No log message]
37 hours ago

r219 ([No log message]) committed by rct189 - [No log message]
39 hours ago

r218 ([No log message]) committed by rct189 - [No log message]
39 hours ago

r217 ([No log message]) committed by rct189 - [No log message]
40 hours ago

r216 ([No log message]) committed by rct189 - [No log message]
40 hours ago

r215 ([No log message]) committed by rct189 - [No log message]

40 hours ago

r214 ([No log message]) committed by rct189 - [No log message]

10.1.1.3 Yesterday
42 hours ago
r213 ([No log message]) committed by rct189 - [No log message]

42 hours ago

r212 ([No log message]) committed by rct189 - [No log message]
42 hours ago
r211 ([No log message]) committed by rct189 - [No log message]
42 hours ago
r210 (string args for getfromwith) committed by rct189 - string args for getfromwith
42 hours ago
r209 (built in functions) committed by rct189 - built in functions
43 hours ago
r208 (dfs fixed) committed by andresuribe87 - dfs fixed
43 hours ago
r207 ([No log message]) committed by rct189 - [No log message]
43 hours ago
r206 (dfs test added) committed by andresuribe87 - dfs test added
43 hours ago
r205 ([No log message]) committed by rct189 - [No log message]
43 hours ago
r204 (Added two std lib functions.) committed by andresuribe87 - Added two std lib functions.
44 hours ago

r2

o

3 ([No log message]) committed by chenlili0603 - [No log message]

44 hours ago

r202 ([No log message]) committed by chenlili0603 - [No log message]
45 hours ago

r2

o

1 (added booleans and while loop) committed by rct189 - added booleans and while loop

45 hours ago
r200 ([No log message]) committed by srct114 - [No log message]
45 hours ago
r199 ([No log message]) committed by srct114 - [No log message]
45 hours ago
r198 ([No log message]) committed by srct114 - [No log message]
46 hours ago
r197 (final lib 16-04) committed by gingfeng...@gmail.com - final lib 16-04

46 hours ago
r196 ([No log message]) committed by srct114 - [No log message]
46 hours ago

r195 ([No log message]) committed by gingfeng...@gmail.com - [No log message]

46 hours ago
r194 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
10.1.1.4 Last 7 days

Dec 20, 2010

r193 ([No log message]) committed by gingfeng...@agmail.com - [No log message]

Dec 20, 2010
r192 ([No log message]) committed by rct189

[No log message]

Dec 20, 2010

r191 ([No log message]) committed by rct189 - [No log message]
Dec 20, 2010

r190 ([No log message]) committed by rct189 - [No log message]
Dec 20, 2010

r189 ([No log message]) committed by rct189 - [No log message]
Dec 20, 2010

r188 (addEdge now takes node as param instead of string) committed by rct189 - addEdge now takes node as

param instead of string
Dec 20, 2010

r187 ([No log message]) committed by chenlili0603 - [No log message]
Dec 20, 2010

r186 ([No log message]) committed by chenlili0603 - [No log message]
Dec 20, 2010

r185 ([No log message]) committed by chenlili0603 - [No log message]
Dec 20, 2010

r184 ([No log message]) committed by chenlili0603 - [No log message]
Dec 20, 2010

r183 ([No log message]) committed by chenlili0603 - [No log message]
Dec 19, 2010

r182 (continued work on look_ahead) committed by rct189 - continued work on look_ahead
Dec 19, 2010

r181 ([No log message]) committed by srct114 - [No log message]

Dec 19, 2010

r180 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r179 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r178 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r177 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r176 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r175 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r174 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r173 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r172 ([No log message]) committed by srct114
Dec 19, 2010

r171 ([No log message]) committed by srct114
Dec 19, 2010

r170 ([No log message]) committed by srct114 - [No log message]
Dec 19, 2010

r169 (latest) committed by gingfeng...@gmail.com - latest
Dec 19, 2010

r168 (latest) committed by gingfeng...@gmail.com - latest
Dec 19, 2010

r167 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r166 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r165 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r164 (latest java files) committed by gingfeng...@gmail.com - latest java files

10.1.1.5 Last 7 days
Dec 19, 2010

r163 (Have updated fiendishly complex look_ahead_kludge. Truly an ...) committed by rct189 - Have updated
fiendishly complex look_ahead_kludge. Truly an appalling design.

Dec 19, 2010

r162 (added mind-blowing but extremely ugly look-ahead function to...) committed by rct189 - added mind-blowing
but extremely ugly look-ahead function to extract all edgedefs from Graph statements ahead of time. Still doesn't fix
the problem.

Dec 19, 2010

r161 ([No log message]) committed by rct189 - [No log message]
Dec 19, 2010

r160 (fixed global declaration) committed by rct189 - fixed global declaration
Dec 19, 2010

r159 ([No log message]) committed by rct189 - [No log message]
Dec 19, 2010

r158 (testShell) committed by srct114 - testShell
Dec 19, 2010

r157 (Fixed various errors.) committed by andresuribe87 - Fixed various errors.
Dec 19, 2010

r156 (mucking about with java) committed by rct189 - mucking about with java
Dec 19, 2010

[No log message]

[No log message]

r155 (Added java foreach wrapper to accept separate operator and p...) committed by rct189 - Added java foreach
wrapper to accept separate operator and predicate (expression) args

Dec 19, 2010

r154 ([No log message]) committed by rct189 - [No log message]
Dec 19, 2010

r153 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010

[No log message]

r152 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r151 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r150 ([No log message]) committed by gingfeng...@agmail.com - [No log message]
Dec 19, 2010

r149 ([No log message]) committed by gingfeng...@agmail.com - [No log message]
Dec 19, 2010

r148 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r147 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r146 (test) committed by gingfeng...@gmail.com - test
Dec 19, 2010

r145 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010

[No log message]

r144 (Share project "ocamIBackup" into "https:/grapl2010.googleco...) committed by aingfeng...@gmail.com -
Share project "ocamIBackup" into "https://grapl2010.googlecode.com/svn"

Dec 19, 2010

r143 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r142 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r141 ([No log message]) committed by gingfeng...@gmail.com - [No log message]

Dec 19, 2010

r140 (Share project "ocamlBackup" into "https://grapl2010.googleco...) committed by gingfeng...@gmail.com -
Share project "ocamIBackup" into "https://grapl2010.googlecode.com/svn"

Dec 19, 2010

r139 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r138 ([No log message]) committed by gingfeng...@agmail.com - [No log message]
Dec 19, 2010

r137 ([No log message]) committed by gingfeng...@gmail.com - [No log message]
Dec 19, 2010

r136 ([No log message]) committed by gingfeng...

@gmail.com

Dec 19, 2010
r135 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r134 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r133 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r132 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r131 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r130 ([No log message]) committed by gingfeng...@gmail.com
Dec 19, 2010
r129 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r128 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r127 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r126 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r125 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r124 ([No log message]) committed by qingfeng...@gmail.com
Dec 19, 2010
r123 (Added annotations) committed by andresuribe87 - Added annotations
Dec 19, 2010
r122 (Added global node.) committed by andresuribe87 - Added global node.
Dec 19, 2010
r121 (Added node declaration.) committed by andresuribe87 - Added node declaration.

Dec 19, 2010

r120 (Exceptions may need some work.) committed by andresuribe87 -

Dec 19, 2010

r119 (Added a few exceptions.) committed by andresuribe87 - Added a few exceptions.

Dec 19, 2010

r118 (working with exceptions) committed by andresuribe87 - working with exceptions

Dec 19, 2010

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

[No log message]

r117 (Added main cases.) committed by andresuribe87 - Added main cases.

Dec 19, 2010

Exceptions may need some work.

r116 (Fixed prefixes. Added annotations.) committed by andresuribe87 - Fixed prefixes. Added annotations.
Dec 19, 2010

r115 (Added string literal to jast) committed by andresuribe87 - Added string literal to jast
Dec 19, 2010

r114 (Fixed edgedefs) committed by andresuribe87 - Fixed edgedefs

10.1.1.6 Last 7 days
Dec 19, 2010

r113 (Added printer for global variables.) committed by andresuribe87 - Added printer for global variables.
Dec 19, 2010

r112 (backup) committed by gingfeng...@gmail.com - backup
Dec 18, 2010

r111 (up-to-date. Refixed a bunch of stuff we already fixed. every...) committed by rct189 - up-to-date. Refixed a
bunch of stuff we already fixed. everything working, but compile has some issues.

Dec 18, 2010

r110 ([No log message]) committed by srct114 - [No log message]
Dec 18, 2010

r109 (Cleaning files) committed by rct189 - Cleaning files
Dec 18, 2010

r108 (A fixed jast) committed by rct189 - A fixed jast
Dec 18, 2010

r107 (A compilable compiler.) committed by rct189 - A compilable compiler.
Dec 18, 2010

r106 (Makefile linking fixed) committed by rct189 - Makefile linking fixed
Dec 18, 2010

r105 (Trying to figure out) committed by rct189 - Trying to figure out
Dec 18, 2010

r104 ([No log message]) committed by srct114 - [No log message]
Dec 18, 2010

r103 ([No log message]) committed by srct114 - [No log message]

Dec 18, 2010

r102 ([No log message]) committed by srct114 - [No log message]
Dec 18, 2010

r101 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010

r100 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010

r99 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010

r98 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010

r97 () committed by srct114 -
Dec 18, 2010
r96 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010
r95 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010
r94 (check_expr added) committed by andresuribe87 - check_expr added
Dec 18, 2010
r93 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010
r92 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010
r91 (latest) committed by aingfeng...@gmail.com - latest
Dec 18, 2010
r90 (latest) committed by aingfeng...@gmail.com - latest
Dec 18, 2010
r89 ([No log message]) committed by chenlili0603 - [No log message]
Dec 18, 2010
r88 (dammit dammit dammit) committed by rct189 - dammit dammit dammit
Dec 18, 2010
r87 ([No log message]) committed by srci114 - [No log message]
Dec 18, 2010
r86 (latest) committed by aingfeng...@gmail.com - latest
Dec 18, 2010
r85 (latest) committed by aingfeng...@gmail.com - latest
Dec 18, 2010
r84 (perfect. everything working. go home.) committed by rct189 - perfect. everything working. go home.
Dec 18, 2010
r83 ([No log message]) committed by rct189 - [No log message]
Dec 18, 2010

r82 (working out the kinks in compile.ml. Still needs a lot of wo...) committed by rct189 - working out the kinks in
compile.ml. Still needs a lot of work.

Dec 17, 2010

r81 ([No log message]) committed by srci114 - [No log message]
Dec 17, 2010

r80 ([No log message]) committed by srci114 - [No log message]
Dec 17, 2010

r79 (First version of compile. Set return as a stmt. Fixed java e...) committed by rct189 - First version of compile.
Set return as a stmt. Fixed java example.

Dec 17, 2010

r78 (Return added.) committed by andresuribe87 - Return added.
Dec 17, 2010

r77 (various stuffs) committed by rct189 - various stuffs
Dec 17, 2010

r76 (Added return.) committed by andresuribe87 - Added return.
Dec 17, 2010

r75 (Return added.) committed by andresuribe87 - Return added.
Dec 17, 2010

r74 (syntax fixed) committed by andresuribe87 - syntax fixed
Dec 17, 2010

r73 (Graph order fixed.) committed by andresuribe87 - Graph order fixed.
Dec 17, 2010

r72 (parser shenanigans) committed by rct189 - parser shenanigans
Dec 17, 2010

r71 (Graph fixed.) committed by andresuribe87 - Graph fixed.
Dec 17, 2010

r70 (tests only) committed by rct189 - tests only
Dec 17, 2010

r69 (edits to convert.ml) committed by rct189 - edits to convert.ml
Dec 16, 2010

r68 (have a little problem implementing it, working on it.) committed by gingfeng...@gmail.com - have a little
problem implementing it, working on it.

Dec 16, 2010

r67 (started work on jast.ml (java-ast), convert.ml) committed by rct189 - started work on jast.ml (java-ast),
convert.ml

10.1.1.7 Last 30 days
Dec 11, 2010

r66 (an extremely preliminary stab at the java-ast builder. Locat...) committed by rct189 - an extremely preliminary
stab at the java-ast builder. Located at bottom of ast file.

Dec 11, 2010

r65 (Initial commit) committed by andresuribe87 - Initial commit
Dec 11, 2010

r64 (Initial commit) committed by andresuribe87 - Initial commit

10.1.1.8 Last 30 days
Dec 10, 2010

r63 (latest) committed by qingfeng...@gmail.com
latest

Dec 10, 2010

r62 (latest) committed by qingfeng...@gmail.com
latest

Dec 10, 2010

r61 (latest) committed by qingfeng...@gmail.com
latest

Dec 10, 2010

r60 (latest) committed by gingfeng...@gmail.com
latest

Dec 10, 2010

r59 (test getNodeFrom function) committed by gingfeng...@gmail.com
test getNodeFrom function

Dec 10, 2010

r58 (test getNodeFrom function) committed by gingfeng...@gmail.com
test getNodeFrom function

Dec 10, 2010

r57 (add the way to create bi-direct edges) committed by gingfeng...@gmail.com
add the way to create bi-direct edges

Dec 10, 2010

56 (test it) committed by qingfeng...@gmail.com
test it

Dec 10, 2010

55 (test it) committed by qingfeng...@gmail.com
test it

Dec 10, 2010

r54 (tested new java files and libs.) committed by gingfeng...@gmail.com
tested new java files and libs.

Dec 10, 2010

r53 (tested new java files and libs.) committed by gingfeng...@gmail.com
tested new java files and libs.

Dec 10, 2010

r52 (make clean) committed by rct189
make clean

Dec 10, 2010

r51 (Misc updates. Renamed test extensions to .gpl and edited tes...) committed by rct189
Misc updates. Renamed test extensions to .gpl and edited test files.

Dec 09, 2010

r50 (almost Hello World!) committed by rct189
almost Hello World!

Dec 09, 2010

r49 ([No log message]) committed by srct114
[No log message]

Dec 08, 2010

r48 ([No log message]) committed by srct114
[No log message]

Dec 08, 2010

r47 (Structured project with folders. Added sample java output. A...) committed by andresuribe87
Structured project with folders. Added sample java output. Added some GRAPL simple test cases.

Dec 07, 2010

r46 (stmt/stmts bug fixed (per Prof. Edwards)) committed by rct189
stmt/stmts bug fixed (per Prof. Edwards)

Dec 06, 2010

r45 ([No log message]) committed by rct189
[No log message]

Dec 06, 2010

Test Cases.rtf (Test Cases) file uploaded by srct114
Labels: Test Cases

Dec 06, 2010

SomeTestCases Wiki page edited by srct114
Revision r44 Edited wiki page SomeTestCases through web user interface.

Dec 06, 2010

SomeTestCases Wiki page added by srct114
Revision r43 Created wiki page through web user interface.

Dec 06, 2010

r42 ([No log message]) committed by rct189
[No log message]

Dec 02, 2010

r41 (List included) committed by andresuribe87
List included

Dec 02, 2010

r40 ([No log message]) committed by chenlili0603
[No log message]

Dec 02, 2010

r39 ([No log message]) committed by chenlili0603
[No log message]

Dec 02, 2010

r38 ([No log message]) committed by rct189
[No log message]

Dec 02, 2010

r37 (interface) committed by qingfeng...@gmail.com
interface

Dec 02, 2010

r36 (lib files) committed by qingfeng...@gmail.com
lib files

Dec 02, 2010

r35 ([No log message]) committed by chenlili0603
[No log message]

Dec 01, 2010
GraplLib.java (Grapl java lib) file uploaded by gingfeng...@gmail.com

Dec 01, 2010
GraplLib.java (Grapl Java Lib) file uploaded by gingfeng...@gmail.com

10.1.1.9 Earlier this year
Nov 22, 2010

r34 (working parser (no conflicts)) committed by rct189
working parser (no conflicts)

Nov 18, 2010

r33 (Andres wants me to write a comment.) committed by rct189
Andres wants me to write a comment.

Nov 18, 2010

r32 ([No log message]) committed by rct189
[No log message]

Nov 17, 2010

r31 (ast, scanner and parser without being built.) committed by andresuribe87
ast, scanner and parser without being built.

Nov 15, 2010

r30 (parser and scanner) committed by andresuribe87
parser and scanner

Nov 14, 2010

r29 ([No log message]) committed by chenlili0603
[No log message]

Nov 12, 2010

r28 ([No log message]) committed by chenlili0603
[No log message]

Nov 12, 2010

Schedule Wiki page edited by rct189
Revision r27 Edited wiki page Schedule through web user interface.

Nov 11, 2010

r26 ([No log message]) committed by chenlili0603
[No log message]

Nov 10, 2010

Home (Wiki homepage of the GRAPL project) Wiki page edited by rct189
Revision r25 Edited wiki page Home through web user interface.

Nov 10, 2010

Home (Wiki homepage of the GRAPL project) Wiki page edited by rct189
Revision r24 Edited wiki page Home through web user interface.

Nov 10, 2010
GRAPL notes.pdf (Handwritten GRAPL notes) file uploaded by rct189
Nov 10, 2010

r23 ([No log message]) committed by chenlili0603
[No log message]

Nov 09, 2010
IDE Instruction for Project GRAPL.pdf (IDE INSTRUCTION) file uploaded by gingfeng...@gmail.com

Nov 05, 2010

PageName Wiki page deleted by rct189
Revision r22 Deleting wiki page PageName.

Nov 05, 2010

PageName (One-sentence summary of this page.) Wiki page edited by rct189
Revision r21 Edited wiki page PageName through web user interface.

Nov 05, 2010

PageName (One-sentence summary of this page.) Wiki page added by rct189
Revision r20 Created wiki page through web user interface.

Nov 05, 2010

Schedule Wiki page edited by rct189
Revision r19 Edited wiki page Schedule through web user interface

