GRAPL: GRAph Processing
Language

GRAPL TEAM
Ryan Turner, Andres Uribe
Di Wen, Lili Chen, Yi Yang

Overview

» GRAPL is a simple way to
create and navigate though
directed weighted graphs

» Target: people who know a
little about programming
language, but do not want
to mess up with the
pointers, references,
complicated class
structures.

3.0

Node

Uni-directional edge

Bi-directional edge

Edge with weight

Graph Traversal

Visit f£f;

foreach unvisited n to i { }
/* nodes i j a */

forEach unvisited n from a
with (<4) { }
/* nodes a b c */

forEach unvisited n to m with
<=8 { }
/* nodes a b c */

GRAPL Types
Type |Bxample

node node nl;
nl = start node;

number number x;
X = 1.4;
boolean boolean isVisited;

isVisited = false;

list list path list;
path list = [a, b, c];
path 1list = d :: path list;

void void main() { }

GRAPL Control Statements
Tpe lbampe

graph creation

(implicit node
declaration)

while loop

if - then - else

forEach loop

graph [a >> b <>3 ¢, b > d, a <> e];

while (1 < length(path 1list)) { }

if (x > 5) then
visit n;
else
visit p;
forEach unvisited p from start
{ /* iterate over children */

}

GRAPL Key Features

Graph creation syntax is as simple and compact as
possible
Unlike other types, nodes do not

/* sample graph statements */ have to be declared in advance;

graph [n3 <<1 nl]; they are created implicitly in the

graph [n2 <>5 n3 >>4 n6, n6 >>2 n4]; graph statement. There is one

graph [n2 >>3 n5]; global graph per GRAPL
program.

ForEach loop makes typical graph navigation tasks easy

* *

VA f?rE,aCh / , forEach statement has optional

forEach unvisited n from start with (< 4.0)
qualifiers (visited, unvisited) and

{ . !
path list = n :: path list; edge-weight predicate (> 4.0)

}

Development Process & Tools

» Parser/Scanner development, output routed to
grapl-printer (intermediate product)

» Compiler and java-printer development
» Testing

» Tools:
o Eclipse with OcalDE plug-in for Ocaml editing
» Command-line with Makefile for Ocaml compilation
» Netbeans for Java
o Google code SVN repository

Implementation

scanning, parsing, syntactic checking import lib.*;

class GraplProgram

/* GRAPL */ { ArrayList<Node> nodes;
void main() GRAPL-AST ArrayList<Edge> edges; ...}
{ 7 Node n1 = new Node("n1");
node n1; Node n2 = new Node("n2");
node n2; Compiler
node n3; translation and semantic checking Node n6 = new Node("n6");
node n4; Graph g = new Graph();
node n5; g.addEdge(n1,n3,1);
node né6; JAVA-AST g.addBedge(n3,n2,5);

graph [n3 <<1n1];
graph [n2 <>5n3 >>4 n6];

graph [n2 >>3 n5];
Java Printer

GRAPL Standard Library D Java Backend Classes D

N2

More on Compiler

Compiler performs a translation from a grapl-ast to a java-ast while
performing semantic checking along the way

» Many simple statements in GRAPL become function calls (or sequences

of calls) to the Java backend library

/* GRAPL */ /* Java */
graph [a >>2 b << c]; graph.addEdge(“a”,"b",2);
graph.addEdge(“b"”,"c"”,1);

et

implicit param name

“graph” ~ “addEdge”

Java Backend Architecture

» Compiler performs a translation from a grapl-ast to a java-ast while
performing semantic checking along the way

» Many simple statements in GRAPL become function calls (or sequences
of calls) to the Java backend library

/* manages global state,

import lib.*; // backend library provides utilities */

class GraplLib ‘

// globals common to all GRAPL programs class Node
public static Graph graph; /* node information
public static GraplLib library; */
// globals for this specific L class Edge
/* edge weight and
public Class Example direction */
{
void main() | class Graph
{ /* maintains
node nl; relationships between
node n2; nodes and edges */
number Xx; . =
X = 0; class List
graph [a >> b >> c <> d]; /* implements an

| ArrayList<node> */

~
~

GRAPL Standard Library

» The GRAPL Standard Library implements
useful and often-needed functions like
numChildren, reverse (for lists), depth-first-
search, etc

» Standard Library functions (as opposed to
built-in functions) are written in GRAPL

» They are precompiled and imported into
every GRAPL program so that the user has
automatic access to them

Summary & Challenges

» Implicit declaration of nodes in the graph statement along with a
single global graph per program: a major can of worms
o Nodes must be handled specially in the backend, sometimes as
strings
o The type of java-ast-node for a grapl-ast-node depends on the
symbol table at compile time; it may become either a jast-identifier
or a a jast-function-call to graph to retrieve a named node

» Semantic checking cannot guarantee that all node references will
be valid at run-time

» Appropriately initializing both Java objects and Java primitives at
the right time
» Making standard library functions automatically available

» Backend Java for standard library requires access to global
variables in the GraplProgram file for full functionality

Lessons Learned

» Test early, test often

» Get Unix. Get it now.

» When all else fails, add another layer of
indirection (e.g., a Java wrapper)

» Simple language restrictions != simple
compiler features

» Use shell scripts

Team GRAPL

+ Lili Chen - scanner, grapl- and java-printers, testing
X3 Ryan Turner - parser, compiler, team leader

+ Andres Uribe - parser, compiler, standard library
» D1 Wen - parser, testing suite

® Yang Yi - Java backend, standard library

Tutorial / Example

list dfs (node start, node finish ; .
list 1: (!) A void main(){

unvisitAll(); graph [a >>b >>c>>e>>f];
return dfs helper(start, finish,1l); print(dfs(a, f));

} }

list dfs helper(node start, node finish, list 1)
{

visit start;
if (start != finish) then
{

forEach unvisited n from start

{

n::1;

if(n!=finish)then{
dfs helper(n, finish,1l);
}

else
{ return 1; }

}}

else

{}

return 1;

}

Tutorial / Example

node nl;
void main()

{

graph [nl <<1 n2 <>2 n3, n4 <>2 n2, n5 >>3 n2];

forEach unvisited n from n2 with (< 2) {

print(n);
visit n;}

forEach unvisited n from n2 with (<=1) {
print(n);
unvisit n;}

visit nb5;

visit n3;

forEach visited n to n2 with (> 2) {
print(n); }

forEach visited n to n2 with (>= 3) {
print(n); }

}

