
DYNAMO - A Language for Dynamic
Programming

Final Report

Raghavan Muthuregunathan - rm2903

Pradeep Dasigi - pd2359

Abhinav Saini - as3906

Archana Balakrishnan - ab3416

Srilekha VK - sv2344

1. Introduction

1.1 Dynamic Programming

According to Wikipedia, “Dynamic Programming (DP) is a method for solving complex
problems by breaking them down into simpler subproblems.” Dynamic programming problems
have the following characteristics.

● Overlapping subproblems

The main problem is solved by reusing the solutions to the smallest sub-problem and
then building up. For example, the factorial of a number is computed by multiplying
the number and the factorial of the next (smaller) number, which in turn is computed
the same way, and so on. i.e. Factorial(N) = N*Factorial(N-1); Factorial(N-1) = (N-
1)* Factorial(N-2) and so on. After the function is executed for a base argument –
Factorial(1), it is computed for Factorial(2).

● Optimal substructure

The optimal solution to the main problem is constructed by optimally solving its sub-
problems. For example, in the Dijkstra shortest path algorithm, the shortest path from
A (source) to Z (target) is the shortest path from A to B (node from A that is at the least
distance from A) added to the shortest path from B to Z, and so on.

In programming languages, DP problems are typically solved by recursive functions.

1.2 Why does DP need a different language?

Writing DP programs in high-level general-purpose languages is complex and requires extensive
book-keeping. Added to this complexity is the burden of following the complex syntactic
rules of the high-level language. Dynam-o is a writable language for coding DP programs.
The programmer codes the solution to the problem in a straight-forward way, by doing just the
following.

● Defining operation to be executed for base values – such as Fibonacci(1) and
Fibonacci(2) for Fibonacci series, and Factorial(1) for Factorial computation programs.

● Defining operations (recursive operations) to be executed for values other than base
values – Fibonacci(3), Fibonacci(4), etc., and Factorial(2), Factorial(3), etc.

● Defining a conditional, in the form of an ‘if’ statement
● Specifying the recursive operation in the then statement, and the base operation in the

else statement.

The goal is to make the writing of the program intuitive – as close as possible to te writing the
problem’s core mathematical equations.

1.3 Why Java?

Java is one of the most popular programming languages today, and one of its best features is
portability. The byte-code output of the Java compiler is completely machine-independent and
can run on any architecture.
In Dynam-o, the programmer has the option of including Java code between two ‘$’ symbols
(just like comments are specified in Java between /* and */). Java programs may be used to
supplement a Dynam-o program with features not currently supported in Dynam-o.

2. Language Tutorial

A program in Dynamo bears the following structure.

<ProgramName>
{

{
 <Input Statements>

}
{

<Logic Statements>
}

}

ProgramName is an identifier in Dynamo, and therefore, programs must be named according to
the rules specified for identifiers.

The ‘Input Statements’ define the input variables for which the solution needs to be computed.
The ‘Logic Statements’ specify the logic required to solve the DP problem in the form of
conditionals, then statements and else statements.

Example:

LevDist.dyn

LevDist
{
 {
 data-init str1;
 data-init str2;
 }
 {
 if (str1 = 0 & str2 = 0)
 0;
 else if (str2 = 0)
 #str1;
 else if (str1 = 0)
 #str2;
 else if (str1[i1] = str2[i2])
 LevDist(i1-1, i2-1);
 else
 min(LevDist(i1-1,i2-1)+1,
LevDist(i1,i2-1)+1,LevDist(i1-1,i2)+1);
 }
}

LevDist.java

public class LevDist {
 public static int LevDist(String
str1, String str2) {
 int temp1 = str1.length()+1;
 int temp2 = str2.length()+1;
 int temp[][] = new
int[temp1][temp2];
 for(int i=0;i<temp1;i++) {
 for(int j=0;j<temp2;j++) {
 if(i==0&&j==0) {
 temp[i][j]=0;
 }
 else if(j==0) {
 temp[i][j]=i;
 }
 else if(i==0) {
 temp[i][j]=j;
 }
 else
if(str1.charAt(i-1)==str2.charAt(j-1)) {
 temp[i][j]
=temp[i-1][j-1];
 }
 else {
 int min =
temp[i-1][j-1]+2;
 min =
min>(temp[i][j-1]+1)?temp[i][j-1]+1:min;
 min =
min>(temp[i-1][j]+1)?temp[i-1][j]+1:min;
 temp[i][j]=min;
 }
 }
 }
 return temp[temp1-1][temp2-
1];
 }

 public static void main(String
args[]) {
 int LevDist_res =
LevDist(args[0], args[1]);

System.out.println("\n"+LevDist_res
);
 }

}

3. Revised Language Manual

Lexical Conventions

The tokens are identifiers, keywords and constants. Blank lines, newline characters, spaces, tabs
and comments are ignored and are used only to separate tokens.

The Dynamo scanner identifies the following entities as valid:

3.1 Comments
Comments in Dynam-o are bounded by /* at the beginning and */ at the end.

3.2 Embedded Java code
Java code is bound by a ‘$’ at the beginning and a ‘$’ at the end.

3.3 Identifiers
Identifiers are valid strings that are either keywords or names. A name is either a program name
or a variable name. Identifiers can contain alphabets, numbers and/or underscore (_) in any
order. There is no length imposed.

3.4 Separators
The following separators are used.
Opening and Closing curly braces (‘{‘ and ‘}’) are used to contain the program and the logic
statements. They should be specified at the beginning of the program (after the mention of
the program name) and the end of a program (after the closing brace of the logic block of
statements), and at the beginning and end of the logic block of statements.
Opening and Closing parentheses(‘(‘ and ‘)’) are used around conditionals.
Semicolon (‘;) is used as a statement terminator.

3.5 Keywords:
data-init – used to define the input variables
if – used to check if a value is a base value or a recursive value; following statement is executed
if the value is a recursive value.
else – The statement following an ‘else if’ is executed if the condition checks a recursive value;
the statement following an ‘else’ is executed if all previous conditionals are false.
max - is predefined as DP problems are usually optimization problems
min - predefined similarly like max.

3.6 Data Types
Dynam-o uses only one data-type – String. For problems that require integer inputs, the string
input values are converted to integers. This can be done by prefixing the ‘#’ symbol.

3.7 Constants
Constants are either of string data-type or integer data-type. String constants are checked in
conditionals. Integer constants are returned by the program.

3.8 Operators and Overloading

Overloaded operators
+ : integer addition, string concatenation
- : integer subtraction
/ : integer division
* : integer multiplication
= : integer | boolean | char | string equality
Logical Operators
& - And
| - Or
= - Logical Equal To
> - Greater than
>= - Greater than or equal to
< - Lesser than
<= Lesser than or equal to
!= - Not equal to
Other operators
- operator for computing the length of the string (eg. #str returns length of string str)
[and] – Square brackets are used to extract values from string constants.

In addition, we have non-overloaded operators:

(i:j) : used with arrays to denote substring of the array from index i to index j. If i is not
specified, it is assumed to be from the beginning of the string; if j is not specified it is assumed to
be till the end of string. If neither is specified an exception is thrown.

4. Project Plan

4.1 Team Responsibilities

Abhinav Saini ○ Programming Language Design
○ Code Generation
○ Writing part of the compiler file

Archana Balakrishnan ○ Programming Language Design
○ Writing a part of the parser
○ Coding some program features across

program units
○ Testing, Debugging and Coding fixes

across all program units
○ Writing a part of the document

Pradeep Dasigi ○ Programming Language Design
○ Writing the scanner
○ Completing the parser
○ Writing the compiler, and generating Java

code

Raghavan Muthuregunathan ○ Language Idea
○ Programming Language Design
○ Testing (Functional and Non-functional)

Srilekha VK ○ Programming Language Design
○ Debugging the scanner
○ Writing the Final report

4.3 Development Environment

Dynamo was developed using Ocaml in Linux environment (Kernel version 2.6.32)

1. Ocamllex: An Ocaml tool for the scanner.
2. Ocamlyacc: An Ocaml tool for the parser.
3. Python : To run various testing scripts in Linux environment.

4.4 Development Tools

4.4.1 Google code repository:

Google code is Google’s official developer site. It features developer tools,
technical resources and a project hosting service. This service provides revision control, offering
both Subversion and Mercurial, an issue tracker, a wiki for documentation, and a file download
feature. The service is available and free for all Open Source projects that are licensed under one
of nine licenses (Apache, Artistic, BSD, GPLv2, GPLv3, LGPL, MIT, MPL and EPL).
Dynamo is licensed under the GNU GPL v3 license.

4.4.2 Version Control
The version control used in this project is Subversion. One can view the Subversion

filesystem as "two-dimensional". Two coordinates are used to unambiguously address filesystem
item: path and revision. Each revision in a Subversion filesystem has its own root, which is
used to access contents at that revision. Files are stored as links to the most recent change; thus
a Subversion repository is quite compact. The system consumes storage space proportional
to the number of changes made, not to the number of revisions. The Subversion filesystem
uses transactions to keep changes atomic. A transaction operates on a specified revision of the
filesystem, not necessarily the latest. The transaction has its own root, on which changes are
made. It is then either committed and becomes the latest revision, or is aborted. The transaction
is actually a long-lived filesystem object; a client does not need to commit or abort a transaction
itself, rather it can also begin a transaction, exit, and then can re-open the transaction and
continue using it.

4.4.3 Directory Structure of Project

4.4.4 Project Timeline

Date Milestone

22 September, 2010 Selecting Project Idea (Dynamic
Programming)

27 September, 2010 Language Features

29 September, 2010 Submission of Project Proposal

22 October, 2010 Language Design

28 October, 2010 Discussion of Language Grammar

3 November, 2010 LRM Submission

1 December, 2010 Work on Scanner

1 December, 2010 Work on Parser

5 December, 2010 Scanner tested

8 December 2010 Parser Tested

21, November 2010 AST rules finalized

20, December 2010 AST created

22 December, 2010 Successfully mapped sample .dyn files to java

21, December 2010 Final Test cases generation

21, December 2010 Recurrence tests done

22, December 2010 Final Project Demo and Report Submission

5. Architectural Design

5.1 Components of the System

Lexical Scanner - Reads the tokens from the input .dyn program and passes them as tokens to

the parser
Parser - The parser with the help of the AST constructs a parse tree.
Compiler - The compiler takes as input the outputs of the lexical analyzer and the parser and
converts the .dyn to the .Java code.
Abstract Syntax Tree - The AST contains the type definitions

The translated Java code requires Java compiler and JVM to run.

5.2 Grammar of the Language

The grammar of the language is specified in the Parser as shown in the appendix. But broadly,
a Dynamo program maps to two main sections - Data Initialization and statements that form the
logic of the code.
Data Initialization has a fixed syntax:
data-init <var_name>;

The logic of the program mainly consists of if-else constructs, function calls, and array accesses.

5.3 Code Generation
The mapping from .dyn files to .java files was dictated by the following rules:

● The number of data-initialization statements determine the dimensions of the
memoization table. The lengths of the input strings correspond to the number of rows and
columns. Thus these serve as the indices of the for loops in the translated .java file.

● Each if statements in the .dyn corresponds to filling entries in the table. For instance in
the .dyn file, the statement ‘if (str1=0 && str2=0) 0’ which means that if both the input
strings are empty,then return 0, would correspond to filling the table at the cell [0,0]

● Min and Max functions from the .dyn files generate the static methods min and max from
Math class in Java. The recursion in the .dyn files is expressed in the forms of for loops.

6. Test Plan

The Testing was done as described below. The test scripts are attached in the Appendix.

Initial elementary tests were conducted with each module with negative cases and border cases
as input to ensure that exceptions were thrown in desired situations.

Testing is divided into two types:

Non-functional testing:

1. Testing the dimension
As mentioned state of the DP problem is equal to number of data-init statements in

the .dyn program. So a test case is designed to check if the dimension of memoization table
is equal to number of data-init statements.
2. Testing for anti causality
 DP solutions are computed bottom up. Hence DP solution cannot be anti causal ie. one

cannot compute a solution for a sub problem i from an non existing solution to sub
problem i+1 . This anti causal property is implemented at compile time by analyzing the
recurrence equation. This feature is tested.
3. Checking the constructs of the language

A test case is designed if the data-init statements, min , max are properly translated in the
resultant java code

4. Checking the functionality of if-else
DP solution consists of If-Else statements to mention the base case and recursive case
equation. A Test case is designed if its properly translated in the target java code.

5. Checking $-$ java statements
A support is present in the .dyn language to add embedded java code. This feature is

tested if the $-$ statement is properly translated into target java code.
6 . Test case for analyzing the recurrence.

A Test case if designed to check if the various recurrence equations are properly
translated in the target java code.

Functional Regression:
These are test cases in which functionality of the code is checked based on the output of
reference java program and output produced by generated java program.

7. Lessons Learned

Archana:
She gained a much better understanding of the intricacies of programming languages -
meaning behind rules, need for type-checking, the significance of methods like short-
circuit evaluation, design features for writability, etc. These days, when she codes
programs, she thinks from a compiler point-of-view.

Abhinav:
Had a good introduction to functional programming and the different components of a
compiler.
Different aspects of Dynamic Programming like bottom up DP and top down DP.

Pradeep:
- Could gain an in-depth understanding of how compilers work and why a systematic
procedure in developing them is important.
- Discovered the joy of using OCaml and functional programming languages in general

Raghavan
- I understood Dynamic Programming better than ever. Type Inference is one of the

toughest components of compiler development.
- Recurrence Analysis to test Anti-Causal behaviour gave more insight about the nature of

various recurrences.

Srilekha
- I learnt to appreciate Dynamic Programming and the need for simpler iterative code

from the compiler’s point of view.
- Now fully appreciates the simplicity, elegance and intuitiveness of functional
programming and thinking
- Will stop taking aspects of a compiler like type inference etc. for granted. Realises the
importance of language design (in addition to other aspects) in usability of a language.

8. Potential Enhancements
● Adding functionality for backtracking in which memoization is not inherent in the nature

of the problems.
● Extending the solution space by allowing to solve for problems having more than 2

dimensions in the memoization table.

Appendix

Scanner

{ open Parser }

rule token = parse
 [' ' '\t' '\r' '\n'] { token lexbuf }
| "/*" { comment lexbuf }
(*| '%' _ '%' as lxm { JAVACODE(lxm.[1]) }*)
| ',' { COMMA }
| '(' { LPAREN }
| ')' { RPAREN }
| '{' { LBRACE }
| '}' { RBRACE }
| '[' { LSQRBRACE }
| ']' { RSQRBRACE }
| ';' { SEMI }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| "=" { EQ }
| "!=" { NEQ }
| '<' { LT }
| "<=" { LEQ }
| ">" { GT }
| ">=" { GEQ }
| "&" { AND }
| "|" { OR }
| '#' { STRLEN }
| ':' { ARROP }
| "if" { IF }
| "else" { ELSE }
| '$' [^'$']* '$' as lxm { JAVACODE(lxm) }
| "data-init" { DATAINIT }
(*| "memoize" { MEMOIZE }*)
| ['0'-'9']+ as lxm { LITERAL(int_of_string lxm) }
| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }
| '"' ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* '"' as lxm { WORD(lxm) }
| '"' ' ' '"' as lxm { WORD(lxm) }
| '"' '"' as lxm { WORD(lxm) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
 "*/" { token lexbuf }
| _ { comment lexbuf }

Parser

%{ open Ast %}

%token PLUS MINUS TIMES DIVIDE
%token EQ NEQ LT LEQ GT GEQ AND OR
%token LPAREN RPAREN LBRACE RBRACE LSQRBRACE RSQRBRACE SEMI COMMA
%token STRLEN

%token DATAINIT
%token IF ELSE
%token <int> LITERAL
%token <string> ID
%token <string> WORD
%token <string> JAVACODE
%token ARROP
%token EOF

%left ARROP
%left OR, AND
%left EQ, NEQ, LT, LEQ, GT, GEQ
%left PLUS, MINUS
%left TIMES, DIVIDE
%left STRLEN

%start programStruct
%type <Ast.programStruct> programStruct

%%

programStruct:
 ID LBRACE program RBRACE { ProgramBlock($1, $3) }

program:
 /* nothing */ { [], [] }
| program dataIntl { ($2 :: fst $1), snd $1 }
| program stmt { fst $1, ($2 :: snd $1) }

dataIntl_list:

/* nothing */ { [] }
| dataIntl_list dataIntl { $2 :: $1 }

dataIntl:

DATAINIT ID SEMI { Dinit($2) }
| LBRACE dataIntl_list RBRACE { DBlock(List.rev $2) }

stmt_list:
 /* nothing */ { [] }
| stmt_list stmt { $2 :: $1 }

stmt:

expr SEMI { Expr($1) }
| LBRACE stmt_list RBRACE { Block(List.rev $2) }
| IF LPAREN expr_opt RPAREN stmt ELSE stmt { If($3, $5, $7) }
| JAVACODE { Copy($1) }

expr_opt:
 /* nothing */ { Noexpr }
| expr { $1 }

expr:

LITERAL { Literal($1) }
| STRLEN expr { Strlen($2) }
| ID { Id($1) }
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1, Sub, $3) }
| expr TIMES expr { Binop($1, Mult, $3) }
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1, Less, $3) }
| expr LEQ expr { Binop($1, Leq, $3) }

| expr GT expr { Binop($1, Greater, $3) }
| expr GEQ expr { Binop($1, Geq, $3) }
| expr AND expr { Binop($1, And, $3) }
| expr OR expr { Binop($1, Or, $3) }
| ID LSQRBRACE expr RSQRBRACE { StrInd($1, $3) }
| ID LSQRBRACE expr ARROP expr RSQRBRACE { StrRange($1, $3, $5) }
| ID LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { $2 }
| WORD { Word($1) }

actuals_opt:

/* nothing */ { [] }
| actuals_list { List.rev $1 }

actuals_list:

expr { [$1] }
| actuals_list COMMA expr { $3 :: $1 }

Ast.mli

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq | And | Or

type expr =

Literal of int
| Id of string
| Binop of expr * op * expr
| Strlen of expr
| StrInd of string * expr
| StrRange of string * expr * expr
| Word of string
| Call of string * expr list
| Noexpr

type dataIntl =

DBlock of dataIntl list
| Dinit of string

type stmt =

Block of stmt list
| Expr of expr
| If of expr * stmt * stmt
| Copy of string
| Nostmt

type program = dataIntl list * stmt list

type programStruct = ProgramBlock of string * program

Compile.ml
open Ast

let rec string_of_expr = function

Literal(l) -> string_of_int l
 | Id(s) -> s
 | Word(s) -> s
 | Strlen(s) -> string_of_expr s ^ ".length()"
 | Binop(e1, o, e2) ->
 string_of_expr e1 ^ " " ^
 (match o with
 | And -> "&&" | Or -> "||"
 | Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
 | Equal -> "==" | Neq -> "!="

 | Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">=") ^ " " ^
 string_of_expr e2 ^ " "
 | StrInd(s, i) -> s ^ ".charAt(" ^ string_of_expr i ^ ")"

| StrRange(s, i1, i2) -> s ^ ".substring(" ^ string_of_expr i1 ^ ", " ^ string_of_expr
i2 ^ ")"
 | Call(f, el) ->
 (match f with
 | "min" -> "temp[i1][i2] = " ^ "Math.min" ^ "(" ^ String.concat ", " (List.map
string_of_expr el) ^ ")"
 | "max" -> "temp[i1][i2] = " ^ "Math.max" ^ "(" ^ String.concat ", " (List.map
string_of_expr el) ^ ")"
 | _ -> "temp" ^ "[" ^ string_of_expr (List.hd el) ^ "]" ^ "[" ^
(string_of_expr (List.hd(List.tl el))) ^ "]")
 | Noexpr -> ""

let dim = ref 3

let rec string_of_stmt = function

Block(stmts) ->
 String.concat "" (List.map string_of_stmt stmts) ^
 let rec func i l = if(!i != 0) then (decr i; func i ("}"::l)) else ""::l in
String.concat "\n" (func dim [])
 | Expr(expr) -> string_of_expr expr ^ ";\n"
 | If(e, s1, s2) -> "if (" ^ (if (string_of_expr e) = "str1 == \"\" " then
("i1 == 0") else (if (string_of_expr e) = "str2 == \"\" " then "i2 == 0" else (if
(string_of_expr e) = "str1 == \"\" && str2 == \"\" " then "i1 == 0 && i2 == 0" else
(if (string_of_expr e) = "str1 == \"\" || str2 == \"\" " then "i1 == 0 || i2 == 0"
else (string_of_expr e))))) ^ ")\n{\n" ^
 "temp[i1][i2] = " ^ string_of_stmt s1 ^ "}\n" ^ "else\n{\n" ^ string_of_stmt s2
^ "}\n"
 | Copy(s) -> String.sub s 1 ((String.length s) - 2) ^ "\n"
 | Nostmt -> ""

let rec string_of_dataIntl = function

DBlock(inits) -> let func i = "String "^
 i in String.concat "," (List.map func (List.map string_of_dataIntl
inits)) ^ ")\n{\n" ^
 let dimCount = ref 0 in let func i = "int temp" ^ string_of_int
(ignore(incr dimCount); !dimCount)
 ^ "=" ^ " " ^ string_of_dataIntl i ^ ".length()+1;\n" in
String.concat "" (List.map func inits) ^ "int temp" ^
 let func i = "[]" in String.concat "" (List.map func inits) ^ " =
new int" ^
 let dimCount = ref 0 in let func i = "[temp" ^ string_of_int
(ignore(incr dimCount); !dimCount)
 ^ "]" in String.concat "" (List.map func inits) ^ ";\n" ^
 let dimCount1 = ref 0 and dimCount2 = ref 0 and dimCount3 = ref 0
and dimCount4 = ref 0 in
 let func i = "for(int i" ^ string_of_int (ignore(incr dimCount1); !
dimCount1) ^ " = 0; i"
 ^ string_of_int (ignore(incr dimCount2); !dimCount2) ^ " < temp" ^
 string_of_int (ignore(incr dimCount3); !dimCount3) ^ " ; i" ^
string_of_int (ignore(incr dimCount4); !dimCount4)
 ^ "++)\n{\n" in String.concat "" (List.map func inits)
 | Dinit(init) -> init

let string_of_program(intls, logsts) =
 String.concat "" (List.map string_of_dataIntl intls) ^ "\n" ^
 String.concat "" (List.map string_of_stmt logsts)

let string_of_programStruct = function

 ProgramBlock(id, code) -> "import java.lang.Math;\npublic class " ^ id
^ "Class\n" ^ "{" ^ "\npublic static void " ^ id
 ^ "(" ^ string_of_program code ^ "\npublic static
void main(String args[])\n"
 ^"{\n" ^ "System.out.println(" ^ id ^ "(" ^ "args[0],
args[1]" ^ "));" ^ "\n}" ^ "\n}"

let _ =
 let in_channel = open_in Sys.argv.(1) and out_channel = open_out Sys.argv.(2)in
 let lexbuf = Lexing.from_channel in_channel in
 let programStruct = Parser.programStruct Scanner.token lexbuf in
 output_string out_channel (string_of_programStruct programStruct)

Testing Scripts

test_1.py

import sys;
keyword = dict();
f = open(sys.argv[1], "r");
for line in f:

if "data-init" in line:
words = line.split();
words[1] = words[1][0:len(words[1])-1];
keyword[words[1]] = 0;

f.close();
f = open(sys.argv[2], "r");
newkeywords = dict();
for i in keyword:

newkeywords[i] = keyword[i];
for line in f:

for S in keyword:
words = line.split();
for w in words:

if S in w:
newkeywords[S]=1;

kflag =0;
f.close();
for k in keyword:

if (newkeywords[k] == 0):
print "keyword ",k," is missing";
kflag = 1;
print "Test FAILED";

if (kflag == 0):
print "TEST PASSED";

test_2.py

import sys;
java = dict();
f = open(sys.argv[1], "r");
for line in f.readlines():

line = line.lstrip();
line = line.rstrip();
if ('$' in line):

line = line.lstrip();
line = line.rstrip();
line=line[1:len(line)-1];
line = line.lstrip();

http://www.google.com/url?q=http%3A%2F%2Ftest_1.py&sa=D&sntz=1&usg=AFQjCNF0XIlRoKfxf4Ep_rhQUO-5TbkfhQ
http://www.google.com/url?q=http%3A%2F%2Ftest_1.py&sa=D&sntz=1&usg=AFQjCNF0XIlRoKfxf4Ep_rhQUO-5TbkfhQ
http://www.google.com/url?q=http%3A%2F%2Ftest_1.py&sa=D&sntz=1&usg=AFQjCNF0XIlRoKfxf4Ep_rhQUO-5TbkfhQ
http://www.google.com/url?q=http%3A%2F%2Ftest_2.py&sa=D&sntz=1&usg=AFQjCNGIkt0JCznWKYPH9-8A3WgGM3_8gQ
http://www.google.com/url?q=http%3A%2F%2Ftest_2.py&sa=D&sntz=1&usg=AFQjCNGIkt0JCznWKYPH9-8A3WgGM3_8gQ
http://www.google.com/url?q=http%3A%2F%2Ftest_2.py&sa=D&sntz=1&usg=AFQjCNGIkt0JCznWKYPH9-8A3WgGM3_8gQ

line = line.rstrip();
java[line] = 0;

f.close();
f = open(sys.argv[2], "r");

newkeywords = dict();

for i in java:

newkeywords[i] = java[i];

for line in f:

line = line.lstrip();
line = line.rstrip();
for S in java:

if S in line:
newkeywords[S] = 1;
if line in S:

newkeywords[S] = 1;

kflag =0;
f.close();

for k in java:

if (newkeywords[k] == 0):
print "java statement ",k," is missing";
kflag = 1;
print "Test FAILED";

if (kflag == 0):
print "TEST PASSED";

test_3.py

import sys;
d = dict();
f = open(sys.argv[1], "r");
d["if"]=0;
d["else if"] =0;
d["else"] = 0;

for line in f:

if "else if" in line:
if (d.__contains__("else if")):

d["else if"] +=1;
else:

d["else if"] = 1;
elif "if" in line:

if (d.__contains__("if")):
d["if"] += 1;

else:
d["if"] = 1;

elif "else" in line:
if (d.__contains__("else")):

d["else"] +=1;
else:

d["else"] = 1;
f.close();
f = open(sys.argv[2], "r");
s = dict();
s["if"]=0;
s["else if"] =0;
s["else"] = 0;
for line in f:

if "else if" in line:
if (s.__contains__("else if")):

s["else if"] +=1;
else:

s["else if"] = 1;
elif "if" in line:

if (s.__contains__("if")):
s["if"] += 1;

else:
s["if"] = 1;

elif "else" in line:
if (s.__contains__("else")):

s["else"] +=1;
else:

s["else"] = 1;
kflag = 0;
for i in s:

if (s[i] != d[i]):
kflag = 1;

print "Test Failed for mismatch in count of ",i;
if kflag ==0:

print "TEST PASSED";
Test_4.py

Recurrence Check
import sys;
f =open(sys.argv[1], "r");
first_line_flag = 1;
KEY =""
for line in f:

if first_line_flag == 1:
first_line_flag = 0;

word = line;
word = word.lstrip();
word = word.rstrip();
KEY = word;

f.close();
f = open(sys.argv[1], "r");
total_count = 0;

for line in f.readlines():

line = line.lstrip();
line = line.rstrip();

if KEY in line:

total_count +=1;
f.close();

f = open(sys.argv[2], "r");
check_count = 0;

for line in f:

line = line.lstrip();
line = line.rstrip();

if KEY in line:

check_count +=1;
if (check_count == total_count):

print "TEST PASSED";
else:

print "TEST FAILED - mismatch in recurrences";
Anti Causal Check

import sys;
import re;
f = open(sys.argv[1], "r");

DP = "";
for line in f.readlines():
 line = line.lstrip();
 line = line.rstrip();
 DP = line;
 break;
f.close();
print DP;
##############
Keyword = set();
f = open(sys.argv[1], "r");
for line in f.readlines():
 line = line.lstrip();
 line = line.rstrip();
 if ("data-init" in line):
 words = line.split();
 word = words[1][0:len(words[1])-1];
 Keyword.add(word);
###################
##do regular expression check
antiCausal = 0;
for item in Keyword:
 patternString = item+"(\[.+\])";
 f = open(sys.argv[1],"r");
 for line in f.readlines():
 m = re.search(patternString, line);
 if m:
 g = m.group(1);
 if "+" in g:
 print "Warning: your DP Recurrence Looks Anti Causal";
 print g, "in", line;
 antiCausal = 1;
 f.close();
for item in Keyword:
 patternString = item+"(\(.+\))";
 f = open(sys.argv[1],"r");
 for line in f.readlines():
 m = re.search(patternString, line);
 if m:
 g = m.group(1);
 STR = g[g.index('('):g.index(')')];
 if "+" in STR:
 print "Warning: your DP Recurrence Looks Anti Causal";
 print STR, "in", line;
 antiCausal = 1;
 f.close();

if antiCausal == 0:
 print "Anti Causality Test is done. No doubts about Anti Causal behaviour"

import sys;
import re;
f = open(sys.argv[1], "r");
DP = "";
for line in f.readlines():
 line = line.lstrip();
 line = line.rstrip();
 DP = line;
 break;
f.close();
print DP;
##############

Keyword = set();
f = open(sys.argv[1], "r");
for line in f.readlines():
 line = line.lstrip();
 line = line.rstrip();
 if ("data-init" in line):
 words = line.split();
 word = words[1][0:len(words[1])-1];
 Keyword.add(word);
###################
##do regular expression check
f.close();
antiCausal = 0;
patternString = DP+"(\(.*\))";
f = open(sys.argv[1], "r");
kflag = 1;
for line in f.readlines():
 m = re.search(patternString, line);
 if m:
 G = m.group(1);
 for k in G:
 if k not in G:
 kflag = 0;
 print k, "term is missing in ", G;
if kflag:
 print "Recursion is perfect";

test all.sh

echo $1,$2
echo "Test Case 1";
python test_1.py $1 $2;
echo "Test case 2:";
python test_2.py $1 $2
echo "Test Case 3:";
python test_3.py $1 $2;
echo "Test Case 4:";
python test_4.py $1 $2;
echo "TEST case 5:"
python test_5.py $1;
echo "Test Case 6";
python test_6.py $1;
echo "Compiling ",$2;
javac $2;

