
Tonedef
Curtis Henkel - cah2196
Chatura Atapattu - cpa2116
Matt Duane - md2835
Kevin Ramkishun - kr2418

COMS W4115
Fall 2010

Project Proposal

Description
Tonedef is an imperative programming language designed to represent and manipulate the

components of musical score. Its basic data types are chosen from the lexicon of music. Tonedef aims to
provide a platform for constructing programs using abstractions that are familiar and useful to
developers with at least a basic knowledge of music theory (e.g. what pitches are). By defining the most
basic elements and operations of musical composition, Tonedef allows programmers to build code of
varying complexity according to the depth of their own knowledge. For example, a simple program
might allow a user to choose a key and one of several scale types (major, minor, chromatic, etc.) and
then perform that scale; a more complex program might analyze a melody and produce an
accompaniment of chords that complement the melody and play them both together.

Types
Tonedef will have the int, boolean, and string data types that most languages use, as well as

several unique data types for the specifics of describing the components of music.

step Represents the distance between two pitches, which are integers OR integers+1/2. The
single-quote character (‘) represents a half-step in step literal tokens. These can be
combined into a sequence data type.

beat Represents the duration of a note, which is a rational number, n/d where n, d are
integers.
 1 whole-note 1/8 eighth-note
 1/2 half-note 3 2 tied whole-notes
 1/4 quarter-note 3/4 a dotted half note

pitch Represents the pitch of a note. It is comprised of an element of [A-G], an optional [#b]
and an octave number. Progression of pitches in an octave follow this sequence { C,
C#, D, D#, E, F, F#, G, G#, A, A#, B } where each pitch is a half step above the previous,
and this sequence is equal to this sequence of alternate pitch names { B#, Db, D, Eb,
Fb, F, Gb, G, Ab, Bb, Cb } (Note: D, F, G have no alternate pitch name). The octaves are
numbered from lowest to highest. Pitch literals begin with the dollar-sign ($)

character. A null pitch (similar in function to the empty string for strings) can be
represented by ($_).

note Composed of a pitch and a beat. Notes are constructed from a pitch or a pitch and a
beat using the semi-colon (:) operator.

note a = $C0 ; // a has a pitch of $C0 and a duration of zero
note b = $D1 : 1/4 ; // b is a quarter-note at pitch $D1
note c = pX : bY // can construct from variables

sequence A comma separated list of steps. Used to represent the changes in pitch through time
or the distance between notes in a chord - it depends on how you apply it.

sequence major_scale = 0, 1, 1, ‘, 1, 1, 1, ‘ ;
sequence major_chord1 = 0, 2, 3` ;

chord Collection of notes that occur simultaneously. Built from a list of notes;

phrase Collection of chords in time, represented as a list of chords, each 1/16th of a second in
time. The order of chords determines which notes are played at a given time.

rhythm Series of beats. Built from a string of characters 1,0,- to describe a rhythm of beats
where each character has the same duration in time and spaces are allowed but
neglected by compiler/functions that use rhythm. The dash (-) character represents a
sustaining of a note.

rhythm r = “1--- 1100 1-1-” ;

r represents a whole note, then 2 quarter notes, then a half rest, then 2 half notes.

Operators
Common basic arithmetic:

id = expr Assignment to variable identifier.

- expr Negation - unary operator on integers and steps.

expr1 + expr2
expr1 - expr2

Addition/Subtraction - can add and subtract integers, steps, and
beats where both expressions are same type (integers can be
interpreted as both steps and beats).

expr1 * expr2
expr1 / expr2

Multiplication/Division - can multiply and divide integers, beats,
but not steps

expr1 % expr2 Modulo - can provide the modulo between two integers or beats,
but not steps.

expr1 <comp> expr2
<comp> = { ==, >, <,

<=, >= }

Comparison - basic arithmetic comparison on int, bool, step, pitch,
beat.

Language specific operators:

note ^ step Raise note - raises the “note” by “step” steps and returns a new note.
Negative steps will lower the note.

note ^^ int Raise note by octave - raises/lowers the “note” by “int” octaves

pitch : beat Note creation - creates a note from pitch and beat. Notes can be used as
either side and are interpreted as the “pitch-component” or “beat-
component” of the note.

chord|note +

chord|note
Chord addition - creates a new chord with the notes in the two operands

pitch - pitch
note - note

Distance between pitches - returns a step equaling the distance between
the two pitches

note :: sequence Apply sequence to build a chord relative to note. Each step element of
sequence is interpreted as a step from note; therefore, order of the steps
does not matter.

note << sequence Apply sequence to build a phrase starting at note with all notes in phrase
having same beat as note. The steps in sequence are interpreted relative
to the previous note in sequence, note the initial note.

phrase @@ phrase Appending phrases - creates new phrase of left phrase followed by right
phrase.

phrase ** phrase Combining phrases - creates new phrase of the 2 phrases of notes
merged (i.e. notes starting at same time).

phrase >> beat Shift phrase - adds beats of rest to the front of phrase.

phrase << rhythm Apply rhythm - creates new phrase of notes with same pitches and order
as phrase, but with beats as specified by rhythm. Useful on phrases built
by the note<<sequence operator.

phrase p = noteX << sequenceY << rhythmZ ;

play phrase outputs the musical info represented by phrase to speakers

Control
if-then-else The standard if-then-else conditional execution of code blocks

for-loop The standard for loop syntax. for (initial; condition; next) { block }

while-loop The standard while loop syntax. while (condition) { block }

function Keyword for defining functions similar to C, but with an explicit function
keyword to aid parsing. return_type function identifier (arg list) { block }

foreach-in-loop Loop mechanism for iterating over the time points of a phrase, which are
each a chord instance, which can have 0 or more notes. Also for iterating
over the notes in a chord. Example,

foreach (chordY in phraseX) {
 foreach (noteZ in chordY) {
 //code
 }
}

Sample Code
// defines a function to play an ascending major scale starting at
// the note parameter
void function play_major_scale (note n) {
 sequence major_scale = 0, 1, 1, `, 1, 1, 1, `;
 phrase ph = n << major_scale;
 play ph;
}

// defines 5 pitches of interest
int num = 5;
pitch[] parray = { $C5, $D4, $E3, $F2, $G1 };

// loops on the pitches. makes an eighth-note at that pitch
// then plays a major scale of eighth notes starting at that pitch
for (int i = 0; i < num; i++){
 note x = parray[i] : 1/8 ;
 play_major_scale (x);
}

// defines a function that takes a phrase and an integer
// and return a new phrase that is the same notes but raised
// by num octaves;
phrase function up_octaves (phrase ph , int num) {
 phrase ph2 ;
 foreach (chord c in ph){
 chord c2 ;
 foreach (note n in c) {
 note n2 = n ^^ num ;
 c2 = c2 + n2;
 }
 ph2 = ph2 @@ c2 ;
 }
}

// combines a phrase with itself raised 2 octaves, then plays it
phrase high = up_octaves (low, 2);
phrase both = high ** low;
play both;

// this seq. represents a minor arpeggio up and a minor scale down
sequence s1 = 0, 1`, 2, 3`, -1, -`, -1, -1, -1, -`, -1 ;

// this rhythm plays the first 3 notes as quarter notes then
// a whole note, then 6 eighth notes, then a half note
rhythm r1 = “1-1-1-1- ------11 11111---”;

// constructs a phrase from the sequence and rhythm starting at
// pitch Eb and plays it
phrase ph1 = $Eb2 << s1 << r1 ;
play ph1;

