Tonedef

Language Reference Manual

Team Members

Curtis Henkel cah2196@columbia.edu
Chatura Atapattu cpa2lil6@columbia.edu
Matt Duane md2835@columbia.edu
Kevin Ramkishun kr2418@columbia.edu

Submitted in fulfillment of the requirements for the Programming Languages and Translators Project
November 3™ 2010

Page |i

Contents
1L INTFOTUCTION .ttt et e b e bt e bt e b e e s b e e s bt e s be e sae e sanesanesanesane eesmnesanenane 1
2. LeXiCal CONVENTION ...eiiiiiiiiieee ettt sttt e s et e st e s b e s me e e sen e e st e e sareeeaneeesaneesnnee eees 1
B R 0o Ty o 4 1=) &3O PSP ST PP PR OPOPPPPION 1
B (o 1=T 0N i =] PSPPSRI 1
B N O] 1= -} o] TSP P PP P UPPPPPPPPPN 2
NN Yo T e £ PP 2
2.5 PUNCEUATOIS .eiiiiiiiiiiiic ittt b s e s s ab e e e s saba e e e s b s e e s snbeee shseesnans 3
B Sl) T | £ TP PR 3
T A L =T =T I =T - | ST 3
I Y T o= I =T = USSR 3
N T 1 ol T =Y -] SRR 3
I D) - T Y/ o TP PP PP PP PUPUPPPP N 4
N I 1 = =T P PP PP PUPUPUPPPPR N 4
I = ToTo] 1= | o IO PP P O OP RSP TPPP 4
G T 1 =SSN 4
B T | PO PO P PP 5
TR 241 ol o O O OO TP OO TP TP TP POTOTRRTPRPP 5
BuB NOLE. it saa e e sa e e e s rae e e snns 5
Y A= o [UT=] o ol = PP PP PO PUPUPUPPPP N 6
IR o T o« I TP P RO PU TP 6
3L RNYENMI ettt et e h et a e st a b ettt bt e bt e bt e be e bt e bt nheebeebeenbeas 6
I I o T 1Y PP PP 7
31D V0Id ittt be e e bt e e hte e s be e e b et e bt e e ate e s be e e hteehteeaabe e teenbeesbeeebeenn 7
N A Yo Tl @] 0 1= T Y o T PO PP PPPPPPPPPPPPPPRS 7
T D 1Yol =T =Y o T3 P PP P PP OTPOTPTOPRON 8
R D T=Yol Y = T T o TV 4 - D TSR 8
4.2 BIOCKS ..eeieeeetteeet ettt ettt ettt ettt e sa e sttt et e s h et s a e e e e be e e h et e s b e e e be e e beeeeabe e e be e e beeebee feesneeesnreenanes 8
N Y ofo o 1 OO PP P PP PP PPPPPPPPPPP 8
o LYo 1T ol NPT Y o= RSP 9

5.1 FuNction Declaration/DefiNitioNccccueeiieeiiiieiieeieeee e eeeeiee et e e e e seeeiree et e e e e s ssabareeeessssssssseereessssesssrseeees 10
oI N VT g ot o] T 6F- | 1T TR SRRRNt 10
5.5 IMIAIN e e st e s e e s a e e s ans s s ara e e e s anraeeeas 11
55 PlAY ettt eee e et et e ettt e et a et et et e et e e ee e e et ee e et e et e et et e et e e et et ee e teee et e e e et eeeeneeen 11
Lo S o 1) SO PP PP PP PP UPUPP PPN 11
6. OPErators AN EXPrESSIONSciicciiieiiiieeeiiitteeeeitteeeestreeeestreeesssaeeessssreeesssseeesssseeessssseessssseeesssssseesssseennn 12
L0 I g o (=3 T o PP PP UPUPUPPPPPPP 12
6.1.1 1dentifiers and LILEralsccoiiiieiieiieeee ettt et 12
6.1.2 Operators and FUNCLION CallS...........uuiiiiiiiiiiiiiieie et e e e e et e e e e e e eanrr e e e e e e e e nsraaees 12
5.1.3 Par@NnthiESes. .. .eieiii ettt ettt e s bt e e be e e s e e e sare e s be e e beeesnreenns sanes 12
6.2 Arithmetic and BoolEan OPeratorscccuiiiiciiie ittt e e e e e sbee e e e sarae e s saaee e e sarees 13
6.2.1 Comparison Operators (==, 1=, <, <=, >, >)it e 13
6.2.2 Multiplicative Operators (¥, /, % , /]) et ettt et s e 13
Lo B Vo Lo 114 VN O] =T | o) N (A FO ST 14
6.2.4 Boolean Logic Operators (&& , || , 1) ottt ettt et et e 14
Lo Y TV (o= I O 01T = o SR 14
6.3.1 RaiSe NOLE/PILC DY STEPS (M) eiiiiiiieiecie ettt et et e steeste et eetreereebeebeeabeebeebeesbaesasessnesasenanas 14
6.3.2 Raise NOTE/PItCh DY OCLAVES [M) .uei i ciee ettt ettt et e e e et e s are e s veeebeeeebaeesareesareeens 15
6.3.3 Difference between PIitChES (-). ittt e rae e e e nreee s 15
6.3.4 Note Creation from Pitch and BAt (1) ueieeciiieeeiiiee ettt et e e s 15
6.3.5 Chord Creation from Note and SEQUENCE (12) eeiiiiiiieeiiiee ettt et e 15
6.3.6 Addition Of NOtES/ChOIAS (4) ueeieiiiiiiiciieie ettt ettt e s reebeebeebeebeesbeesbeesasesssesanas 15
6.3.7 SeqUENCE APPIICALION [KK) tiiiiiiiiiiiie ettt e e e e s e e e st e e e saaeeesnbeeeessaaeessnnaeeean 16
6.3.8 RNYythm APPlCAtioN [L) wiiiiiiiie ettt e et e e e st e e e e saa e e e eaaeeeesasaaeeennnaeeean 16
6.3.9 Shift PArase RINT (>3) c.uuiiiiiiiii ettt e e et e e e ta e e e eaae e e e ataeeeeennaeeean 16
Lo T Kl] oo o1 Lo Tl o o Tt LY =T (Rl IS 17
6.3.11 APPEN PNras@s ([@@) ..ecceveeeeeeurieeeeieeeeeeieeeeeeteeeeeitaeeeesteeeeeeabaeeeessaeesasaeseeansseeeessaeesansseeans 17
LR Ny P4 o] 0 0 1= o | TP PP PP PP PUPPPPPPPPP 17
RN O] o1 =Y o] gl ad Yol =To [T o ol YU SRR 18
7. STATEMENTS .ottt e e 19
2 B oY g Yo T LU g Lo I - 1 4 =T 0 41T o £ 19

7 o T =3 [0 T =X =Y 00T 3Nt 19

Page |iii

A L B - 1 =T 0 0 1= o S ST TP PP PSRRI 19
7.4 WHhIle SEAtEMENT .ottt st s r e s aranesaree s 19
7.5 FOr STAtEMENT ...t e 20
7.6 FOrEach Stat@mENtccueieiiie ettt sttt e st e s abe e e s bt e s b e e sbe e e eneeesaree s 21

A 2 =] {0 I = =] 0 4 1] 0L ST 21

Page |1

1. Introduction

Tonedef is an imperative programming language designed to represent and manipulate the components
of musical score. Its basic data types are chosen from the lexicon of music and its operators chosen to
provide basic transformations on these types. Tonedef aims to provide a platform for constructing
programs using abstractions that are familiar and useful to developers with at least a basic knowledge of
music theory.

The following manual is intended for programmers of the Tonedef language. It explains the available
components of the language and how they can be combined to build a Tonedef program.

2. Lexical Convention

Tonedef parses characters from source files into five types of tokens: identifiers, operators, keywords,
punctuators and literals. Blanks, tabs, newlines, and comments (collectively, “Whitespace character(s)”)
are generally ignored except insofar as they are used to separate tokens. At least one Whitespace
character is required to separate identifiers or literals. Where applicable, appropriate usage of
Whitespace character(s) shall be included in the definition for the given lexical token.

2.1 Comments
Comments begin with the first character sequence /* and end with the first character sequence */ that
is encountered.

Example:

/* This

is a

comment */

inti =1 /* So is this. */

2.2 Identifiers
An identifier is a sequence of alphanumeric characters, with the underscore character

_"included in
the alphabet. Identifiers must begin with an alphabetic character, and may be followed by an optional
series of one or more alphanumeric characters. Identifiers are case-sensitive, thereby making identifiers
with different cases distinctive. Keywords may be incorporated into identifiers, but may not be used

alone as identifiers.

There are three special identifiers: main, print, and play. They are all function names. Print and play are
system-defined functions. Main is the name of the function that is the entry point for a Tonedef
program and needs to be defined in the program.

Page |2

Examples:

good_idt = 1 /* Acceptable identifier */

Good_idt = 2 /* Acceptable identifier, and different than good idt */
_good_idt = 3 /* “_” is an acceptable starting character for an identifier */
4good_idt = 4 /* Not acceptable identifier because it starts with a number */

bool = 1 /* Not an acceptable identifier, because boolean is a keyword */
my bool = 2 /* Acceptable identifier even with keyword incorporated */

2.3 Operators
Tonedef has a closed set of one and two character operator tokens.

The following are the one-character operators:
+ -/ *F*%h=<>::N"

The following are the two character operators:

17 << T @0 >> << == 1= <= >= || &&

2.4 Keywords
There are twenty-one (21) reserved keywords in Tonedef that have semantic meaning in a program and
may not be used as identifiers. They are,

Type names:

int bool string beat pitch note sequence chord phrase rhythm void
function

Control words:
iT else while for foreach iIn return
Constant values:

true false

Page |3

2.5 Punctuators
Some characters in Tonedef are not operators but have syntactical significance within an expression.
None of these characters are allowed in identifiers.

Punctuator Use

Ends a statement

[] Begins and ends a sequence

() Expression grouping and function parameter/argument list grouping
, List separator

{1} Groups statements into a block

“u Groups characters into a string literal

S Begins a pitch literal

2.6 Literals
In Tonedef, certain sequences of characters are tokenized as literal values of various types.

2.6.1 Integer Literals
An integer literal is any continuous sequence of one or more digits [0-9] that is not part of an identifier.

2.6.2 String Literals

A string literal is comprised of all the characters between quotation marks “. A string literal is opened
when a “ character is found and continues until the next “ is met, with the exception that the character
sequence \” has special meaning within the string literal and does not close the string.

2.6.3 Pitch Literals

A pitch literal is a sequence of characters that begins with $ immediately followed by one letter from the
set{A, B, C,D,E,F, G}, followed by an optional flat or sharp character from the set { #, b }, followed by a
one digit from the set {0 - 9}. There is one special pitch literal that does not meet these rules and is the
two-character sequence $_.

Page |4

3. Data Types
Tonedef has 11 data types,

int bool string beat pitch note sequence chord rhythm phrase void

3.1 Integers

int - Integers are composed of a sequence of one or more digits to represent a whole number. The
digits of an Integer may not be separated by Whitespace, and can be negated by placing the unary
negation operator “-” before the number. The range of integers is -230 to 230-1 (or -262 to 262-1 for
64-bit systems).

3.2 Boolean

bool — A boolean has two possible values, true or false, which correlate to their respective logical
values. Booleans may be cast to an Integer value, with true returning a value of 1 and false returning
a value of 0.

3.3 String

string — A string is a sequence of 1 or more ASCII characters contained within quotation marks (“...”).
Strings may extend across multiple lines of code, but non-explicit Whitespace characters beyond blanks
(i.e. tabs and newlines) will not be included in the string. Non-printable characters may be represented
in the String by using the following escape sequences.

Sequence Description

\” Double quotation mark
\n Newline

\t Tab

\r Carriage return

\\ Backslash

Page |5

3.4 Beat

beat — A beat value represents the duration of a note, where the beat value 1 represents a whole note.
More generally, it is a rational number (i.e. can be expressed by n/d where n, d are integers). Beats can
be added and subtracted to produce new beat values. There is a special beat-divide operator (//) that
produces a beat representing the ratio of the two values of the operands with the left operand being the
numerator and the right operand as the denominator.

Examples:

beat a =1 ; /7* a is a whole-note beat */

beat b = 1//4 ; /* b is a quarter-note beat */

beat c = b + 1//2; /* c is a dotted half-note beat */
beat d = 3 ; /7 d is a 3 tied whole-notes beat */

3.5 Pitch

pitch — A pitch value represents the musical pitch of a note. Pitch values are comprised of exactly one
letter from { A, B, C, D, E, F, G}, an optional flat or sharp { #, b } and a one-digit octave number {0 - 9}.
Progression of pitches in an octave follow this sequence { C, C#, D, D#, E, F, F#, G, G#, A, A#, B }, where
each pitch is a half step above the previous, and this sequence is equal to this sequence of alternate
pitch names { B#, Db, D, Eb, Fb, F, Gb, G, Ab, Bb, Cb }. Note that D, F and G do not have an alternate
pitch name. This sequence repeats for all the octaves so SB5 is a half step lower than $SC6. The octaves
are numbered from lowest to highest with C4 being middle C pitch of the traditional music staff. Pitch
literals in code must begin with the dollar sign ($) character. Additionally, there is a special null pitch
(S_) that does not fall in the ordered progression of pitches and represents no pitch. Pitches form an
ordered set can be compared by the comparison operators (==, I=, <, >, <=, >=) with the null pitch being
the less than all the lettered pitches.

Examples:

pitch pX = $C0; /* pX is the C of octave 0 */

pitch pY = $F#5; /* pY is the F sharp of octave 5 */
pitch pZ = $; /* pZ is a null pitch */

3.6 Note

note — A note value is an abstraction for musical notes. They are composed of a pitch and a beat.
Notes can be constructed from a just a pitch or from a pitch and a beat with the semi-colon operator (:)
between them.

Examples:

note a = $CO; /* a has a pitch of $CO and a duration of zero */
note b = $01 : 1/4; /* b is a quarter-note at pitch $D1 */

note c¢c = pX : bY; /* Notes can be constructed from variables */

Page |6

3.7 Sequence

sequence - A sequence is a list of integers. They are denoted in code by a comma-separated list of
integer values or expressions inside brackets []. Sequences are mainly used to represent changes in
pitch through time, or the distance between notes in a chord, where the integer values represent the
number of half-step changes in pitch. These distinctions occur when a sequence is used as the right
operand of either the (::) or (<<) operators.

Examples:

sequence a = [0, 2, 4, 5, 7, 9, 11, 12];

sequence b = [0, 4, 1

chord majorC = ($C4: :: b ; /7 a whole-note C-major chord specifically,

the notes $C4, $E4, $G4 */

4
7
1)
($F3:1//4) << a; /* an ascending F-major scale*/

phrase majorscaleF =

3.8 Chord
chord - A chord is a set of zero or more notes that occur simultaneously. A chord can be built empty,
built from a single note, or from multiple notes either by adding (+) notes or by the (::) operator.

Examples:
chord a; /* empty chord - no notes */

chord b = $G5:1 ; /* chord containing a single note */

chord ¢ = note_x + note_y + note_z ; /* chord containing 3 notes */

chord d = note x -: [0, 7, 12] ; /* chord containing 3 notes relative
to note x */

3.9 Rhythm

rhythm - A rhythm represents a series of beats and rests. They are constructed from strings containing
only the characters {1, O, -, \s}. The sequence of these characters describes the rhythm where

e 1signifies the initial playing a note or chord
e signifies the sustaining of a note or chord

e O signifies a rest

e \sseparates the other characters into groups

Each group represents a total duration of a whole note so the size of the groups determine the time of
each character in that group. The group sizes should be 1, 2, 4, 8, 16, which correspond to each
character having length of a whole-note, a half-note, a quarter-note, an eighth-note and a sixteenth-
note, respectively. If a group of characters is not equal to any of these values, the first n characters that
form a complete group are used and the rest ignored.

Examples:
rhythm a

“1 11 1111 ; /* one whole-note, followed by 2 half-notes,
followed by 4 quarter notes */
rhythm b = “1--- 1-1- 1111”; /* b is equal to a but written differently

Page |7

as a string */
rhythm ¢ = “10101010 1111000011110000”; /* c is (an eighth note then eighth
rest) x 4, then (4 sixteenth notes,
4 sixteenth rests) x 2 */

3.10 Phrase

phrase - A phrase is an ordered collection of chords, where the ordering represents time. A phrase can
be built from a single chord, or from other phrases using the append phrases (@ @) or combine phrases
(**) operators, or using the apply operator (<<). The musical sequence represented by a phrase value
can be played by sending the phrase to the play function.

Examples:
phrase a; /* empty phrase */
chord x = ($D3:1) :: [0, 4, 7];

phrase b = x; /* phrase that contains just chord x */

phrase c = b @@ b ; /* c is chord x played twice */

phrase d = $E6 << [0, 2, 2, 4] << *“11 0 11" ; /* phrase built using the
apply operator using a
sequence and a rhythm */

3.11 Void

void - Void is a special type for functions that return no value. Non-function identifiers cannot have
type void.

3.12 Type Conversion
Tonedef will perform certain conversions of types when values do not exactly meet the expected type of
a function argument or operand. The following table shows the allowed conversions.

Type Conversion Description

bool -> int true -> 1 and false -> 0
int -> bool 0 -> false and everything else becomes a true value
beat -> int the value of beat is rounded down to an integer
int -> beat beats are rational numbers so the value of the int is preserved as a beat
pitch -> note pitch is promoted to a note with duration =0
beat -> note beat is promoted to a note with that duration and pitch=$_
note -> pitch note is demoted to only its pitch value
note -> beat note is demoted to only its beat value

note -> chord note is promoted to a chord contain just that one note
chord -> phrase chord is promoted to a phrase contain just that one chord

Page | 8

4. Declarations

Declarations are used to create new variables within a block of code of specified type and optionally
initialize their values.

4.1 Declaration Syntax
A declaration is an expression in one of the two following forms:

type identifier
type identifier = initialization-expression

Where

e type is one of the type keywords: int, bool, string, beat, pitch, note, chord, sequence,
phrase or rhythm.

e i1dentifier isanon-reserved alpha-numeric sequence as described in section 2.2

e initialization-expression is any legal Tonedef code that returns a value of agreeable
type with the declaration.

4.2 Blocks

A block is a section of code enclosed by braces { }. Blocks can be nested within other blocks. Identifiers
visible in an outer block are visible in the inner block, but identifiers declared in the inner block will not
be visible in the outer block when the inner block ends.

Example:

void function ¥)

{ /* start of a block for this function */
int x = 0;
while (x < 10)
{ /* start of a sub-block */

} /7* end of the sub-block */
} /7* end of the block for function f */

4.3 Scope

The scope of an identifier is the subsequent statements within the block of code where it is declared
including sub-blocks of that block. Declarations can appear after certain keywords that open a block of
code. These keywords are function, for, and foreach. When identifiers are declared in these
expressions, the scope of the identifiers is the block opened by the keyword. Scope does not extend to
the execution of function calls. At the beginning of a function’s execution, its parameters will be the
only identifiers in scope.

Page |9

Example:
void function ¥ (phrase p) {
/* p 1s in scope */
foreach (chord c in x) {
/* c and p are in scope */
note n = some_other_function();
/* c, p, and n are not in scope while
some_other_function executes */
}
/* c and n are no longer in scope, but p still is */
for Cint i =0; 1 <0; 1 =1+ 1){
/* p and 1 are in scope */
}

/* p 1s only identifier in scope */

4.4 Identifier Naming

All identifiers within a block of code must be unique and a sub-block’s identifiers must not conflict with
the identifier names in its parent block. This means that an identifier is visible over its entire scope and
cannot be hidden by a subsequent re-declaration of the identifier.

Example:
void function ¥ (note x) {
chord x; /* this is NOT legal because x is already an identifier
in this block */
for Cint i =0; i <5 ;;i=1+1)1}
for Cinti =5;1>0;101=1-1)13}
/* this re-use of identifier 1 is legal because the first i Is no
longer in scope when the second is declared */

Page |10

5. Functions

A Tonedef program consists of a collection of functions. Functions are re-usable segments of code that
can be invoked from within the code of other functions. This provides a way to break up a program into
smaller tasks. Each function consists of a name, a list of parameters, a return type and a block of

execution code.

5.1 Function Declaration/Definition
A Tonedef function is declared like this:

type function identifier (parameter-list) { code }
Where

e type is the type of the return value of function
e identifier is the name of the function used to call it from other code
e parameter-list is a possibly empty and comma-separated list of parameter declarations
where each parameter declaration is of the form type identifier
0 No two parameter names are the same within one function, and no parameter name is
the same as its function’s name
e code is a possible empty sequence of Tonedef code to be executed when the function is called

Functions cannot be declared within other functions. They must all be declared at the program level.
Function names are visible throughout the program where they are declared. This means that a
function can be called from any other function’s execution code and that the ordering of the function
declarations within a program is inconsequential.

5.2 Function Calling
A function call is an expression of the following form:

function-identifier (arguments-list)
Where

e FTunction-identifier is a name corresponding to some user-defined or system-defined
function

e arguments-list is a possibly empty and comma-separated list of arguments to pass that
function

e each argument is an expression that resolves to a value (i.e. not void).

e the number, order, and types of the argument values match the parameter types declared in the
function declaration

Page |11

All argument expressions are resolved before the function call is executed. An argument expression can
itself be a function call so function calls within the same statement will be executed inside out.

Example:
fn_a(fn_b(5)); /* fn_b (5) is executed and its return value is passed as the
argument to the execution of fn_a */

5.5 Main
Each Tonedef program must include a definition of a function named main with type int and no
parameters. This function is the entry point for execution of the program.

5.5 Play

The function play is a system-defined function of type void that takes one parameter of type phrase.
When called, this function produces audio output from the musical expression represented by the
phrase argument passed to it.

5.6 Print
The function printis a system-defined function of type void that takes one parameter of type string.
When called, this function writes its argument string to the output console.

Page |12

6. Operators and Expressions

Tonedef operators are any of a closed set of one and two character sequence described in section 2.3 -
Lexical Convention - Operators. Some operators are unary and take an operand on the right side.
Others are binary and take an operand on both the left and right side. The following sections specify the
types of operands the various operators take and the types they return.

Tonedef expressions are sequences of literals, identifiers, punctuators and operators, which evaluate to
a value of a Tonedef type. The allowed sequencing of these elements is explained in the following
section.

6.1 Expressions

6.1.1 Identifiers and Literals
An expression can be any literal or non-function identifier. These expressions evaluate to the value of
the literal or the value bound to the identifier. This defines the following syntax rule:

expression :=
literal
identifier

6.1.2 Operators and Function Calls

Any operator or function identifier along with the appropriate operand or argument expressions
combines to be an expression. These expressions evaluate to the result of the operation/function. This
adds another syntax rule:

expression :=
<unop> expression

expression <binop> expression
function_identifer (expression list)

6.1.3 Parentheses
An expression within parenthesis evaluates to the same value and type as the expression without
parentheses. Parentheses can be used to change the precedence of operators within an expression.

expression :=
(expression)

Page |13

6.2 Arithmetic and Boolean Operators

6.2.1 Comparison Operators (==,!=,<,<=,>,>=)
The types of the two operands for comparison operators must be the same. Only operands of type int,
beat, pitch and note are allowed.

6.2.1(a) exprl == expr2
Returns the Boolean value true if exprl has the same value as expr2, and false if the values are
different.

6.2.1(a) exprl = expr2
Returns the Boolean value false if exprl has the same value as expr2, and true if the values are
different.

6.2.1(c) exprl < expr2
Returns the Boolean value true if the value of exprl is less than the value of expr2, and false if
otherwise.

6.2.1(d) exprl <= expr2
Returns the Boolean value true if the value of exprl is less than or equal to the value of expr2, and
false if otherwise.

6.2.1(e) exprl > expr2
Returns the Boolean value true if the value of exprl is greater than the value of expr2, and false if
otherwise.

6.2.1(f) exprl >= expr2
Returns the Boolean value true if the value of exprl is greater than or equal to the value of expr2, and
false if otherwise.

6.2.2 Multiplicative Operators (*,/,%,//)
These operators take operands of type int.

6.2.2(a) exprl * expr2
Multiplies exprl with exprl and return the result. Both expressions must be of the same type.

6.2.2(b) expril / expr2
Divides exprl by expr2 and returns the integer result (rounding towards zero). Will return an error if
expr2 is a null or zero value.

6.2.2(c) exprl % expr2
Yields the remainder of exprl divided by expr2. Will return an error if expr2 is a null or zero value. Both

expressions must be of the same type.

6.2.2(d) exprl // expr2

Page |14

Divides exprl by expr2 and returns the beat result. Will return an error if expr2 is zero valued. Both
expressions must be of type int or beat.

6.2.3 Additive Operators (+,-)
These operators can take operands of type int or beat as described here. The operators are overloaded
for other types of operands, but the descriptions of those are in the section on Musical operators.

6.2.3(a) exprl + expr2
Add exprl to expr2 and return the result. Both expressions must be of the same type.

6.2.3(b) exprl - expr2
Subtract expr2 from exprl and return the result. Both expressions must be of the same type.

6.2.3(b) -expr
The result is the negative of expression, and has the same type.

6.2.4 Boolean Logic Operators (&&,||,!)
These operators take operands of type bool.

6.2.4(a) exprl && expr2
Logical AND on two boolean expressions. Returns true only if both expressions are true.

6.2.4(b) exprl || expr2
Logical OR on two boolean expressions. Returns true if at least one of the expressions is true, and
false only if they are both false.

6.2.4(a) Texpr2
Logical NEGATION. Returns true if the expression is false, and False if the expression is true.

6.3 Musical Operators

6.3.1 Raise Note/Pitch by Steps ()
np ™ X

Returns a new note or pitch that is a copy of the left operand(np) that is raised (or lowered for negative
int values) by x half-steps. The left operand can be either of type note or pitch, and the right operand
is of type int.

Page |15

6.3.2 Raise Note/Pitch by Octaves (*")
np ™M x

Returns a new note or pitch that is a copy of the left operand(np) with its pitch raised (or lowered for
negative int values) by x octaves. The left operand can be either of type note or pitch, and the right
operand is of type int.

6.3.3 Difference between Pitches (-)
pitchl - pitch2

Returns an integer equal to the distance from the left operand (pitch1) to the right operand (pitch2).

6.3.4 Note Creation from Pitch and Beat (:)
pitch : beat

Returns a new note that has a pitch equal to the left operand(pitch) and beat equal to the right operand
(beat).

6.3.5 Chord Creation from Note and Sequence (::)
note :: sequence

Returns a new chord that is built relative to the left operand(note) according to the integers in the right
operand(sequence). Each integer in the sequence is a number of steps to raise/lower the pitch of note
before adding to the resultant chord. The note itself is only added to the chord if O is one of the integers
of in the sequence. The order of integers in the sequence does not matter for this operator because all
integers are interpreted relative to the pitch of the note.

Examples:
chord a = ($C4:1) :: [0, 4, 7] ; /* a has the notes $C4, $E4, and $G4 with
whole-note duration */

chord b = ($E5:1) :: [1, -2, 7] ;:; /7* b has notes $F5, $D5, $B5 */

6.3.6 Addition of Notes/Chords (+)
ncl + nc2

Returns a new chord that contains the notes of the two operands (ncl, nc2) combined. Each operand
can be of type note or chord.

Page | 16

6.3.7 Sequence Application (<<)
note << sequence

Returns a phrase that is built by applying the right operand (sequence) as a series of pitch
increases/decreases relative to the pitch of the left operand (note). To include the note in the phrase,
the sequence should contain a 0. The phrase will have n notes where n is the number of integers in
sequence, and each note in the phrase will have the same duration as the beat of the left operand.

Examples:
phrase a = ($C4:1//4) << [0 , 4, 7, 12]; /* a has the notes $C4, $E4, $G4,
$C5 played as quarter-notes in succession */

6.3.8 Rhythm Application (<<)
phrase << rhythm

Returns a new phrase that has the same chords and order of chords as the left operand (phrase) but
with modified beats and locations in time according to the right operand (rhythm). The ones in the
string representation of rhythms are the locations in time that the non-empty chords of phrase are put
at in the new phrase. If the phrase has more chords than the number of ones in rhythm, then those
extra chords are omitted from the resultant phrase. If the phrase has fewer chords than the number of
ones in rhythm, then those extra time locations are filled with rests.

Examples:
phrase a = ($C4:1//4) << [0 , 4, 7, 12]; /*same as above example */
phrase b = a << “1 11 1”; /* the four notes of a are in b, but with new

durations - whole, half, half, whole */
phrase ¢ = ($Db3:1) << [0,1,2,3,4,5,6,7,8,9,10,11,12] << “1110111011101110 17;
/* c is a chromatic scale starting at $D3 played in 16th notes with 16th
rests after every third note, and ending on a whole note at $D4 */

6.3.9 Shift Phrase Right (>>)
phrase >> beat

Returns a new phrase that is equal to the left operand (phrase) with x beats of rest added to the front,
where x is the right operand (beat).

Examples:
phrase d = ¢ >> 1//2 ; /* d is the chromatic scale from the above example
with a half note of rest at the begging */

Page |17

6.3.10 Combine Phrases (**)
phrasel ** phrase2

Returns a new phrase that is the two operands (phrasel, phrase2) merged together. The start of each
phrase is aligned and chords of the resultant phrase are created from the chords of phrasel and phrase2
at each moment in time in the phrases. This operator is commutative so the order of the 2 operands
does not change the result. If one operand phrase is longer than the other is, then the shorter one is
interpreted to have beats of rest its notes during this merging process. The resultant phrase has total
duration equal to the maximum of the durations of the two operands.

6.3.11 Append Phrases (@@)
phrasel @@ phrase2

Returns a new phrase that is the left operand (phrasel) followed by the right operand (phrase2). There
is no overlap of notes from each operand. This operator is not commutative because the order of the
operands determines the ordering of their notes in the resultant phrase. This operator is left
associative. The resultant phrase has total duration equal to the sum of the durations of the two
operands.

6.4 Assignment
identifier = expression

Tonedef has one assignment operator (=), which takes an identifier as the left operand and an
expression as the right operand. This operator evaluates the expression to a value and binds that
value to the name identifier. The type of the value of expression must match the type of
identifier or be a type that can be converted to the type of identifier. This operator also returns
the value of expression and is right associative. Assignment is done by value so two identifiers can be
equal to the same value, but not bound together such that re-assigning one changes the other.

Examples:

pitch a = $C4; /* a is $C4 */

pitch b = a; /* b is $C4 as well */

a=hbn4; /* a is now $E4, and b remains $C4 */
pitch c = b =a; /* a, b, c are all now $E4 */

Page | 18

6.5 Operator Precedence
The following table shows the order of precedence of Tonedef operators along with the associativity
(order of evaluation) of each level. The top of the table is the highest precedence.

Operators Associativity

-(unary) ! right to left
*/%// leftto right

R R left to right

: left to right
11<<>> left toright
ok left to right

@@ left to right
+ -(binary) left to right

<<=>>= |eft to right
== l= left to right
&& left to right

| left to right

= right to left

, left to right

Page |19

7. Statements
This section describes the different types of Tonedef statements. Every function definition is a sequence
of statements. Statements are executed in the order they appear in a function body.

7.1 Compound Statements

Statements are grouped together into a block using braces { }. This allows a sequence of statements to
be treated as a single statement. All previously visible identifiers remain visible within the block (see
section 4.2 - Blocks). Such a grouping creates a new level of scope where new variable declarations
inside the block are only in scope within that block (see section 5.3 - Scope). Compound statements are
useful following any of the control structures listed in this section.

7.2 Expression Statements
Any valid expression can be used as a statement by following the expression with a semicolon(;).

expression
Example:
i=1*2

7.3 If statement
The if statement is a control structure for conditional execution of code. An if statement has the
following syntax:

if (expression) statementl else statement2
if (expression) statementl

When the expression is true (i.e. evaluates to a boolean value of true or non-zero int value),
statementl is executed; otherwise, statement?2 is executed. The else statement2 portion of the
if-statement is optional, in which case nothing is executed if the expression is false.

7.4 While statement
The while statement is a control structure for looping execution of code as long as a control expression
is true. A while statement has the following syntax:

while (expression) statement

The expression is evaluated before the potential execution of the statement. If the expression is true,
the statement is executed, then this two-step process repeats. If the expression is false, the statement
is not executed and the while loop terminates. The statement should perform some computation that

Page |20

eventually causes the expression to be false and terminate the loop. Otherwise, the loop will infinitely
repeat.

note x = $C4 ;

while (x < $C5) {
X = X"N;

3

In this example, x is a note and is raised one-step. Since SC5 is a higher pitch than SC4, the loop
eventually terminates. If the loop body were x = x*-1, then x would be decreasing in pitch and the loop
would not terminate.

7.5 For statement
The for statement is a control structure for iterative execution of code. A for statement has the
following syntax:

for (expressionl ; expression2 ; expression3) statement

The expressionl is executed as a statement once at the beginning of execution of the for statement.
Then, expression2 is evaluated. If it is true, statement is executed, then expression3 is executed as
a statement, then this process repeats. If expression2 is false, the loop terminates.

A for statement is equivalent to the following while statement:

expressionl;

while (expression2) {
statement
expression3;

}

Like while statements, a for statement needs a control expression (expression2) to eventually be false
to terminate. This is normally done in expression3, but can be done in statement as well.

1 ;1 <10 ;i=1+1){
i// 4 ;

In this example, the body of the loop does not modify i, but expression3 does, so expression2 is
eventually false. Specifically, this body is executed 9 times and b equals the length 45 quarter-notes.

Page |21

7.6 Foreach statement
The foreach statement is a control structure for iterating through the elements of one of Tonedef’s
ordered data types (sequence, phrase). A foreach statement has the following syntax:

foreach (type identifier in expression) statement

Where
e type can be only chord or int
e when type is chord, expression must evaluate to a phrase value
o when type is int, expression must evaluate to a sequence value

The foreach statement begins with evaluating expression once to a phrase or sequence value. Each
iteration of the loop begins with identifier becoming the next element in this value. Then, the
statement is executed.

/* phrase p defined previously */
phrase z;
foreach (chord c inp) {
z =c @00 z;
}

In this example, the foreach each loop executes once for each chord in the phrase and builds a new
phrase z that is the reverse of p.

7.7 Return statement
The return statement terminates execution of a function and has the following syntax:

return expression ;
return ;

The expression is evaluated to a value. This value needs to have the same type as the return type of the
function (or be a type that can be promoted/demoted to the return type). At this point, the execution
of the function ends and this value becomes the return value of the function call. Program execution
continues from the location of the function call.

A function may contain multiple return statements within its body and/or sub-blocks in its body.
However, a function (except for void typed functions) must contain at least one return statement at the
outer most block of its body. A function of type void should use the expression-less return statement
syntax, or use no return statements, in which case it will return when it reaches the end of its body.

pitch function ¥ (sequence s , pitch p) {
foreach (int i in s) {
if (i =0) {returnp ; }
else { p=p~1i;}
}

return p;

Page |22

In this example, there is a return statement in a conditional statement in a looping statement. This
allows the function to terminate in the middle of the loop; however, the second return statement is
needed because there is no guarantee that the if condition is ever true or even that the sequence has

any elements to iterate through.

