
LAME: Linear Algebra Made Easy

David Golub
Carmine Elvezio
Ariel Deitcher

Muhammad Ali Akbar

November 2, 2010

1 Definition of a Program

A program is a sequence of variable declarations and statements.

2 Variable Declarations

2.1 Data Types

The following data types represent the complete listing of primitives available
to a programmer of LAME.

• Scalar: This is the equivalent of a double precision floating point number
in most languages. The value is 64 bit and signed. The range is as given
by the IEEE floating point standard.

• Matrix: Matrices in LAME are represented as dynamically sized 2-
dimensional arrays.

– Elements of the matrices can be composed of either scalar values or
of other matrices.

– Matrix size is denoted using the following notation:

∗ identifier [m , n]

∗ The m value corresponds to the height of the matrix and the n
value corresponds to the width.

– Random access of matrix elements is handled using the following
notation:

∗ identifier [x , y]

∗ The x value represents the row and y value represents the col-
umn.

1

– Each dimension of the array uses zero-based indexing and indices
must be positive.

– Matrix literals are created by enclosing rows in curly braces.

∗ Elements are separated by commas, whereas rows are separated
by a semicolon. There is no semicolon needed for the final ele-
ment of the matrix.

∗ Every row of the matrix literal must contain the same number
of elements (corresponding to the width of the matrix).

∗ Whitespace is not considered in the usage of matrix literals.

– Vectors are represented in LAME by creating a single dimensional
matrix (a column vector using dimensions n× 1).

– It is possible to determine the size of a dimension of a matrix using
the size dimension keyword.

∗ There are two variants of the keyword:

· size rows matrixname , returns the number of rows of ma-
trixname

· size cols matrixname , returns the number of columns of
matrixname

• Boolean: Accepts values of true and false which can be used with logical
operators. Scalars cannot be implicitly converted to booleans.

• String: String values are collections of ASCII characters enclosed in dou-
ble quotes.

– Literals can be concatenated to other literals.

– When attempting to print values of other data types, implicit con-
version to string type occurs.

2.2 Identifiers

• Identifiers must begin with a letter (uppercase or lowercase), and may
contain letters, digits, and underscores.

2.3 Scope

• Variables have global scope.

• Variables declared can be reassigned but their memory allocation will
remain throughout the duration of the program.

2

2.4 Variable Declaration

Declaration of variables follow this general format:

• Without initialization

– datatype identifier ;

• With initialization

– datatype identifier = expression ;

• Type-specific initialization format:

– Scalar:

∗ scalar name = 9.8165;

– Matrix:

∗ matrix name = {1, 2, 3; 4, 5, 6; 7, 8, 9};
· Setting initial values is optional. If not initialized, the matrix

is created as a zero matrix of size 1× 1.

∗ This corresponds to a 3× 3 matrix.

∗ Row elements are separated by a comma, whereas column ele-
ments are separated by a semicolon.

– Boolean:

∗ boolean name = true;

∗ Initial values must be either true or false.

– String:

∗ string name = "hello";

3 Statements

3.1 Assignment Statements

Assignment statements in LAME are of the form

lvalue = expression ;

The expression is evaluated and the lvalue is set to equal its value. The lvalue
may be either a variable or a matrix/vector element access.

Example:

y = (x + 5) * 7;

A[1, 5] = 8;

3

3.2 Redimensioning of Matrices

The dim statement allows for the redimensioning of matrices. It is of the form

dim matrixname [rows , cols];

where both rows and cols must be integers greater than 0, or an exception is
raised.

In the event that either rows or cols is less than the current respective
sizes of the rows and/or columns, the matrix is truncated accordingly. In the
event that either rows or cols is greater than the current respective sizes of
the rows and/or columns, the appropriate number of rows and/or columns are
appended to the matrix, with each newly appended entry initialized to 0.

Example:

dim A[3, 2];

3.3 If Statements

The if statement is of the form

if(condition) statement

where the statement following the if is only executed if the condition evaluates
to true. Otherwise execution continues following the statement block.

The else statement, which cannot be used unless it immediately follows an
if statement section, is of the form

else statement

where the statement block following the else is only executed if the preceding
if evaluates to false.

Example:

if(A < B)

print A;

else

print B;

3.4 While Loops

The while statement is an iterative loop of the form

while(condition) statement

where the expression must evaluate to a boolean true or false. If the expression
is true, the statement is executed. The expression is then re-evaluted, and the
statement is executed so long as the condition is true.

Example:

4

while(A[1] < B[1])

A[1] = A[1] + 1;

3.5 Block Statements

A block statements is a list of statements enclosed in curly braces. It is generally
used to create an if statement or while loop with multiple statements that are
executed conditionally or repeatedly.

Example:

if(x >= 5) {

y = x + 7;

z = 3 * y;

}

3.6 Basic I/O

Printing to standard out is done using the print keyword, followed by the
expression to print.

Example:

print A;

4 Expressions

4.1 Literals

There are four types of literals in LAME: scalar literals, matrix literals, string
literals, and Boolean literals. A scalar literal takes the form of a nonempty se-
quence of digits, optionally followed by a decimal point and a second nonempty
sequence of digits, optionally followed by the letter E in either capital or lower-
case and a nonempty sequence of digits indicating an exponent. If it is present,
the sequence of digits indicating the exponent may be preceded by a minus sign
to indicate that the exponent is negative. The following are examples of scalar
literals:

5

7.3

7e-5

1.1e7

Matrix literals are composed of a sequence of rows separated by semicolons
and enclosed in curly braces. Each row consists of a sequence of scalar literals

5

separated by commas. All of the rows in a matrix literal must have the same
number of scalar literals in them. The following are examples of matrix literals:

{

1, 0, 0;

0, 1, 0;

0, 0, 1

}

{ 1.5, 0.5; 0.5, 1.5 }

A string literal is composed of a quotation mark, followed by a possibly
empty sequence of string characters and/or escape sequences, followed by an-
other quotation mark. A string character is any character except a quotation
mark, backslash, or newline. An escape sequence is a backslash followed by
either a quotation mark, a backslash, the lowercase letter N, or the lowercase
letter T. These escape sequences denote the presence of a quotation mark, back-
slash, newline, or tab, respectively, in the string. The following are examples of
string literals:

"Hello, World!"

"Say, \"Hello!\""

"First line\nSecond line"

"C:\\FOLDER\\FILENAME.EXT"

There are only two possible Boolean literal values, which are denoted by the
keywords true and false.

4.2 Unary Arithmetic Operators

Two unary arithmetic operators are provided: negation and transposition. Nega-
tion is a prefix operator indicated by a minus sign and has the standard math-
ematical meaning. It is valid on scalars and matrices. Attempting to negate a
string value will yield a compiler error. Transposition is a postfix operator indi-
cated by an apostrophe. It is valid on matrices and scalars. On matrices, it has
the standard mathematical meaning. On scalars, it has no effect. Transposing
a scalar yields that same scalar. Attempting to transpose a string will yield a
compiler error.

4.3 Binary Arithmetic Operators

LAME provides five binary arithmetic operators: addition, subtraction, mul-
tiplication, division, and exponentiation. These operators are denoted by the
plus sign, minus sign, asterisk, slash, and caret, respectively. All five operators
are infix operators and can be applied to scalars and have the standard math-
ematical meaning. Addition, subtraction, and multiplication can be applied

6

to pairs of matrices and have the standard mathematical meaning. A runtime
check will be performed to ensure that the two matrices are of sizes such that
the operations can actually be performed. Multiplication can be applied to a
matrix and a scalar and has the standard mathematical meaning. Division can
be applied to a matrix and a scalar and has the effect of multiplying the matrix
by the reciprocal of the scalar. The matrix must be the first operand and the
scalar must be the second. Exponentiation can be applied to a matrix and a
scalar and has the effect of multiplying the matrix by itself a number of times
given by the scalar. The matrix must be the first operand and the scalar must
be the second. A runtime check will be performed to ensure that the matrix
is square. The addition operator can be applied to strings and in this context
represents string concatenation. All other combinations of operand data types
will yield a compiler error.

4.4 Relational Operators

LAME provides six relational operators: less than, greater than, less than or
equal to, greater than or equal to, equal to, and not equal to. These operators
are denoted by <, >, <=, >=, ==, and !=, respectively. The last two of these
operators are valid on all data types. The first four are valid on scalars and
strings only. Attempting to use them on matrices or Boolean values will yield a
compiler error. All six relational operators produce a Boolean value indicating
whether the corresponding relation holds.

4.5 Logical Operators

LAME provides three logical operators: logical and, logical or, and logical not.
These operators are denoted by &&, ||, and !, respectively. The first two are
binary operators that take a pair of Boolean values and produce a Boolean value
giving the result of the logical operation. Logical not is a unary prefix operator
that takes a single Boolean value and produces a Boolean value giving its logical
negation. All three logical operators will yield a compiler error if they are used
on scalars, matrices, or strings.

4.6 Operator Precedence

The operator precedence and associativity for LAME is as given in the fol-
lowing table. Operators of the highest precedence are at the top of the table.

7

Operators Associativity

Transposition Not applicable
Negation Not applicable
Logical not Not applicable
Exponentiation Left-associative
Multiplication, division Left-associative
Addition, subtraction Left-associative
Less than, greater than, less than or equal to, greater than or equal to Left-associative
Equal to, not equal to Non-associative
Logical and Left-associative
Logical or Left-associative

4.7 Matrix/Vector Element Access

This section describes the syntax of the matrix element access and the vector
element access.

4.7.1 Matrix Element Access

The syntax of a matrix element access is as follows:

A[i,j]

This represents the matrix element Aij where A is the name of the matrix, i is
the row number and j is the column number.

The behavior of the matrix element access is as follows:

• For the first row, i = 0; for second row, i = 1; and so on. Similarly, for
first column, j = 0; for second column, j = 1; and so on. Formally, the
element access requires two scalars from set of natural numbers (including
zero) i.e. i, j ∈ N0 = {0, 1, 2, ...}.

• The matrix element access A[i,j] can be an lvalue. For example,

A[i,j] = 2;

assigns numeric value 2 to the matrix element Aij ;

• The matrix element access A[i,j] returns the numeric value of the matrix
element Aij . For example,

B[i,j] = A[i,j] + 2;

adds 2 to the numeric value of Aij and assigns it to the matrix element
Bij .

8

4.7.2 Vector Element Access

There is no vector type in LAME. However, the programmer is allowed to per-
form vector element access on a matrix. The syntax of a vector element access
is as follows:

V[i]

This represents the element Vi,0 where V is the name of the matrix, i is the row
number. The behavior of the Vector element access is as follows:

• For first element, i = 0; for second element, i = 1; and so on. Formally, the
vector element access requires a scalar literal from set of natural numbers
(including zero), i.e. i ∈ N0 = {0, 1, 2, ...}.

• The vector element access V[i] can be an lvalue. For example,

V[i] = 2;

assigns numeric value 2 to the element Vi,0;

• The vector element access V[i] returns the numeric value of the element
Vi,0. For example,

X[i] = V[i] + 2;

adds 2 to the numeric value of element Vi,0 and assigns it to the vector
element Xi,0;

4.8 Implicit Casting

In LAME, implicit casting is supported for the print statement and the string
concatenation operator. Although the print command is for the string data
type, the user can call the print command on scalars and matrices. Similarly,
string concatenation operator (+) when applied to ‘a string and a scalar’ or ‘a
string and a matrix’ results in implicit casting of the scalar or matrix to string
literal before actual concatenation is done. Implicit conversion to string data
type takes place as specified below:

4.8.1 Scalar Literal to String Literal

A scalar literal is converted to a string literal in the standard sense. As an
example, consider the statements

9

print 5;

x = 102;

print x;

print "Value of x is " + x;

The constant scalar value 5 is converted to string literal "5", while the third
statement results in implicit casting of 102 to string "102". In the fourth
statement, scalar x is implicitly casted to string literal "102", then concatenated
with the other string literal and then passed to print command. As a result, the
print keyword sees this string literal as its operand: "Value of x is 102".

4.8.2 Matrix Literal to String Literal

When a matrix is passed to the print command or a string concatenation oper-
ator along-with a string literal as the other operand, it is implicitly casted to a
string literal with a specified format that is specified in the rules below.

• Matrix Elements: The matrix elements are all scalar and follow the
rules specified in the previous paragraph about implicit casting from scalar
literals to string literals.

• Rows: When the matrix is converted to a string literal, each row is
separated by a newline (\n) character.

• Columns: When the matrix is converted to a string literal, each row is
separated by a tab (\t) character.

As an example of implicit conversion from matrix to string literal,

A = { 1, 0, 0; 0, 1, 0; 0, 0, 1 };

print A;

print "A =\n" + A

is converted to string literal

"1\t0\t0\n0\t1\t0\n0\t0\t1\n"

and printed as

1 0 0

0 1 0

0 0 1

in first print statement, and printed as

10

A =

1 0 0

0 1 0

0 0 1

in second print statement.

5 Keyword List

The following are keywords in LAME and therefore cannot be used as identifiers:

boolean

else

false

if

matrix

print

scalar

size_cols

size_rows

string

true

while

11

