

Abed Tony BenBrahim

ba2305@columbia.edu

JTemplate: Another Approach to

Document Template Markup

Languages
COMS W4115 Project Proposal

 1

Introduction

In domains such as web page development and model driven software development (MDSD),

the automated generation of documents is most often accomplished by the use of processing

instructions written in a markup language, embedded directly into a document template, to

conditionally or iteratively generate sections of the document or programmatically insert

content. Mainstream web development technologies such as Java Server Pages, PHP, Ruby on

Rails and Microsoft’s ASP(X) all employ this method of embedding code inside a document

template to generate dynamic content. In the same fashion, popular MDSD frameworks such as

openArchitectureWare (openArchitectureWare 2009) make extensive use of templates to

transform application models to source code.

The use of templates with embedded processing instructions greatly accelerate the initial

development of document generation applications. However this methodology imposes severe

penalties in terms of future maintainability. As the ratio of markup instructions to template

content increases (Figure 1), it becomes increasingly difficult to locate and correct defects.

Often, the template becomes a “write once” document, with each modification becoming

prohibitively more expensive and error-prone to undertake.

Figure 1- A view of an openArchitectureWare template to generate an Oracle PL/SQL package

Several approaches have emerged to achieve the holy grail of separating markup instructions

from content. The Apache Wicket web framework (Apache Wicket 2009) takes advantage of the

tree structure of HTML to insert content into specified nodes, an approach that works well for

 2

XML like and other hierarchical structures but presents severe challenges for less structured

content such as a source code. Terrence Parr’s StringTemplate library (Parr 2004) makes use of

minimal template markup and an output grammar to generate dynamic content. While this is a

promising approach, the use of output grammars and complex recursive constructs has

hindered the widespread adoption of this technique. The JTemplate language proposed in this

document explores another method of providing clear separation of markup instructions from

content.

The JTemplate Language

Defining Templates

In the JTemplate language, templates are first-class constructs. The following code snippet

shows a template for a Java bean, with each line of the template annotated with an optional

label (an integer or an identifier) and a start of line marker.

template javaBean{

1 #package mypackage;

 #

2 #import java.util.Date;

 #

3 #public class MyClass{

 #

4 # private Type field;

4 #

5 # public MyClass(){

 # }

 #

8 # public MyClass(fieldList){

9 # this.field=field;

8 # }

 #

6 # public Type getField(){

6 # return this.field;

6 # }

6 #

7 # public void setField(Type field){

7 # this.field=field;

7 # }

7 #

 #}

}

The labels serve to delineate individual lines or blocks of code that can be manipulated by

processing instructions. Likewise, processing instructions are first class constructs in the

JTemplate language, as shown in the following code snippet:

instructions for javaBean(appOptions, entity){

1 once: mypackage = endWith('.',appOptions.basePackage) + 'model';

 3

2 when (hasDateField(entity));

3 once: MyClass = toFirstUpper(entity.name);

4 foreach (field in entity.fields): Type=javaType(field), field=field.name;

5 once: MyClass = toFirstUpper(entity.name);

6 foreach (field in entity.fields):

 Type=javaType(field), field=field.name, Field=toUpper(field.name);

7 foreach (field in entity.fields):

Type=javaType(field), field=field.name, Field=toUpper(field.name);

8 once : MyClass = toFirstUpper(entity.name), fieldList=getFieldList(entity);

9 foreach (field in entity.fields): field=field.name;

}

A processing instruction consists of a line or block label matching a label in the corresponding

template, an expression specifying how the instruction should be processed (once, conditionally

or iteratively) and an optional list of text replacements. Additionally, processing instructions

accept arguments in the same way as a function declaration.

The JTemplate Language

The remainder of the JTemplate language consists of a subset of ECMAScript 5 (ECMA

International April 2009) operating in strict mode. JTemplate is an interpreted, dynamically

typed language. First-class types consist of integers, strings, doubles, Booleans, arrays, maps and

functions. All variables must be declared and initialized before being referenced. Control

structures include if/else, while, foreach and switch. The following incomplete code snippet

shows how the JavaBean template described above might be generated:

var model={

 entities: [

 {name: 'customer', fields: [

 {name: 'lastName', type: 'char', maxLength: 50},

 {name: 'firstName', type: 'char', maxLength: 50}

],

 references: [

 {entity: 'address', cardinality: 'one-to-many'}

]

 },

 {name: 'address', fields: [

 {name: 'address1', type:'char', maxLength: 100},

 {name: 'address2', type:'char', maxLength: 100}

]

 }

]

};

var appOptions={basePackage: 'edu.columbia.w4115'};

var hasDateField=function(entity){

 foreach (field in entity.fields){

 if (field.type=='date'){

 return true;

 }

 }

 4

 return false;

};

var main=function(){

 var path='gen/'+replace(appOptions.basePackage,',','/')+'/model/';

 mkDirs(path);

 foreach(entity in model.entities){

 var text=javaBean(appOptions, entity);

 writeFile(path+toFirstUpper(entity.name)+'.java', text, true);

 }

};

Built in Libraries

The design of the built in library functions reflect JTemplate’s primary use as a string

manipulation and file generation language.

String manipulation Functions

Name Description

length(s) Returns the length of string s

charAt(s,i) Returns the character at index i in string s

indexOf(s,ss) Returns the 0 based index of substring ss in string s

replace(s,ss,rs) Replaces all occurrences of ss with rs in string s

split(s, sep) Returns an array of substrings from s separated by sep

toLowercase(s) Returns s lowercased

toUppercase(s) Returns s uppercased

toFirstUpper(s) Returns s with the first letter uppercased

toFirstLower(s) Returns s with the first letter lowercased

endWith(s,c) Ends s with string c if it does not already end with c

File manipulation Functions

Name Description

writeFile(name,s) Writes string s to file at path given by name

mkDirs(s) Creates the directories indicated by string s

fileOpen(s,mode) Returns a handle for file s with the open mode “r”,”rw”,”w” or “a”

fileClose(f) Closes file handle f

readLine(f) Reads a line from file handle f into a string

writeString(f, s) Writes string s to file handle f

fileExists(s) Returns true if file s exists

Language Functions

Name Description

isDefined(v) Returns true if v is defined

undefine(v) Undefines variable v

typeOf(v) Returns the type of v as a string

 5

Project Plan

Schedule

Week Ending Milestone

May 30, 2009 Setup environment, Preliminary lexer, parser and AST, Project Proposal

June 6, 2009 Finalize parser and AST, symbol table implementation, Interpreter for
basic constructs (no templates)

June 13, 2009 Testing framework, Language Reference Manual

June 20, 2009 Language Reference Manual

June 27, 2009 Built in Library Implementation

July 4, 2009 Interpreter for template instructions

July 11, 2009 Semantic analysis (detect error in template labels, unused variable
warnings, etc…)

July 18, 2009 Open

July 25, 2009 Open

August 1, 2009 Final Report

August 8, 2009 Final Report

Development Environment

Project web site: http://code.google.com/p/ojtemplate/

Source code repository: Anon SVN http://ojtemplate.googlecode.com/svn/trunk/jtemplate/

IDE: Eclipse/OcaIDE

Build System: ocamlbuild

Works Cited
Apache Wicket. http://wicket.apache.org/.

ECMA International. ECMAScript Language Specification (Final Draft Standard ECMA-262).

Geneva: ECMA International, April 2009.

openArchitectureWare. http://www.openarchitectureware.org/.

Parr, Terrence. "Enforcing strict model-view separation in template engines." Proceedings of the

13th international conference on World Wide Web. New York: ACM, 2004.

http://code.google.com/p/ojtemplate/
http://ojtemplate.googlecode.com/svn/trunk/jtemplate/

