

A programming language for novice users to easily generate HTML forms

F I N A L P R O J E C T R E P O R T

Vinay Ahuja

va2199@columbia.edu

COMS W4115 – Programming Languages and Translators

May 14, 2009

Table of Contents

1. Introduction ... 4

1.1 Motivation ... 4

2. Language Tutorial .. 5

3. Language Reference Manual ... 10

3.1 Execution ... 10

3.2 Lexical Conventions .. 10

3.2.1 ASCII ... 10

3.2.2 Whitespace ... 10

3.2.3 Identifiers ... 10

3.2.4 Keywords ... 11

3.3 Types ... 11

3.3.1 Comments... 11

3.3.2 Whitespace ... 12

3.3.3 declare .. 12

3.3.4 link= ... 12

3.3.5 form= .. 12

3.3.6 input= ... 12

3.3.7 image= .. 13

3.3.8 int= ... 13

3.3.9 header ... 13

3.3.10 para ... 13

3.3.11 bold ... 13

3.3.12 line .. 14

3.3.13 button .. 14

3.3.14 open .. 14

3.3.15 close .. 14

3.3.16 insert ... 14

3.3.17 comment ... 14

3.4 Punctuations... 15

4. Project Plan .. 16

4.1 Programming Style .. 18

4.2 Project Timeline .. 19

5. Architectural Design .. 20

6. Test Plan .. 21

7. Lessons Learned .. 24

8. Appendix ... 25

1. Introduction
The Bridge programming language provides an ability for novice users to develop

web pages without necessarily being familiar with any HTML syntax. As implied by the

name, the language provides novice users a bridge to web based applications. It does so

by providing users an intuitive and easy to learn syntax which is simple enough to read

and understand, but at the same time powerful enough to create complex HTML pages.

The language is also intended to be used by student developers as a tool for quickly

creating prototypes. While HTML is certainly the most fundamental and simple building

block of any web based application, it is tedious, time consuming and error prone to

write manually. Bridge addresses these issues by providing a fairly concise set of

keywords and an intuitive way to use them. From the perspective of novice users, the

language will allow them to be shielded from all of the underlying HTML and from the

perspective of student developers, the language will allow them to focus on their

application code – for example web services running on a Java backend, and use Bridge

to quickly validate and demonstrate web service calls with a web page. Programs

written in Bridge will be all one-file programs. In the process of interpreting, if the

Bridge compiler comes across any errors, it will inform the user of the problem with user

friendly error messages and when possible also provide a recommended way of solving

the problem, similar to how common programming languages do. Once interpreted, the

resulting HTML code needs to be saved in a .html file which can then be opened in any

browser.

1.1 Motivation
The idea for developing the Bridge programming language stemmed from two main

motivations. First, it provided me an opportunity to learn how to build a compiler for a

language and in the process, understand the many intricacies involved with which I was

largely unfamiliar at the beginning of the project. While the idea of a programming

language to generate HTML code is simple, it nevertheless provided me ample

challenges to work my way through the concepts learned in the class and to apply them

in the form of an elegant, concise language and its compiler. The second motivation

came from having felt the need of such a language as a student developer myself in the

past semesters – a language which would allow me to quickly prototype a web page to

demonstrate or simply test some of the backend application features. Having a concise,

yet robust language that will help me accomplish this will be useful for me in my other

classes in the upcoming semesters as it will save me the time of developing a test user

interface for the application, time that I can then use for focusing on the backend

application features.

2. Language Tutorial

Generating HTML pages using Bridge is

1. Run bridge.byte executable

2. Type in a Bridge program

3. Save the resulting

Bridge Program

While the formal usage of the language is defined in the language referen

this section presents a simple practical example

easily get up to speed with understanding

a complete Bridge program which generates a basic Hello World

Generated HTML Code

Generated HTML Page in a Browser

The following is a more realistic User Information From generated using Bridge

run() {

open("");

title("Hello World Program in Bridge");

header1("Hello World Program in Bridge");

close("");
}

<html>

<body>

<title>Hello World Program in Bridge</title>

<h1>Hello World Program in B

</body>
</html>

Generating HTML pages using Bridge is as easy as the following –

Run bridge.byte executable

Type in a Bridge program, ctrl-Z to run

Save the resulting HTML code in a .html file and open in a browser

While the formal usage of the language is defined in the language referen

a simple practical example to demonstrate how a novice users can

with understanding and writing Bridge programs. The

a complete Bridge program which generates a basic Hello World HTML page

Generated HTML Page in a Browser

is a more realistic User Information From generated using Bridge

title("Hello World Program in Bridge");

header1("Hello World Program in Bridge");

<title>Hello World Program in Bridge</title>

<h1>Hello World Program in Bridge</h1>

HTML code in a .html file and open in a browser

While the formal usage of the language is defined in the language reference manual,

to demonstrate how a novice users can

The following is

HTML page –

is a more realistic User Information From generated using Bridge –

Bridge Program

userinfo() {

declare ssn;

declare fName;

declare mName;

declare lName;

declare email;

ssn input= "SSN: ", "11", "11";

fName input= "First Name: ", "25", "20";

lName input= "Last Name: ", "25", "20";

mName input= "Middle Name: ", "15", "10";

email input= "Email Address: ", "25", "20";

insert(ssn);

insert(fName);

insert(lName);

insert(mName);

insert(email);

}

address() {

declare apt;

declare street;

declare city;

declare state;

declare zip;

declare country;

apt input= "Apartment Number: ", "5", "5";

street input= "Street: ", "45", "40";

city input= "City: ", "35", "30";

state input= "State: ", "2", "2";

zip input= "Zip: ", "5", "5";

country input= "Country: ", "20", "20";

insert(apt);

insert(street);

insert(city);
insert(state);

insert(zip);

insert(country);

}

horizontalLine() {

insert("line");

}

image(source, width, height) {

declare image1;

image1 image= source, width, height;

insert(image1);

}

form() {

declare form1;

form1 form= "POST", "/action.do";

insert(form1);

}

run() {

open("");

title("User Information Form");

form();

header3("User Information Form");

userinfo();

address();

horizontalLine();

image("100", "100",

"C:\Users\Vinay\Pictures\cu_home_alma_mater.jpg");

insert(button "submit", "Submit");

insert(button "reset", "Reset");

close("");

}

Generated HTML Code

<html>

<body>

<title>User Information Form</title>

<form onsubmit="return true" method="POST"

action="/action.do">

<h3>User Information Form</h3>

<p>SSN: <input type="text" maxlength="11"

name="11" size="11">

<p>First Name: <input type="text" maxlength="25"

name="20" size="25">

<p>Last Name: <input type="text" maxlength="25"

name="20" size="25">

<p>Middle Name: <input type="text" maxlength="15"

name="10" size="15">

<p>Email Address: <input type="text"

maxlength="25" name="20" size="25">

<p>Apartment Number: <input type="text"

maxlength="5" name="5" size="5">

<p>Street: <input type="text" maxlength="45"

name="40" size="45">

<p>City: <input type="text" maxlength="35"

name="30" size="35">

<p>State: <input type="text" maxlength="2"

name="2" size="2">

<p>Zip: <input type="text" maxlength="5" name="5"

size="5">

<p>Country: <input type="text" maxlength="20"

name="20" size="20">

<hr>

<img

src="C:\Users\Vinay\Pictures\cu_home_alma_mater.jp

g" width="100" height="100">

<input type="submit" value="Submit">

<input type="reset" value="Reset">

</body>

</html>

Generated HTML Page in a Browser

Generated HTML Page in a Browser

3. Language Reference Manual

This section formally defines the Bridge programming language, its syntax and

semantics so that users and developers can understand the basic elements and start to

write programs in this language.

3.1 Execution
The Bridge language can be run by executing the bridge.byte executable. The

second step is to type in the Bridge program itself. In the process, the interpreter scans

the input line by line in the lexical analysis stage, which results in tokens explained later

in this document. The tokens are then parsed to verify if the input is a valid, syntactically

correct program. This stage is followed by a semantic analysis and the generation of the

HTML code as an output which can then be viewed in any browser.

3.2 Lexical Conventions
A Bridge program is comprised of a single file written in ASCII character set.

Following the convention of other common languages – comments, tabs and newlines

as defined below are ignored. Whitespace is required to separate tokens and is used by

the parser to identify the beginning and the end of a token. At the lexical analysis stage

a Bridge program can be thought of as a single line program containing the tokens

described below separated by whitespace. It is also important to note that Bridge is a

single-typed language. Everything in Bridge is internally handled as a String.

3.2.1 ASCII
 Includes all of the 128 characters defined in the USASCII code chart. Every single

element of a Bridge program is made up of some combination of these characters which

the parser determines to be a part of the language.

3.2.2 Whitespace
 Whitespace is used to identify one token apart from another.

3.2.3 Identifiers
 An identifier is defined as a combination of alphanumeric characters [a-z][A-

Z][0-9] and must start with a lower case alphabet [a-z].

3.2.4 Keywords
The following identifiers are reserved keywords and therefore may not be used

in any other context:

 declare

link=

 form=

 input=

 image=

 int=

header[1-6]

para

 bold

line

 button

 open

 close

 insert

 comment

3.3 Types

Bridge is a single typed language and at the most basic level everything is a

string. As documented in the following keyword definitions, it is how a declaration is

made which determines the usage of a given variable.

3.3.1 Comments

Comments in Bridge are identified by starting a line with /* which identifies the

entire given line as a comment. The Bridge interpreter does not support nested

comments. Multi-line comments must be prefixed with /* on each line.

comment: /* commentString

commentString: ASCII characters

Example:
 /* This is a comment in Bridge language

3.3.2 Whitespace

Whitespace helps identify one token from another.

whitespace: ‘ ’+

3.3.3 declare

The declare keyword is used to make a declaration of a variable

declare: ['_']['a'-'z']['a'-'z' 'A'-'Z' '0'-'9']*

Example:

declare x;

3.3.4 link=

The link= keyword is used to assign a link to a variable

link=: identifier link= url, caption

identifier: as defined in 3.2.3

url: ASCII characters

caption: ASCII characters

3.3.5 form=

The form= keyword is used to assign a form to a variable

form=: identifier form= method, action

identifier: as defined in 3.2.3

method: ASCII characters

action: ASCII characters

3.3.6 input=

The input= keyword is used to assign an input text box to a variable

input=: identifier input= label, maxLength/size, name

identifier: as defined in 3.2.3

maxLength/Size: ASCII characters

name: ASCII characters

3.3.7 image=

The image= keyword is used to assign an image to a variable

image=: identifier image= source, width, height

identifier: as defined in 3.2.3

width: ASCII characters

name: ASCII characters

3.3.8 int=

The int= keyword is used to assign an image to a variable

int=: identifier int= int

identifier: as defined in 3.2.3

int: [0-9]

3.3.9 header

The header keyword is used to create and insert headings in the generated HTML

page

header: [header1 | header2 | header3 | header4 |
header5| header6] headerString

headerString: ASCII characters

3.3.10 para

The para keyword is used to create and insert HTML paragraphs in the generated

HTML page

para: para paragraphString

paragraphString: ASCII characters

3.3.11 bold

The bold keyword is used to create and insert bold text in the generated HTML

page

bold: bold boldString

boldString: ASCII characters

3.3.12 line

The line keyword is used to create and insert a horizontal line in the generated

HTML page

line: insert(“line”)

3.3.13 button

The button keyword is used to create and insert a button in the generated HTML

page

button: insert(button type, value)

type: ASCII characters

value: ASCII characters

3.3.14 open

The open keyword is used to generate the standard opening tags of a HTML page

open: open(“”)

3.3.15 close

The close keyword is used to generate the standard closing tags of a HTML page

close: close(“”)

3.3.16 insert

The insert keyword is used to insert a link, form, input text box, image and a

horizontal line in the generated HTML page

insert: insert(id)

id: link, form, input, image, line

link: as defined in section 3.3.4

form: as defined in section 3.3.5

input: as defined in section 3.3.6

image: as defined in section 3.3.7

line: as defined in section 3.3.12

3.3.17 comment

The comment keyword is used to insert comments in the generated HTML page

comment: comment(“commentString”)

commentString: ASCII characters

3.4 Punctuations

/*

Used for adding comments in the program text

()

Used for passing arguments to a function

f(arg1, arg2, argn)

f: function

arg1-argn: arguments to the function

{}

Used for grouping a block of statements and associate it with a given function

{

statement1;

statement2;

…

statementn;

}

;

Used for terminating a statements

statement;

,

Used for separating arguments

arg1,arg2,… , argn

=

Used as an assignment operator

id = value

id: identifier

identifier: as defined in 3.2.3

value: ASCII characters

“

Used to identify a string

“string”

string: ASCII characters

4. Project Plan

Since the project for writing an interpreter included a steep learning curve with both

a new language oCaml as well new concepts like scanning, parsing, lexical analysis, etc.,

it was essential to have a detailed yet practical project plan that would allow me, as a

one-person team, to accomplish both the goals that were set for this class – 1. To

understand “what” programming languages are, and 2. “How” to build compilers /

interpreters for these languages.

I started off by first focusing on getting up to speed with oCaml. With Java being the

only language I have used over the past four years, it was a challenge to think

“functionally” in order to be able to write programs in oCaml. As a student totally new

to oCaml, I realized that writing programs in a notepad text file was inefficient and very

error-prone for a beginner, as other languages like Java have well developed IDEs like

Eclipse which for example help you identify and therefore correct syntax errors which a

beginner is bound to make numerous times, right at the time as you are typing the

program.

I therefore spent some time looking for IDEs that would assist in writing, compiling

and running oCaml programs quickly and efficiently. I settled down with OcaIDE,

available at http://ocaml.eclipse.ortsa.com:8480/ocaide/ which was also briefly

discussed in one of the class lectures later on. I found this Eclipse plug-in for oCaml to be

of great help. Features like auto-completion were very helpful as they present the

available API and provide a brief description about each of the available options and

then allow you to make a choice and proceed. In many cases, like the ‘if then else’, the

IDE even provides one with a template to fill in the values with, much like the features

available in Java. For example, using the Map for scope management, if one types in the

keyword Map followed by a ‘.’ the IDE presents the available options and a brief

description as shown in the snapshot below.

The above is of course possible by searching online as one is writing the program in a

notepad text file, however from a beginners point of view, having features like this

available all in one place while one is writing the program is a great help and over the

course, helps save a lot of time which can then be utilized for learning and

implementing the concepts.

Using the OcaIDE also helped as it visually arranged all the source code in an

organized manner as shown in this screenshot, with the source code file names in the

Navigator pane on the left hand side, the source code file contents in the right hand side

top panel and a convenient Console window to run Bridge programs –

This also fully automated the build process by simply configuring the IDE to use the

source files for generating the bridge.byte executable -

4.1 Programming Style

With an IDE and the development environment all set up, my first goal was to have

a small “Hello World” type of interpreter working, and even though looking back in the

semester this now seems like a simple and easily attainable goal, I believe having this

simple example working was my first major milestone as well as the most challenging

milestone in the entire timeline of this project. It was the most challenging because

even though it was an extremely basic interpreter, it still required all the different pieces

like the scanner, parser, abstract syntax tree, the interpreter and the top level to fit in

properly and work in harmony with each other. Everything else in the Bridge project is

built upon this simple example, one piece at a time.

Working as a single-person team presented me with the privilege of managing

everything by myself and therefore I chose to follow an iterative programming style.

Under this mechanism, a project is developed in iterations and each iteration delivers a

set of functionalities, which are then tested, documented before moving on two the

next iteration. I deliberately chose this style of programming because of its following

plus points –

1. At all times, the project is always functional meaning that after a particular

iteration has been completed, then the project has a working, deliverable

functionality that has been implemented as of that iteration.

2. The iterative style of programming helps divide the overall set of functionalities

into smaller, more manageable chunks. This helps as it breaks one single

deadline at the end of the semester into a number of deadlines, therefore

giving the opportunity to make adjustments at the end of each iteration as

compared to reaching the end of the semester and realizing there is a full set of

important functionalities that cannot be completed in the remaining time.

3. Developing in iterations also helps as an efficient backup management. Since

this was a single person project, I did not make use of source code control

systems as all files were being edited and managed by just one person.

Nevertheless, this does not reduce the need of having backups. Each successful

iteration during the development this project also became a backup to revert to

when necessary.

4. Each iteration has its own set of test cases which specifically test the

functionality delivered in that particular iteration. This helps keep all

functionality tested throughout the iterations provided that after each iteration,

the test cases developed in all the previous iterations are run to ensure no

functionality is broken.

4.2 Project Timeline

Description Functionalities Date Finalized

Initial Project Proposal N/A February 10, 2009

Eclipse OcaIDE Dev

Environment Setup
N/A February 18, 2009

Iteration One
“Hello World”

interpreter
March 8, 2009

Language Reference Manual N/A March 10, 2009

Iteration Two Scope Management April 3, 2009

Iteration Three
HTML links, input text

boxes generation
April 10, 2009

Iteration Four
HTML forms, image

setup generation
April 19, 2009

Iteration Five
General HTML tags

generation
April 26, 2009

Iteration Six

Finalizing test cases

developed in all

iterations

May 9, 2009

Final Report N/A May 14, 2009

5. Architectural Design

Architectural Design

6. Test Plan

Since Bridge is a non-mathematical language and generates HTML pages intended to

be viewed in a browser, the testing had to be a manual effort and required opening

each generated HTML file in a browser and inspecting its results. To maintain

functionality throughout all the software development iterations, a separate folder was

kept for each of the functionality being tested and was run after each iteration. The

following table provides a list of all the test cases and a brief description of the

functionality they test –

Test Name Functionality Tested

HelloWorld

The first and the most basic Bridge program –

generates an HTML page with the text “Hello World”

printed in header1 font

Headers Validates header1, header2, header3, header4,

header5 and header6 HTML tags

Paragraphs Generates an HTML page with three paragraphs

Links Generates an HTML page with three HTML links

InputTextBoxes Validates the generation of input text boxes

Images Allows the insertion of images in an HTML page

Buttons
Generates an HTML page with ‘Submit’ and ‘Reset’

buttons

Forms

Generates an HTML POST form with a user’s first and

last name as the two input fields. Also included are

‘Submit’ and ‘Reset’ buttons.

Lines
Validates the usage of a horizontal line generally

used to divide different sections of a form

Bold Validates the generation of text in bold font in the

HTML page

Comments Allows a user to insert comments in the generated

HTML page

FunctionCall Tests the functionality of being able to invoke

functionA() from within the body of functionB()

FunctionArgs Tests the functionality of passing in arguments to

functionA(arg1, arg2) which then uses arg1 and arg2

for the relevant HTML task from within the body of

functionB()

UserInfoForm A realistic user information HTML form

 The above test cases were chosen with two considerations – 1. To be able to use the

Bridge language to generate the most commonly used HTML pages, 2. To be able to

demonstrate the usage of the compiler / interpreter concepts learned in the class. The

following few test cases provide an example of these considerations which were taken

into account throughout software development iterations –

- Function Call Bridge Program

- Generated HTML page

- HTML page in a browser

userName() {

declare fName;

declare lName;

fName input= "First Name ", "20", "20";

lName input= "Last Name ", "20", "20";

insert(fName);

insert(lName);

}

run() {

open("");

title("Function Call Test");

userName();

close("");

}

<html>

<body>

<title>Function Call Test</title>

<p>First Name <input type="text" maxlength="20"

name="20" size="20">

<p>Last Name <input type="text" maxlength="20"

name="20" size="20">

</body>
</html>

- Function Call with Arguments Bridge Program

- Generated HTML page

createform(arg1, arg2) {

insert(arg1);

insert(arg2);

}

run() {

declare fName;

declare lName;

fName input= "First Name ", "20", "20";

lName input= "Last Name ", "20", "20";

open("");

title("Function Argument Test");

createform(fName, lName);

close("");

}

<html>

<body>

<title>Function Argument Test</title>

<p>Last Name <input type="text" maxlength="20"

name="20" size="20">

<p>First Name <input type="text" maxlength="20"

name="20" size="20">

</body>
</html>

7. Lessons Learned

I think the three biggest lessons I learned in this class were –

1. To have an understanding of how programming languages operate. Before

this class, Java has been the primary language that I have been using for the

most part. And any other language seemed to be a completely different

approach to solving a problem, largely due to the difference in the syntax.

However after this class, having an understanding of the scanning process,

converting the input stream into a set of tokens, the parsers and the abstract

syntax trees, it became apparent that under the covers most language

operate the same way and differ only in the way they present their syntax to

the user. I think learning the above concept will prove very important as it

changes the way one approaches a new programming language. When I am

confronted with a new language now, there will obviously be a learning curve

with the syntax, however besides that I will have an understanding that

under the covers this new language is very likely operating the same way as

one of the languages that I already know of.

2. The second most important lesson I learned in this class was to have a better

understanding of compilers. By implementing a basic compiler / interpreter

provided an opportunity to understand some of the many complexities that

go on in building a compiler. Being exposed to some of these complexities

during the term of the semester also made me learn to appreciate other well

established languages and have a better understanding of the amount of

effort it takes under the covers to make software development easier – for

example, by providing as user friendly errors as possible and indicating the

source of the problem as accurately as possible.

3. The third most important lesson I learned in this class was obviously to have

an opportunity to learn a new programming language – oCaml, which is a

language much different from other common languages like Java, C++ and C,

per se. Learning oCaml required thinking differently. While in the beginning it

seemed ‘unintuitive’, with enough practice it started to make sense and in

the end it brings the confidence of being able to learn a new language as well

as write an interpreter using it.

8. Appendix

- scanner.mll

{ open Parser }

rule token = parse

 [' ' '\t' '\r' '\n'] { token lexbuf }

| "/*" { comment lexbuf }

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ',' { COMMA }

| '=' { ASSIGN }

| "int=" { INTASSIGN }

| "link=" { LINKASSIGN }

| "form=" { FORMASSIGN}

| "input=" { INPUTASSIGN }

| "image=" { IMAGEASSIGN }

| "button" { BUTTON }

| "return" { RETURN }

| "declare" { DECLARE }

| ['0'-'9']+ as lxm { INT_LITERAL(lxm) }

| '"'[^'"']*'"' as lxm { STRING_LITERAL(lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9']* as lxm {

ID(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^

Char.escaped char)) }

and comment = parse

 "*/" { token lexbuf }

| _ { comment lexbuf }

- parser.mly

%{ open Ast %}

%token SEMI

%token LPAREN

%token RPAREN

%token LBRACE

%token RBRACE

%token COMMA

%token QUOT

%token ASSIGN

%token INTASSIGN

%token LINKASSIGN

%token FORMASSIGN

%token INPUTASSIGN

%token IMAGEASSIGN

%token DECLARE

%token BUTTON

%token RETURN

%token <string> INT_LITERAL

%token <string> STRING_LITERAL

%token <string> ID

%token EOF

%left ASSIGN

%left INTASSIGN

%left LINKASSIGN

%left TITLEASSIGN

%left FORMASSIGN

%left INPUTASSIGN

%left IMAGEASSIGN

%start program

%type <Ast.program> program

%%

program:

 /* nothing */ { [], [] }

 | program vdecl { ($2 :: fst $1), snd $1 }

 | program fdecl { fst $1, ($2 :: snd $1) }

fdecl:

 ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list

RBRACE

 { {

 fname = $1;

 formals = $3;

 locals = List.rev $6;

 body = List.rev $7 } }

- parser.mly contd.

formals_opt:

 /* nothing */ { [] }

 | formal_list { List.rev $1 }

formal_list:

 ID { [$1] }

 | formal_list COMMA ID { $3 :: $1 }

vdecl_list:

 /* nothing */ { [] }

 | vdecl_list vdecl { $2 :: $1 }

vdecl:

 DECLARE ID SEMI { $2 }

stmt_list:

 /* nothing */ { [] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 expr SEMI { Expr($1) }

 | RETURN expr SEMI { Return($2) }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

expr_opt:

 /* nothing */ { Noexpr }

 | expr { $1 }

expr:

 INT_LITERAL { Int_Literal($1) }

 | STRING_LITERAL { String_Literal($1) }

 | ID { Id($1) }

 | ID ASSIGN expr { Assign($1, $3) }

 | ID INTASSIGN expr { IntAssign($1, $3) }

 | ID LINKASSIGN expr COMMA expr { LinkAssign($1, $3,

$5) }

 | ID FORMASSIGN expr COMMA expr { FormAssign($1, $3,

$5) }

 | ID INPUTASSIGN expr COMMA expr COMMA expr {

InputAssign($1, $3, $5, $7) }

 | ID IMAGEASSIGN expr COMMA expr COMMA expr {

ImageAssign($1, $3, $5, $7) }

 | ID LPAREN actuals_opt RPAREN { Invoke($1, $3) }

 | BUTTON expr COMMA expr { Button ($2, $4) }

 | LPAREN expr RPAREN { $2 }

actuals_opt:

 /* nothing */ { [] }

 | actuals_list { List.rev $1 }

- parser.mly contd.

- ast.mli

actuals_list:

 expr { [$1] }

 | actuals_list COMMA expr { $3 :: $1 }

type expr =

 Int_Literal of string

 | String_Literal of string

 | Id of string

 | Assign of string * expr

 | IntAssign of string * expr

 | LinkAssign of string * expr * expr

 | FormAssign of string * expr * expr

 | InputAssign of string * expr * expr * expr

 | ImageAssign of string * expr * expr * expr

 | Button of expr * expr

 | Invoke of string * expr list

 | Noexpr

type stmt =

 Block of stmt list

 | Expr of expr

 | Return of expr

type func_decl = {

 fname : string;

 formals : string list;

 locals : string list;

 body : stmt list;

}

type program = string list * func_decl list

- interpret.ml

open Ast

module NameMap = Map.Make(struct

 type t = string

 let compare x y = Pervasives.compare x y

end)

exception ReturnException of string * string NameMap.t

let run (vars, funcs) =

 let func_decls = List.fold_left

 (fun funcs fdecl -> NameMap.add fdecl.fname fdecl

funcs)

 NameMap.empty funcs

 in

 let rec trimQuote string =

 let l = String.length string in

 if string.[0]='"' then

 trimQuote (String.sub string 1 (l-1))

 else if string.[l-1]='"' then

 trimQuote (String.sub string 0 (l-1))

 else string

 in

 let rec invoke fdecl actuals globals =

 let rec eval env = function

 Int_Literal(i) -> i, env

 | String_Literal(i) -> i, env

 | Noexpr -> "1", env

 | Id(var) ->

 let locals, globals = env in

 if NameMap.mem var locals then

 (NameMap.find var locals), env

 else if NameMap.mem var globals then

 (NameMap.find var globals), env

 else raise (Failure ("undeclared

identifier in Id " ^ var))

 | Assign(var, e) ->

 let v, (locals, globals) = eval env

e in

 if NameMap.mem var locals then

 v, (NameMap.add var v locals, globals)

 else if NameMap.mem var globals then

 v, (locals, NameMap.add var v globals)

 else raise (Failure ("undeclared

identifier in Assign " ^ var))

- interpreter.ml contd.

 | IntAssign(var, e) ->

 let v, (locals, globals) = eval env

e in

 if NameMap.mem var locals then

 v, (NameMap.add var v locals, globals)

 else if NameMap.mem var globals then

 v, (locals, NameMap.add var v globals)

 else raise (Failure ("undeclared

identifier in Assign " ^ var))

 | LinkAssign(var, e, e2) ->

 let v, (locals, globals) = eval env

e in

 let v2, (locals, globals) =

eval env e2 in

 let trimV2 = trimQuote v2 in

 if NameMap.mem var locals then

 v, (NameMap.add var (""

^ trimV2 ^ "
") locals, globals)

 else if NameMap.mem var globals then

 v, (locals, NameMap.add var ("<a href=" ^

v ^ ">" ^ trimV2 ^ "
") globals)

 else raise (Failure ("undeclared

identifier in LinkAssign " ^ var))

 | FormAssign(var, methodName, action) ->

 let v, (locals, globals) = eval

env methodName in

 let v2,(locals, globals) =

eval env action in

 if NameMap.mem var locals then

 v, (NameMap.add var ("<form

onsubmit=\"return true\" method=" ^ v

 ^ " action=" ^ v2 ^ ">")

locals, globals)

 else if NameMap.mem var globals then

 v, (locals, NameMap.add var ("<a href=" ^

v ^ "dotcom") globals)

 else raise (Failure ("undeclared

identifier in LinkAssign " ^ var))

 | InputAssign(var, label, size, name) ->

 let labelStr, (locals, globals) =

eval env label in

 let trimmedLabelStr =

trimQuote labelStr in

 let sizeStr,(locals, globals)

= eval env size in

 let nameStr,(locals, globals)

= eval env name in

 if NameMap.mem var locals then

 trimmedLabelStr, (NameMap.add var ("<p>" ^
trimmedLabelStr

- interpreter.ml contd.

 ^ " <input type=\"text\"

maxlength=" ^ sizeStr ^ " name="

 ^ nameStr ^ " size=" ^

sizeStr ^ ">") locals, globals)

 else if NameMap.mem var globals then

 trimmedLabelStr, (locals, NameMap.add var

("<a href=" ^ trimmedLabelStr ^ "dotcom") globals)

 else raise (Failure ("undeclared

identifier in LinkAssign " ^ var))

 | ImageAssign(var, src, width, height) ->

 let srcStr, (locals, globals) = eval

env src in

 let widthStr,(locals, globals)

= eval env width in

 let heightStr,(locals,

globals) = eval env height in

 if NameMap.mem var locals then

 srcStr, (NameMap.add var ("<img src=" ^

srcStr

 ^ " width=" ^ widthStr ^ "

height="

 ^ heightStr ^ ">") locals,

globals)

 else if NameMap.mem var globals then

 srcStr, (locals, NameMap.add var ("<img

src=" ^ srcStr

 ^ " width=" ^ widthStr ^ "

height="

 ^ heightStr ^ ">") globals)

 else raise (Failure ("undeclared

identifier in LinkAssign " ^ var))

 | Invoke ("bold", [e]) ->

 let v, env = eval env e in

 let vStr = trimQuote v in

 print_endline("" ^ vStr ^

"
");

 "0", env

 | Button (bType, value) ->

 let bTypeStr, (locals, globals) =

eval env bType in

 let valueStr, (locals, globals) =

eval env value in

 "<input type=" ^ bTypeStr ^ "

value=" ^ valueStr ^ ">", (NameMap.add "dummyKey" ("")

locals, globals)

 | Invoke ("close", [e]) ->

 let v, env = eval env e in

 print_endline("</body>\n</html>");

 "0", env

- interpreter.ml contd.

 | Invoke ("open", [e]) ->

 let v, env = eval env e in

 print_endline("<html>\n<body>");

 "0", env

 | Invoke ("header1", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h1>" ^ vTrim ^

"</h1>");

 "0", env

 | Invoke ("header2", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h2>" ^ vTrim ^

"</h2>");

 "0", env

 | Invoke ("header3", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h3>" ^ vTrim ^

"</h3>");

 "0", env

 | Invoke ("header4", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h4>" ^ vTrim ^

"</h4>");

 "0", env

 | Invoke ("header5", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h5>" ^ vTrim ^

"</h5>");

 "0", env

 | Invoke ("header6", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<h6>" ^ vTrim ^

"</h6>");

 "0", env

 | Invoke ("para", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<p>" ^ vTrim ^

"</p>");

 "0", env

- interpreter.ml contd.

 | Invoke ("text", [e]) ->

 let v, env = eval env e in

 print_endline("
" ^ v ^ "</br>");

 "0", env

 | Invoke ("comment", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<!--" ^ vTrim ^ "--

>");

 "0", env

 | Invoke ("title", [e]) ->

 let v, env = eval env e in

 let vTrim = trimQuote v in

 print_endline("<title>" ^ vTrim ^

"</title>");

 "0", env

 | Invoke ("insert", [e]) ->

 let v, env = eval env e in

 if (v = "\"line\"") then

 print_endline("<hr>")

 else

 print_endline (v);

 "0", env

 | Invoke (f, actuals) ->

 let fdecl =

 try NameMap.find f func_decls

 with Not_found -> raise (Failure ("undefined

function " ^ f))

 in

 let actuals, env = List.fold_left

 (fun (actuals, env) actual ->

 let v, env = eval env actual in v ::

actuals, env)

 ([], env) actuals

 in

 let (locals, globals) = env in

 try

 let globals = invoke fdecl actuals

globals in "0", (locals, globals)

 with ReturnException(v,

globals) -> v, (locals, globals)

 in

 let rec exec env = function

 Block(stmts) -> List.fold_left exec

env stmts

 | Expr(e) -> let _, env = eval env e in env

 | Return(e) ->

 let v, (locals, globals) = eval env e in

 raise (ReturnException(v, globals))

 in

- interpreter.ml contd.

- bridge.ml

 let locals =

 try List.fold_left2

 (fun locals formal actual -> NameMap.add

formal actual locals)

 NameMap.empty fdecl.formals actuals

 with Invalid_argument(_) ->

 raise (Failure ("wrong number of

arguments passed to " ^ fdecl.fname))

 in

 (* Initialize local variables to 0 *)

 let locals = List.fold_left

 (fun locals local -> NameMap.add

local "0" locals) locals fdecl.locals

 in

 (* Execute each statement in sequence, return

updated global symbol table *)

 snd (List.fold_left exec (locals, globals)

fdecl.body)

 (* Run a program: initialize global

variables to 0, find and run "page" *)

 in let globals = List.fold_left

 (fun globals vdecl1 -> NameMap.add vdecl1 "0"

globals) NameMap.empty vars

 in try

 invoke (NameMap.find "run" func_decls) []

globals

 with Not_found -> raise (Failure ("did not

find the run() function"))

let insert = false

let _ =

 let lexbuf = Lexing.from_channel stdin in

 let program = Parser.program Scanner.token lexbuf in

 ignore (Interpret.run program)

