COMS-W4115 Spring 2009
Programming Languages and Translators

Professor Stephen Edwards

Minimalistic BASIC Compiler (MBC)

Document Version 1.1

Project Proposal

Joel Christner (jec2160)
via CVN

February 10t, 2009

MBC Overview

Minimalistic BASIC Compiler (MBC) provides a simple means of compiling BASIC
programs, and supports many of the commonly-used commands and features of the
BASIC language. MBC will output C-compatible code which the user can then
compile with a C compiler and execute.

Language Architecture

MBC will compile BASIC programs from source code into executable form. MBC will
check each program that a user is attempting to compile and make sure the source
code adheres to well-known BASIC language structure. This includes the following,
which will be formally documented in a more structured manner in the language
reference manual):

Each line will be processed discretely; a new line character represents the
end of a line, and the contents of the line past the sequence identifier are
considered the instructions for that line

Each line will begin with a number called a ‘sequence identifier’, and these
numbers must be ascending from the beginning of the program. Sequence
identifiers must be between 1 and 65535

Whitespace is generally irrelevant, including whitespace that exists before or
after statements that follow sequence identifiers. However, a space must
exist between the first statement token and the line’s sequence identifier

Programs must be terminated through the use of the word ‘END’. Each use of
‘END’ must be done on a line with a sequence identifier, and multiple
instances of END may exist

Statements can be concatenated on the same line through the use of a colon
(1) separating the statements, for example:

o 10 PRINT “Hello World” : PRINT “Another print command”

Comments are supported through the use of the token REM, which indicates
that all text from REM to the end of the line is not to be compiled. Some
examples, each of which is valid:

o 10 PRINT “Hello World”: REM Hello World

Correct

o 10 REM Welcome to my program

Correct

o 20 PRINT A$ REM Hello

Correct

Basic mathematical functions are supported, including addition (+),
subtraction (-), multiplication (*), and division (/) between discrete values
and variables of the appropriate type

o Order of precedence:

= Multiplication and division take precedence over addition or
subtraction

* Functions are performed left to right according to precedence
= Explicit ordering can be forced through the use of parenthesis
= Example:

3*3+3-4%4+5

(3 *3) +3 - (4*4) +5
9+ 3 -16 + 5

=

3+3)-4*(4+5)

k
36 -4*09
1

- Comparisons can be used as part of expressions for both string variables and

integer variables
o Greater than (>)
o Less than (<)
o Equalto (=)
o Greater than or equal to (>=)
o Less than or equal to (<=)
o Notequal (<>)
o Integer variables support all of the above
o String variables support only equal to or not equal
o All comparisons are treated as BOOLEAN (true/false), therefore, are

not confused as assignments

- MBC will support two variable types: strings and integers. String variable
names must be followed immediately by a ($) character. Integer variable
names must not be followed by the ($) character

o

Variables do not need to be declared, and variable names must not be
the same as protected terms. Variable names are case sensitive

The item to the left of the equals sign will have its value transposed
with the value of the item on the right of the equals sign

String variables, when assigned, must have data encapsulated in
quotes, i.e.

= A$="“Hello World!”

Correct

= A$ =Hello World

Faill!

o

Integer variables, when assigned, must not have data encapsulated in
quotes, i.e.

. A: 4410051

Faill!

= A=100

Correct

Protected terms are not case sensitive, and the following terms are
considered protected terms:

O

O

O

O

o

FOR, TO, STEP, IF, THEN
GOTO, GOSUB, RETURN
PRINT, INPUT

REM

END

Loops, algorithmic behavior, and program control are supported through the
use of the following commands:

o

GOTO <seq_identifier> - causes the program to jump to the specific
point in the program

GOSUB <seq_identifier> - causes the program to run the subroutine
found at line noted by <seq_identifier>. The program will return to
the same point once a RETURN statement is reached

FOR <variable> = <val_a> TO <val_b> STEP <amount> - causes the
program to execute the statements between the FOR statement and
the NEXT <variable> statement

= Executes once for each time <val> is between or equal to
<val_a> and <val_b>

» STEP <amount> is an optional parameter, incrementing <val>
by <amount> for each iteration. If STEP <amount> is not
specified, a default increment of 1 is used, implying STEP 1

= The <variable> in the NEXT statement must be the same as the
<variable> in the FOR statement

= Example:
* 10FORI=1TO20STEP5
e 20 PRINT “Valueis “I
30 NEXT I

Value is 1
Value is 6
Value is 11
Value is 16

o IF <condition> THEN <command1> ELSE <command2>

= The <condition> is evaluated BOOLEAN for TRUE or FALSE. If
the result is TRUE, then <command1> is executed. If the result
if FALSE, then <command1> is not executed, but rather
<command?2> is executed.

» ELSE <command2> is an optional parameter for IF..THEN
statement blocks. If ELSE <command2> is not present and
<condition> is FALSE then <command1> is simply ignored and
program execution continues

= Example:

10 A=10
20 IF (A=20) THEN GOTO 200

Program will not jump to 200 and will continue normally

10 A=10
20 IF (A=10) THEN GOTO 100 ELSE GOTO 200

Program will jump to line 100

10 A=15
20 IF (A=10) THEN GOTO 100 ELSE GOTO 200

Program will jump to line 200

10 A=10
20 IF (A=10) THEN PRINT “Value of A: ", A

Value of A: 10

Text can be displayed on the screen using PRINT <data> as shown below, and
can support literal string or integers as well as variables or a combination
thereof. Any insertion of a variable after a string encapsulated in quotes <"”>
requires the use of a comma <,> after a closing quote <”>. Any insertion of a
variable after another variable requires a comma separate the two variables.
Appending a string to another string, or a string to a variable, requires a
comma before the opening quote.

nn

o PRINT - display some text on the screen, i.e.

10 PRINT “Hello World!”

Hello World!

20 PRINT A$

<contents of AS$>

10 PRINT “Console message: “, A$

Console message: <contents of AS$>

10 PRINT A$, B$, “Hello World!”, C$, “ “

<contents of A$><contents of B$>Hello World!<contents of C$><space>

= 10 PRINT

<blank line>

o INPUT - receive some input from the console

= 20 INPUT “What is your name”, A$

What is your name? <user could type response>

= 20 INPUT “What is the value”, B

What is the value? <user could type value here>
Examples

The following examples show programs that MBC can compile. There are far many
other

Example 1 - basic use of variable assignment, PRINT, INPUT, IF, THEN, ELSE, GOTO,
and END

10 REM Example

20 INPUT “Enter some text”, AS

30 INPUT “Enter some number greater than 07, A
40 B=0

50 IF A<=0 GOTO 30

60 IF B<A THEN PRINT AS$ ELSE GOTO 100

70 B =B + 1

80 GOTO 60

100 END

Example 2 - example 1 with GOSUB and RETURN
10 REM Example

20 INPUT “Enter some text”, AS

25 PRINT “You entered: “, AS$

30 INPUT “Enter some number greater than 07, A
35 PRINT “You entered: “,A

40 B=0

50 IF A<=0 GOTO 30

60 GOSUB 200

70 B =B + 1

80 IF B<A THEN GOTO 60

100 END

200 REM Subroutine

210 IF B<A THEN PRINT AS$

220 RETURN

Example 3 - example 1 re-written with FOR statements
10 REM Example
20 INPUT “Enter some text”, AS

30 INPUT “Enter some number greater than 07, A

35 IF A<=0 GOTO 30

40 FOR I = 0 TO A STEP 1
50 PRINT A$

60 NEXT I

100 END

Example 4 - example 1 re-written using IF, THEN, and ELSE
10 REM Example

20 INPUT “Enter some text”, AS

30 INPUT “Enter some number greater than 07, A

35 IF A<=0 GOTO 30

40 B=0

50 IF B<A THEN PRINT A$ ELSE GOTO 100

60 B =B + 1

70 GOTO 50

100 END

Limitations Known at Design Time
The following limitations have been recognized at design time:

* This compiler only supports a minimalistic version of BASIC and does not by
any stretch account for all of the capabilities provided by BASIC

Future Features

The following features are being considered for future releases of MBC, and should
time permit, may be added to the v1.0 release for the final project deliverable for
COMS-W4115.

* Support for DO..WHILE operations

Summary

MBC will provide a compiler for some of the core capabilities of the BASIC language.
While executing MBC against BASIC source code, the user will be given feedback on
the syntactical and lexical correctness of their BASIC program as well as areas that
require correction. Should MBC complete without error, the BASIC program will be
converted to C source code, which the user can then compile with their C compiler.

