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Introduction

Before mathematical models were used in neuroscience, models have mainly been limited to imprecise 
word models.  Such word models that have sounded reasonable in the past have turned out to be 
inconsistent and unworkable when trying to convert to a mathematical model [Abbott].  Simulation 
enables precise models to be tested on large interconnected networks.  The proposed language Synapse 
is a language specifically for modeling and testing neural networks.

While every neuron in the brain executes in parallel, most languages are written for architectures that 
execute sequential.  Even as parallel computing becomes more important, parallel support is usually 
added as an after-thought.  For example, CUDA relies on extending C and C++ so that it can take 
advantage of nVidia's graphic cards and OpenMP adds C preprocessor commands to enable, among 
other things, parallel for-loops.  One of the goals of Synapse is to create a language that is targeted for 
parallel execution from the ground up.

The name Synapse pays homage to the critical role of the synapse in the brain [LeDoux].  

The Language

Modules
The brain contains structures such as micronetworks, which typically contain 100 to 1000 neurons, and 
hypercolumns, which contain on the order of 10 to 100 micronetworks [Boothe].  A neural network 
defined by Synapse is structured into modules, which may be nested and can contain any number of 
neurons.

The following is an example of a definition of a module:

module Foobar ( in[5,5], a, b ) >> ( out, x, y )module Foobar ( in[5,5], a, b ) >> ( out, x, y )
{{

// ...// ...
}}

In this definition of FoobarFoobar, there are 27 declared input neurons and 3 declared output neurons.
The first parameter in[5,5]in[5,5] means that there is a 2d array of 25 neurons inside the module which can 
accept “action potentials” externally.

FoobarFoobar could be used as an instantiation of the module or can be used to instantiate multiple instances. 



For example:

$1 >> Foobar.in;$1 >> Foobar.in;

Reads the data from the first program parameter and inputs it into an instantiation of FoobarFoobar with the 
same name.  In this case the input video must consist of images that are 5x5 pixels.

Foobar foo[ dim($1,1), dim($1,2)];Foobar foo[ dim($1,1), dim($1,2)];

creates an instance of FoobarFoobar for every pixel of the first program parameter in a 2d array foofoo.

Activation Functions and Connections between Neurons and Modules
All of the activation functions will be defined in standard libraries.  They are based on the integrate-
and-fire model.  Future activation functions may, however, have memory; which means that previous 
input or output values may impact the current result.

Current activation functions include:
step( expression )step( expression )
sigmoid( expression )sigmoid( expression )

Neurons are connected by using an activation function like:

postsynaptic << function( expression );postsynaptic << function( expression );

or
postsynaptic << expression;postsynaptic << expression;

where postsynapticpostsynaptic is the neuron receiving the inputs, functionfunction is the activation function and 
expressionexpression is an “activating expression” that uses the presynaptic neurons (the neurons that send 
information to the postsynaptic neuron).  Local interneurons and neurons between modules are 
connected the same way.

Activation functions can also be defined for entire arrays:
postsynaptic[1:n] << function( expression[n] );postsynaptic[1:n] << function( expression[n] );

Where expression[n]expression[n] is an expression that results in an array of n values, for example:
postsynaptic[1:n] << function( .5*x[1:n]+.5*y[1:n] );postsynaptic[1:n] << function( .5*x[1:n]+.5*y[1:n] );

Selected elements of an array can also be defined, for example:
postsynaptic[1:2:end] << function( x[1:n]-y[1:n] );postsynaptic[1:2:end] << function( x[1:n]-y[1:n] );
postsynaptic[2:2:end] << function( y[1:n]-x[1:n] );postsynaptic[2:2:end] << function( y[1:n]-x[1:n] );

Each neuron in a module, including the output neurons, are defined by one and only one activation 
function inside the containing module.  Input neurons are also defined by one and only one activation 
function, although they are defined outside of the module.

Macros
dim( array, d )dim( array, d )

This macro returns the size of an array along the dd dimension.

wsum( array1, array2 )wsum( array1, array2 )

This macro multiplies each of the elements of array1 with the corresponding element of array2 and then 



sums all of the multiplied elements.

forfor

This macro makes it easier to define activation functions, since this language is intended to allow the 
simulation of very large networks.  For example, if we wanted to connect two arrays in reverse order 
using the sigmoid activation function the following code could be simplified from
out[1] << sigmoid( in[3] );out[1] << sigmoid( in[3] );

out[2] << sigmoid( in[2] );out[2] << sigmoid( in[2] );

out[3] << sigmoid( in[1] );out[3] << sigmoid( in[1] );

to
out[x] << sigmoid[ end - x + 1 ] for x=1:end;out[x] << sigmoid[ end - x + 1 ] for x=1:end;

when endend is used as an index, as it is in sigmoid[ end - x + 1 ]sigmoid[ end - x + 1 ], it stands for the last index.  When 
beginbegin or endend is used in the forfor expression, it stands for the first or last value respectively that results in 
a valid activation function.  The syntax for indices is borrowed from MATLAB, mean that 1:101:10 means 
1 through 10 and 1:2:101:2:10 means 1 through 10 in increments of 2 (1,3,5,7, and 9).

External Input and Output Files
The input and output files are not defined in Synapse but can vary by compiler and can be defined at 
runtime.  I plan on supporting sequences of images as the input and output of a compiled program.  The 
size of the input may be defined in the program, resulting in an error if any other size is given to it. 
The program will feed one input (or image) per time step.  The output will start to be written as soon as 
all of the output variables are defined (all of the neural pathways have been executed).  Since there may 
be feedback loops, each instance may depend on previous instances.

Example Program

The following program creates a network that models a network of on-center surround cells being 
applied to an image.

module OnCenterSurround ( ker[7,7] ) >> ( out )module OnCenterSurround ( ker[7,7] ) >> ( out )
{{

out << sigmoid( wsum( ker, out << sigmoid( wsum( ker, 
[ [ 
    0  ,  0  ,-.036,-.036,-.036,  0  ,  0  ;    0  ,  0  ,-.036,-.036,-.036,  0  ,  0  ;
    0  ,-.036,-.036,-.036,-.036,-.036,  0  ;     0  ,-.036,-.036,-.036,-.036,-.036,  0  ; 
  -.036,-.036,  0  , +.2 ,  0   -.036 -.036;  -.036,-.036,  0  , +.2 ,  0   -.036 -.036;
  -.036,-.036, +.2 , +.2 , +.2  -.036 -.036;  -.036,-.036, +.2 , +.2 , +.2  -.036 -.036;
  -.036,-.036,  0  , +.2 ,  0   -.036 -.036;  -.036,-.036,  0  , +.2 ,  0   -.036 -.036;
    0  ,-.036,-.036,-.036,-.036,-.036,  0  ;     0  ,-.036,-.036,-.036,-.036,-.036,  0  ; 
    0  ,  0  ,-.036,-.036,-.036,  0  ,  0  ;    0  ,  0  ,-.036,-.036,-.036,  0  ,  0  ;
]  ) );]  ) );

}}

OnCenterSurround on[ (dim($1,1)-6)/2, (dim($1,2)-6)/2 ];OnCenterSurround on[ (dim($1,1)-6)/2, (dim($1,2)-6)/2 ];

on[x-3,y-3].ker[:,:] << $1[x:x+6,y:x+6] for x=1:2:end, y=1:2:end;on[x-3,y-3].ker[:,:] << $1[x:x+6,y:x+6] for x=1:2:end, y=1:2:end;
$2[x,y] << on[x,y].out for x=begin:end, y=begin:end;$2[x,y] << on[x,y].out for x=begin:end, y=begin:end;
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