

Proposal for COAL

(COmplex Arithmetic Language)

February 8, 2009
Eliot Scull (CVN)
e.scull@computer.org

1111 Why UWhy UWhy UWhy Use COAL?se COAL?se COAL?se COAL?

High-level languages like C or Java are typically expressive enough to allow
mathematical computations and algorithms be clearly and intuitively coded.
However, when it comes to computations involving complex numbers, this is
not always the case, and relatively simple computations can turn out to look
rather arcane when coded. This can become an issue when trying to bring up
new code or maintain already released production code that uses complex
math.

There are several well established ways for expressing complex math more
naturally in code. Languages like C++ provide operator overloading and rich
support for custom types – but they are not native to C++ and have to be
defined. Environments like Matlab or Scilab could also be used but have
overhead associated with them which may not be appropriate for some
applications, like embedded systems.

A special purpose language, COAL (COmplex Arithmetic Language), is
proposed to supplement high-level languages when doing computations in the
complex plane. Math and algorithms involving the complex plane can be
expressed in COAL and called by code written in a mainstream high level
language.

2222 How It WHow It WHow It WHow It Worksorksorksorks

COAL could be made to work with any high level language. However, for this
scope of this project, COAL source code (see next section for examples), will
be compiled to intermediate C code. This C code will then be compiled to
native .o’s which will then be callable from any language that can link to C
binaries.

Since COAL will be used to supplement mainstream languages, COAL will
not have extensive support for I/O. However a method for outputting debug
messages will be available (see below).

3333 Language DescriptionLanguage DescriptionLanguage DescriptionLanguage Description

The following is a high level description of COAL’s features.

3.13.13.13.1 TypesTypesTypesTypes

A variable of any of the three types below can be declared. Variables are
declared implicitly and their types inferred by context.

Number – This type is used to represent numbers in the complex plane.

 x = 3.1 + 4.9i; y = 17; z = 9.12i;

...Number – This is a sequence of numbers. Sequences of numbers are
collections of Number’s that can be iterated over. Instances of this type will
be referenced counted so that they can be created in one scope and passed to
another without copying. Sequence size can be set ahead of time or as the
sequence is initialized (less efficient). Sequences will be mutable unless
passed in externally from C.

 q = 1..300 step .5; # 600 elements 1, 1.5, ...

 p = ...256; # 256 elements init’d to 0

 r[2] = 3.1 – 8.1i; # one element (so far)

Function – Functions can be named or unnamed and are provided for
functional decomposition of code. The last expression of a function is
evaluated and returned to the caller without the use of a “return” statement.

foo (x, y)
{
 x + y(3);
}

bar returns the value 3 + (3 * 8) = 27
bar()
{
 foo (3, (z => z * 8));
}

3.23.23.23.2 Flow ControlFlow ControlFlow ControlFlow Control

if (expr)… else … – General purpose conditional statement.

if (a>b) { a; } else { b; }

while (expr)… – General purpose iteration.

i = 0;
while (i < 10)
{
 i = i + 1;
}

for iter in ...Number – Iteration over sequences.

x = ...256;
for n in 0..(x.N-1) # iterate over temp sequence to index into x
{
 x[n] = n * 2.0;
}

 sum = 0.0;
for j in x # iterate over x directly
{
 sum += j;
}

3.33.33.33.3 Sample CodeSample CodeSample CodeSample Code

main()
{
 # generate signal - could also be measured data
 input = ...1000;
 for n in input.N-1..0 # iterate either direction
 input[n] = sin(100.0*2.0*PI*n/input.N)
 + .2 * cos(200.0*2.0*PI*n/input.N);

 # calculate 2nd harmonic distortion
 fund = DFT_one_bin(100, input);
 sec = DFT_one_bin(200, input);

 distortion = mag(sec)/mag(fund);

 # Output debug message
 ""2nd harmonic distortion is $(distortion)\n"";

 if (distortion > .3) -1 else 0;
}

(Continued)

mag(c)
{
 sqrt(c.re^2 + c.im^2);
}

sum(range, what_to_sum)
{
 res = zero;
 for n in range
 { res = res + what_to_sum(n); }
 res;
}

DFT_one_bin(k, x)
{
 sum(
 0..x.N-1
 , n => x[n] * exp((-2.0*PI*i / x.N) * k*n)
);
}

