COMS-W4115 Spring 2009
Programming Languages and Translators

Professor Stephen Edwards

Minimalistic BASIC Compiler (MBC)

Document Version 1.0

Language Reference Manual (LRM)

Joel Christner (jec2160)
via CVN

March 10th, 2009

Table of Contents

1.1 INtrodUuCtion t0 MBUC... e eecereeeeesseeseesseesesssses et seese st sesss s sessse s s s e s 3
1.2 Styles Used in thiS DOCUMENT ... ssnes 3
1.3 NO HUMOT FOUNA HETE ..ottt ese st sesse s sesse s ss s s 3
2.1 General Program REQUITEIMENTSoc.ereeieneeneeeeeseseseseesesssesssesssesssesssessse s sssssssssesssssssesssssssessssssnes 3
2.1.1 NUMEIICAL LINE IACNEIIOTS ..eeeeeeeereeretrirserisevsserirserissesisssssssssssssesassssassssassssssssessssesassssasssssssssssesanseses 3
2.1.2 Program TEIMUINALION ... roironsesscossarsssossssssesssessssssssassssssessssssssssssesssessssssssssssesssesssssasssassssssesssesssssens 4
2.1.3 WRIEESPACE. c.uvovsrersressirssessssssssissessssssssssssssessssssssassssssssssssssssssssssssssssssssssssasssssssssasssssssssssssssssssssansssssessssssnssens 4
0 010 44044 =) o Lt 4
2.2 TOKEIS c.euueereeeseesseessessseessessseesse s s s s essees s s s s s s e £ R R SRR R PR AR bbb e 4
2.3 TAENTIFIET'S coueereeeeeeeeeere et eeee s ees e es s ss s bR E s R R R RS bbb R s 5
A L= AT 0 o PP 6
2.6 NUMETICAL CONSTANTS.co.uureurieueeseeseereetseesseesseessesssesssesssessse s s s b et s s s s s s bbbt 6
2.7 CHaraCter CONSTANLES ..ovuuuieureeureeseeeseesseesseesseessessseessesssesssesssesesssessses s e es s sesssses s ssss s s ssse s b bbb 6
2.8 SEPATALOTS wevreereuieerseressessesse st sesse st s R R s 6
2.9 MISCEIIANEOUS. .. ceureeeseeueineesreee s eseesseesse s es s bbb bR RS R R e R bbb R 6
3.1 MUltipliCatiVe OPEIators .ieeississssssssssssssssssssss s sssssss st s ssneas 7
3.2 AdAItiVE OPETALOTS wuveeerrirrsesessssssssssssssssssssse s ssss s ssss st ssss st s ssss st ssss st st s sass st snssssssnssnen 7
3.3 RelatioNal OPerators . sssssssssse st s sss st s sssssssssssssssssss s ssssssssssssssssssssasees 8
3.4 LOZICAl OPEIALOTS w.coueerreeeeneeeeeeeseesseeseesseessesssessssesse s s s s R bbb 8
3.5 ASSIGNIMENT OPEIALOT oo cuueeereeeseesreesersseesesssessesses s esseess s ses s s E s b bR bR R bbb e R 8
3.6 COMIMA OPETALOT ereereueeerieeeressessessessssssssssessessessssssssssssessessesssssssssssssessesssssssssassssssssssssssssassassssssessssssssessessnanens 9
3.7 Statement NeStiNg OPerator.... s sssssssasens 10
3.8 [Leration StATEIMENTS ... 10
3.8.1 DOJWRILE LOOPS covvorvrrsersmssvsssssssesssssimssissssssssssssssssasssssssssssssssamssssssssssssssssssssssssssssssssssssassssssssssssssssssssanssenss 10
3.8.2 WHRIIE/WENA LOOPS cccrvvrmsrivsrissessessssssmssissessssssssssmssassssssssssssssssamssssssssssssssssssssssssssssssssmssassssssssssssssssssssassenss 11
3.8.3 FOT/INEXE LOOPS c.ovvvvrsrrrsirssssssssssissesssssimssissssssssssssssssassssssssssssssssamsssssssssssssssssssassssssssssssssssanssssssssssssssssnssanssenss 11
3.9 PrOSram COMEIOL .. ieeecereeseesseiseesse et ese s seess s s as s bbb s s s s st st senaes 12
R A € O I O O OO 12
A 0 R U > S OO 13
SBL9.3IE/THEN JELSE oottt erseers s s sas s s s s s sssss s s sas s sessssssassssasssssssssssssssans 13
R) O O OO 14
3.10 DiSPlay OPEratiOnNS. . esreersssesesssssssssessssssssssssss st sssssss st ssasess 14

3.1 1 INPUL OPEIATIONS ceereueuceeeeereeressessesessessesessessess s ssssssssessessesssssssssssssessesssssssssssssssnssessssssssssssssssesssssssssssssssanes 14

1. Introduction

This section serves as an introduction to the document.

1.1 Introduction to MBC

Minimalistic BASIC Compiler (MBC) provides a simple means of compiling BASIC
programs, and supports many of the commonly-used commands and features of the
BASIC language. MBC will output C-compatible code which the user can then
compile with a C compiler and execute. MBC supports many of the more commonly-
used BASIC statements as described throughout this document.

1.2 Styles Used in this Document

This document uses three primary styles to visualize concepts. Standard document
text as shown in this paragraph is in the Cambria font, 12 point. Text that shows an
example of a line of MBC code is shown in courier New, 9 point. Text contained
within an example of a line of MBC code that should be considered a container for
user-specified code is shown italicized in courier New, 9 point. and will typically be
encapsulated in braces (such as insert code here]).

We at the MBC compiler company are free-spirited individuals and reserve the right
to place quirky, sarcastic, and generally off-beat humor throughout this document as
we see fit.

1.3 No Humor Found Here

This document shall be free of quirky, sarcastic, and generally off-beat humor.

2. Lexical Conventions and Program Structure

This section defines the lexical conventions and general program structure used by
the MBC language. MBC supports the ASCII character set only, and generally
programs compiled with MCB are stored within a file.

2.1 General Program Requirements

This section describes the general program structure and content requirements.

2.1.1 Numerical Line Identifiers

Like BASIC, MBC expects that a program be comprised of a series of lines, each
starting with a numerical line identifier, followed by one or more statements on that
line. These numerical line identifiers must be in order from least to greatest when
looking at the source program from beginning to end. All program statements must
come after the numerical line identifier and there must be a space separating the
identifier from the first letter of the first statement on that line. Numerical line
identifiers can range from 1 to 65535. For example:

10 [statement 1]
20 [statement 2]

30 [statement 3]

2.1.2 Program Termination

Programs will terminate on one of two conditions. The first being that there simply
are no further lines of code to process, and the second being an explicit ‘END’
statement within the program. For example:

10 [statement 1]

20 [statement 2]

And yet another example:
10 [statement 1]
20 [statement 2]

30 END

2.1.3 Whitespace

White space characters are excluded during tokenization. The only white space
required is that which separates a numerical line identifier from the first statement
on that line.

2.1 Comments

MBC supports comments through the use of ‘REM’ within the program. The use of
‘REM’ indicates that any content from that point to the end of the line will be treated
as a comment and not compiled. There are no multi-line comments, however,
multiple lines can each have a REM statement. For example:

10 REM This is a comment
15 REM This is another comment, on another line

20 [statement] REM This is a comment and statement 1 will be processed

2.2 Tokens

There are several classes of tokens that can be used with MBC. These include:
* Identifiers
* Keywords
* Numerical Constants
* Character Constants (including strings)

* Separators

2.3 Identifiers

Identifiers are used to declare and reference stored information. Identifiers are a
series of letters only and may be a mix of upper and lower case. Identifier names
are case sensitive, that is, the identifier named variable is not the same identifier as
the identifier named varzapre. Identifiers do not need to be declared; identifiers are
implicitly declared when used for the first time. Two types of identifiers are
available in MBC. The first type is a numerical identifier, which supports both
integers and floating-point numbers. The second is a character identifier, which
supports both characters as well as strings. Numerical identifiers are comprised of
nothing more than characters (again, case-sensitive), and character identifiers must
have a trailing $ at the end of the identifier name. Assignment to either type of
identifier is done through the use of the assignment operator as denoted by the
equals sign (=) and using statements structured as follows:

10 [identifier] = [value]

20 AS$ = “Hello, World”

30 A = 50
Should an identifier be used prior to a value being assigned, an empty value is

produced for character identifiers and a zero value is produced for numerical
identifiers. For example:

10 PRINT AS

returns nothing, and

10 PRINT A
returns zero

Identifiers can not be coerced from numerical type to character type, nor can they
be cast or promoted. However, numerical identifiers can be used interchangeably
with character identifiers in statements where the value needs to be displayed. For
example:

10 AS$ = “50”
20 A = 30

30 PRINT AS

returns 50, and

40 PRINT A
returns 30

The assignment operator (=) is also used within iteration statements and program
control statements and in such cases is not providing assignment but is providing
comparison.

All identifiers in MBC are global; there is no concept of local identifiers in MBC.

2.4 Keywords

Keywords are those character strings that are reserved by MBC and can not be used
as names of identifiers, and keywords are not case sensitive. Keywords include:

REM PRINT FOR TO
STEP IF THEN ELSE
GOTO GOSUB RETURN PRINT
INPUT END LOOP

Each of these keywords will be explained throughout the course of this document.

2.6 Numerical Constants

Numerical constants are simply numbers (both integer as well as floating-point)
that are used within a program and not assigned to an identifier.

2.7 Character Constants

There are no character constants or string constants within MBC. However,
character values or string values can be assigned to character identifiers, which can
be used throughout the program. Without modification such identifiers provide
functionality similar to that of a constant.

2.8 Separators

Each line within an MBC program will contain one or more instructions. A discrete
instruction can not span one or more line, although an instruction set (for instance,
a for loop) may span more than one line. The colon character should be used
anywhere that multiple instructions per line is required. For example:

10 PRINT “Hello World” : PRINT “Yet another hello world”
Whitespace is ignored by MBC, although one or more spaces is required between
the numerical line identifier and the first statement on that particular line.

2.9 Miscellaneous

MBC does not support special characters such as ‘\t’, ‘\n’, \r\’,or NULL. Print
output will always automatically include a printed newline character at the end. For
example:

10 PRINT “Hello World” : PRINT “Yet another hello world”
will display:
Hello World

Yet another hello world

MBC does not support pointers or structures.
3 Operations

3.1 Multiplicative Operators

The multiplicative operator, denoted by asterisk (*), provides the product of two
integer constants or identifiers. This can also be used in conjunction with print
statements or in assignment. The multiplicative operators use the following syntax:

nnn [product-identifier] = [id-or-val] * [id-or-val]

nnn [quotient-identifier] = [id-or-val] / [id-or-val]

For example:
10 A = 10
20B =5
30 C = A *B
or
30 C = A *B
C becomes 50
40 PRINT C
displays 50
50 PRINT “The result is: %, C
displays
The result is: 50
Similarly division can be performed using the forward-slash character (/). The

result of this operation is the quotient. Multiplicative operators are left-associative.
Multiplication holds higher precedence than division.

3.2 Additive Operators

The additive operator, denoted by the plus sign (+), provides the sum of two integer
constants or identifiers. This can also be used in conjunction with print statements
or in assignment. The additive operators use the following syntax:

nnn [sum-identifier] = [id-or-val] + [id-or-val]

nnn [difference-identifier] = [id-or-val] — [id-or-val]
For example:

10 A = 10

20 B = 5

30 C = A+ B

or

10 ¢ = 10 + 5

C becomes 15

40 PRINT C

displays 15

50 PRINT “The result is: %, C

displays

The result is: 15

Similarly subtraction can be performed using the minus character (-). The result of
this operation is the difference between the two supplied integer constants or
identifiers. Additive operators are left associative. Addition holds higher
precendence than subtraction, and both are at lower precedence than division.

3.3 Relational Operators

Relational operators define the relationship of two constants or identifiers. These
are employed through the use of the greater than sign (>), the less than sign (<), the
equals sign (=), or a combination of these, including:

e greater than or equal to: >=
* lessthan or equal to: <=

Additionally, the greater than sign can be used in conjunction with the less than sign
(<>) to denote inequality when used in comparing the value of two constants or
identifiers. The result is a boolean value of either TRUE or FALSE, and is used to
guide iteration statements and program control statements as described below.
Relational operators other than equals or not equals are not applicable to character
identifiers.

3.4 Logical Operators

Logical operators can be used in between relational operator statements when AND
or OR logic needs to be considered in the context of an iteration statement or
program control statement. The adjacent conditions must be encapsulated in
parenthesis. The result is a boolean value of either TRUE or FALSE, and is used to
guide iteration statements and program control statements as described below.

3.5 Assignment Operator

As mentioned above the equals sign (=) is used as an assignment operator, and
places the value found on the right of the equals sign into the container named by
the name on the left of the equals sign. Assignment of numerical data to a variable
requires that the variable name not have a dollars-sign ($) at the end of the name,
and assignment of character or string data to a variable requires that the variable
name have a dollars-sign ($) at the end of the name. The following syntax is used:

nnn [identifier] = [value]

For example:

10 A = 50

sets the value of A to 50, and

20 AS = “Hello”
sets the value of A$ to “Hello”

This operator is also used to determine equality or inequality in conditional
statements that guide program flow or impact iterations. The exception to this rule
is the ‘FOR’ statement which increments the value of an identifier by a certain
amount (defined by ‘STEP’) upon each iteration. For example:

10 A = 50

IS an assignment

20 IF A = 50 THEN PRINT “Hello”

is a comparison, and

30 FOR A = 1 TO 10 STEP 1

will increment A by 1 through each iteration of the code that exists between
the statement and the NEXT statement (FOR/NEXT loops will be discussed
later in the document)

3.6 Comma Operator

The comma operator, denoted by the comma () is used in conjunction with input
and output statements to include the contents of identifiers in the input or output.
The comma operator also serves to separate the identifier from the other contents
of the input or output statement. For example:

10 A = 42

20 PRINT “The answer is “, A

displays

The answer is 42

and

30 A$S = “So long”

40 PRINT AS$, “, and thanks for all the fish”
displays

So long, and thanks for all the fish
and

50 INPUT “What is your name? “, Name$
displays

What is your name?

and then allows the user to enter data, which is then assigned to the
identifier ‘Name$’

Use of the comma operator in an INPUT statement requires that the identifier that
follows the comma exist after the body of the INPUT statement.

3.7 Statement Nesting Operator

Each line must have a numerical identifier followed by one or more statements. Any
time multiple statements are contained within a line, each statement after the first
must have a colon (:) to the left of that statement to separate it from the previous
statement. Statements that are nested on a line are handled sequentially. For
example:

10 PRINT “Hello World”: PRINT “How are you?”
displays

Hello World

How are you?

A colon is not required after a statement, unless there is another statement
following.

3.8 Iteration Statements

[teration statements are used to execute statements in succession as long as the
conditions associated with the iteration remain true. Iteration statements come in
three forms: do/while loops, while loops, and for loops.

3.8.1 Do/While Loops

The do/while loop always executes the statements contained between the DO
statement and the LOOP WHILE statement once, and will continue to iterate as long
as the condition provided following the while statement is true. These statements
follow this format:

nnn DO
nnn [statements]

nnn LOOP WHILE [condition]

For example:
10Aa =1
20 DO
30 PRINT “A is equal to %, A
40 A = A + 1
50 LOOP WHILE A < 5
will display

A is equal to 1

A is equal to 2
A is equal to 3

A is equal to 4

And

10 A =1

20 DO

30 PRINT “A is equal to %, A
40 A = A + 1

50 LOOP WHILE A < 1

will display

A is equal to 1

3.8.2 While/Wend Loops

A while loop is similar to a do/while loop with the exception that the condition
appears before the statements, a WEND follows the statements that are associated
with the loop, and the statements are only executed when the result of the condition
is true. This is in contrast to a do/while loop which always executes the statements
at least once. While loops have the following structure:

nnn WHILE /[condition]
nnn [statements]

nnn WEND

For example:
10A =1
20 WHILE A < 4
30 PRINT “A is equal to %, A
40 A = A + 1

50 WEND

will display

A is equal to 1
A is equal to 2
A is equal to 3

A is equal to 4

3.8.3 For/Next Loops

A FOR/NEXT loop executes a series of statements and automatically increments a
numerical counter identifier a specific amount (identified by the STEP keyword)
after each iteration. Once the counter identifier reaches the maximum amount
specified in the FOR statement, the statement block is executed for the final time.
For/next loops have the following structure:

where:

The ST

nnn FOR [identifier] = aaa TO bbb STEP ccc
nnn [statements]

nnn NEXT [identifier]

identifier is the name of the identifier used to hold the current value
aaa is the beginning value of the counter identifier

bbb is the ending value of the counter identifier, which determines when the
final iteration of execution is

ccc is the amount that the counter should be incremented or decremented
after each iteration of the statement block

EP keyword and value are both optional. Should the STEP keyword and

value not be present, MBC will assume that the increment applied to the counter
identifier after each iteration is +1.

For example:

10 FOR A = 1 TO 4 STEP 1

20 PRINT “A is equal to %, A
30 NEXT A

will display

A is equal to 1

is equal to 2

is equal to 3

.

is equal to 4

3.9 Program Control

MBC programs can be controlled and guided through the use of GOTO, GOSUB,
IF/THEN/ELSE, and END statements.

3.9.1 GOTO

A GOTO statement jumps the program to a specific line as indicated by its numerical
identifier, based on the numerical identifier specified following the GOTO statement.
GOTO statements use the following syntax:

nnn GOTO [number]

For example:

10 PRINT “I'm on line 10”

15 GOTO 30

20 PRINT “You’ll never see me!”
25 END

30 PRINT “Did I miss something?”

will display
I’'m on line 10

Did I miss something?

3.9.2 GOSUB

A GOSUB statement guides a program to a specific line as indicated by its numerical
identifier, based on the numerical identifier specified following the GOSUB
statement. Unlike a GOTO statement, which has no means of returning to the
original point from which the program execution was changed, the RETURN
statement can be used in conjunction with a GOSUB statement to divert the program
back to the original point of diversion. GOSUB/RETURN uses the following syntax:

nnn GOSUB [number-aaa]

aaa [statements]

nnn RETURN

For example:
10 PRINT “I'm on line 10”
15 GOSUB 50
20 PRINT “Where am I?”
25 END
50 PRINT “Welcome to Magrathia”
55 RETURN
will display
I’'m on line 10
Welcome to Magrathia

Where am I?

3.9.3 IF/THEN/ELSE

The IF/THEN/ELSE statement will evaluate a condition and then execute either the
statement following THEN if the condition is true, or the statement following ELSE if
the condition is false. The IF/THEN/ELSE block must be terminated by the ‘END IF’
statement. These statements have the following syntax:

nnn IF [condition] THEN
nnn [statement-when-true]
nnn ELSE

nnn [statement-when-false]

nnn END TIF

For example:
10 A = 50
20 IF A > 48 THEN
30 PRINT “A is greater than 48"
40 ELSE
50 PRINT “A is less than or equal to 48”

60 END IF

will display

A is greater than 48

3.9.4END

The END statement will terminate the program when reached. Multiple END
statements may exist within a program, and is expected in particular when there are
many execution paths through a program. An END statement is recommended but
not required, and a program will terminate normally when no additional code exists
to execute. The syntax for the END statement is rather simple:

nnn END

3.10 Display Operations

The PRINT statement allows the user to display data on the standard output. When
used by itself, PRINT will simply print a blank link. PRINT can be followed by a
numerical or character identifier, a block of text encapsulated within quotes, or a
combination of the two using comma separators. Syntax for the PRINT statement is:
nnn PRINT
nnn PRINT AS$, “[some text goes here]”

nnn PRINT “/[some text goes here]™“, A

Examples for the PRINT statement can be found in the preceding sections.

3.11 Input Operations

The INPUT statement allows the user to request keyboard input from the program
user. INPUT can be used like a PRINT statement to first display a series of
alphanumeric characters on the standard output prior to requesting input from the
user. The INPUT statement has the following syntax:

nnn INPUT A
nnn INPUT AS

nnn INPUT “What is your name? %, AS

4 Exceptions

MBC does not provide an exception-handling system. Hope and pray that your code
works ;-)

