

COAL (COmplex Arithmetic Language) Reference Manual

March 09, 2009
COMS W4115
Eliot Scull (CVN)
e.scull@computer.org

1111 IntroductionIntroductionIntroductionIntroduction

This manual describes the COAL language (COmplex Arithmetic Language)
which is a “helper” language used to express complex arithmetic or
algorithms expressively while allowing efficient interoperation with C.
COAL is compiled to C which can then be compiled to native with any ANSI
C compiler and linked to a C program.

COAL’s motivation stems from the fact that expressing complex math in
plain C code can be hard to maintain, debug, or understand. While moving to
C++ or using Matlab can bring expressiveness to code using complex math,
either of these options have high overhead in complexity and/or monetary
cost. COAL is intended to be a lightweight computational language suitable
for typical embedded systems or larger.

COAL has attributes of a functional language. COAL allows the definition of
functions containing expressions that return the evaluation of expressions.
Iteration is achieved through recursion and built-in map/reduce operators.

2222 Syntax NotationSyntax NotationSyntax NotationSyntax Notation

The context-free grammar notation used throughout this document is written
in italics and is loosely based on the format used in the C Reference Manual
in the appendix of the “C Programming Language”, by Kernighan and Ritchie.

Throughout the sections in this document non-terminals of this grammar
notation are suffixed with a number (i.e. expresion1, expresion2,…) This
number has no significance for the grammar and is only used to describe the
subordinate parts of a production.

3333 Lexical ConventionsLexical ConventionsLexical ConventionsLexical Conventions

A program is defined across modules, where a single COAL file (.coal)
corresponds to a module. There is only one pass of the compiler from a .coal
file to .c and .h files with the same root name. For example foo.coal is
compiled to foo_coal.c and foo_coal.h.

3.13.13.13.1 TokensTokensTokensTokens

User defined identifiers, keywords, numerical literals, comments, and
operators comprise COAL’s tokens. These are discussed below, except for
operators which are described in section 5.

3.23.23.23.2 CommentsCommentsCommentsComments

One line comments are supported by the pre-pending of # to characters that
are to be ignored by the compiler:

This is not a comment # This is a comment

Characters to the left of the # are not ignored by the compiler. Characters to
the right and including # are stripped off. If multi-line comments are desired,
then the next line must contain a #.

3.33.33.33.3 IdentifiersIdentifiersIdentifiersIdentifiers

Identifiers are a sequence of letters, digits, and “tick” marks (‘). An identifier
must start with a letter (upper or lower case). “tick” marks may only be used
at the end of the identifier, but any number of “tick” marks may be used. An
identifier can be of arbitrary length and is case sensitive:

f (x) -> x^2 !
f’(x) -> 2*x !

Identifiers are denoted with identifier in the grammar.

3.43.43.43.4 KeywordsKeywordsKeywordsKeywords

There are four keywords: if, then, else, and i. The use of these keywords
is described below.

3.53.53.53.5 NumericalNumericalNumericalNumerical Literals Literals Literals Literals

All numerical literals are considered to be in the complex plane, where a
number has a real and imaginary part. The following exemplify numerical
constants:

97
97.0
1.0e2 - 2i
7e7i

The keyword i is used to signify an imaginary part of a complex number.
There may only be one i in the imaginary term, and it must come at the end
of the term. With the difference of the i, real and imaginary terms are
lexically identical. i may not appear by itself which avoids possible
namespace identifier clashes.

Real or imaginary literals before the i may be expressed using C’s lexical
convention for integers or floating point numbers. Although integers and
floating point literals are considered to be different types in C, in COAL they
are the same type, where 97 is equal to 97.0 which is equal to 9.7e1.

Numerical literals map to the Number type.

Real and imaginary literals are denoted by real-literal and imaginary-literal
in the grammar.

4444 Meaning of IdentifiersMeaning of IdentifiersMeaning of IdentifiersMeaning of Identifiers

Identifiers refer to variables of numbers, arrays of numbers, or functions.
The types of variables and parameters of functions used in a program do not
need to be explicitly defined. Types are inferred from usage.

4.14.14.14.1 Variables of Variables of Variables of Variables of Number

Identifiers can be defined as variables of the Number type, which represent
the real and imaginary parts of a complex number. The real and imaginary
parts of Number each have the same numerical range as an IEEE-754 double
floating point number.

Variables of Number are always passed by value. They have only automatic
scope and so are either defined in a function or passed to or from a function.

K <- (3.4+9.1i) / 7.8i # K is defined and assigned

4.24.24.24.2 ArraysArraysArraysArrays of of of of Number

Variables may also represent arrays of Number. Arrays are referred to by
handles and as such are passed around from or to functions by reference.
Array references do not go out of scope when returned from a function and
are garbage collected even though the identifier referring to the array will.
Arrays may be passed into a function or created inside the scope of a function.

Arrays passed in from external C code calling COAL functions are immutable.
Arrays created directly by the range operator within COAL code are
immutable. Arrays created with the map operator within COAL are mutable.

 f(x) -> x[9] * 8! # x is immutable when called from C
 x <- 1..100\2 # x is immutable 2,4,6…100
 x <- (n->n){1..100\2} # x is mutable 2,4,6…100

See range operator below (Section 5.2.3).

4.34.34.34.3 FunctionsFunctionsFunctionsFunctions

There are two kinds of functions, named and lambda (unnamed). Functions
must always have a return value.

Named functions are always defined at module scope and cannot be defined
within another function. A function can contain a single expression, returned
after evaluation, or a semicolon separated series of expressions the last of
which is returned after evaluation. Named functions are denoted in the
grammar as such:

function-definition:
 identifier (argument-list-opt) -> expression !

A named function may call itself recursively. Mutual recursion of two or
more functions is not supported as COAL depends on a simple forward
declaration model.

Named functions are defined in a global namespace and must be unique
across all compiled COAL modules.

Examples:

constant(x) -> 3 !

sum(x,y) -> x + y !

stuff(x,n) ->
 a <- x[n]
 , b <- x[n-1]
 , a^b !

Only named functions are accessible from C (see section 6 on binding to C).

Lambdas (or unnamed functions) can only be defined within other functions
and acquire the scope of the function in which they are defined. Lambdas
must have at least one argument and must be invoked where they are
defined using the function invocation operator (see 5.6). Lambdas are
denoted in the grammar as such:

lambda-definition:
 (argument-list -> expression !)

Examples:

named(j,k) -> j + (n->n*k!)(j) ! # j + j*k

something(x) -> (n->n*(h->h*2!)(n)!)(x) ! # x*x*2

Identifiers for Number or array of Number may only defined within the scope
of a named function or lambda and must not clash with each other, if
different types, or with named function identifiers. Declarations for Number
or array of Number identifiers are made either in the parameter list of a
function definition or in an assignment expression. The following illustrates
this scoping:

 # x j k defined?
g(x) -> # yes no no
 j <- x*x; # yes no no
 k <- j*j; # yes yes no
 k! # yes yes yes

5555 ExpressionsExpressionsExpressionsExpressions

There are no procedural statements in COAL but only expressions involving
the types Number or array of Number. Every function must return a result
which is the evaluation of an expression, all the way to the point at which a
COAL function is invoked from C.

The type of an expression, that is whether it is Number or array of Number, is
determined by type inference.

5.15.15.15.1 Number Expressions Expressions Expressions Expressions

Primary Number expressions consist of either a numerical literal (3.5), a
variable of Number (4.1), or a grouping of a Number expression (5.3):

expression:
 identifier
 real-literal
 imaginary-literal

(expression)

Composite Number expressions can be formed by use of the following
operators which take as operands primary Number expressions or other
composite Number expressions.

5.1.15.1.15.1.15.1.1 MaMaMaMath Operatorsth Operatorsth Operatorsth Operators

The following table lists the math operators that work on Number. Operators
are grouped at the same level of precedence. The bottom of the table has the
highest level of precedence. All operators take and return the Number type.

Operators Description Associativity
+ - Add and subtract Left
* / Multiple and divide Left
- Unary minus Right
^ Exponentiation Left

Math operators are denoted as follows in the grammar:

expression:
 expression + expression
 expression - expression
 expression * expression
 expression / expression
 expression ^ expression
 - expression

5.1.25.1.25.1.25.1.2 Relational OperatorsRelational OperatorsRelational OperatorsRelational Operators

The following table lists the relational operators that work on Number.
Operators are grouped at the same level of precedence. All relational
operators have lower precedence than the math operators. The bottom of the
table has the highest level of precedence. All operators take and return the
Number type.

Operators Description Associativity
= <> Equal and not equal Left
< <= > >= Less than (or equal)

Greater than (or equal)
Left

Because there is no Boolean type, these operators return the value 1.0 for
true and 0.0 for false. Because “greater than” and “less than” are not defined
for complex numbers, the imaginary parts of operands for “less than (or
equal)” and “greater than (or equal)” are ignored when these operators are
used.

The “equal” operator is provided to be complete but it is not recommended to
test the equality of two floating point numbers complex numbers. In addition
to the “equal” operator, a built in function, distance, will be provided to test
the proximity of two complex numbers (See 7).

Relational operators are denoted as follows in the grammar:

expression:
 expression < expression
 expression <= expression
 expression > expression
 expression >= expression
 expression = expression
 expression <> expression

5.1.35.1.35.1.35.1.3 Logical OperatorsLogical OperatorsLogical OperatorsLogical Operators

No specific logical operators are defined in COAL. However, logical operators
can be substituted with math operators to get the same effect:

COAL Meaning
(a>b) * (d<e) (a>b) AND (d<e)
(x=0) + (y=0) (x=0) OR (y=0)

For logical “not” functionality, a built-in function, not, is provided to invert
logic.

5.1.45.1.45.1.45.1.4 if then else

Conditional expressions are formed with this syntax:

expression:
 if expression1 then expression2 else expression3

The imaginary part of expression1 is ignored. If the absolute value of the
real part of expression1 is greater than or equal to .5, then expression2 will
be evaluated; if it’s less than .5, then expression3 will be evaluated.

The else keyword is not optional.

Conditional expressions may be nested:

 if (a>b) then if (a>c) then 2i else -2i else (2 + 2i)

5.25.25.25.2 ArrayArrayArrayArray of of of of Number Expressions Expressions Expressions Expressions

COAL supports arrays of Number. Like the type Number, expressions can be
made of arrays or Number but over a different set of operators.

The primary array of Number expressions consist of reference to an array of
Number (4.2), or a grouping of an array of Number expression (5.3):

expression:
 identifier

(expression)

5.2.15.2.15.2.15.2.1 Map OperatorMap OperatorMap OperatorMap Operator

A built-in operator is provided to transform one array to another array. This
is the primary mechanism by which new arrays can be created in COAL.
It has the following syntactical form:

expression:
 identifier {expression }

 lambda {expression }

identifier refers to a named function definition and lambda an unnamed
function definition. expression is an array of Number which is the array to be
“mapped”. The function defined for identifier or lambda must take exactly
one argument which gets passed to it consecutively all of the elements of the
array (expression) passed into the operator. A new array is returned that
gets formed like this:

 function(array[0]), function (array[2]), function (array [3]), …

Some examples:

 (n->n!){10…100\10} # 10, 20, 30…
 (x->x*x!){-10..-1} # 100, 81, …

5.2.25.2.25.2.25.2.2 Reduce OperatorReduce OperatorReduce OperatorReduce Operator

A built-in operator is provided to transform an array into an expression,
which could be a Number or another array of Number. It has the following
form:

expression:
 identifier {expression1, expression2 }

 lambda {expression1, expression2 }

identifier refers to a named function definition and lambda an unnamed
function definition. expression1 is an array of Number which is the array to
be “reduced”. expression2 is the initial value used for the reduce operation.
The function defined for identifier or lambda must take exactly two
arguments which get passed to them consecutively all of the elements of the
array (expression1) and the accumulated result that started with the initial
value (expression2). A new array is returned that gets formed like this:

 function(array[1], function (array[0], init_value)) …

Some examples:

 (a, sum-> sum + a!){1..10,0} # sum numbers 1 to 10

 # triple elements in array, in place
 (n, arr-> arr[n]<-arr[n]*3, arr!)(0..N(x), x)

5.2.35.2.35.2.35.2.3 Range OperatorRange OperatorRange OperatorRange Operator

The range operator generates immutable arrays containing real whole
numbers. It has the syntactic form:

expression:
 expression1 .. expression2
 expression1 .. expression2 \ expression3

expression1, expression2, and expression3 are of Number type. Operands for
this operator are automatically rounded to the nearest integer, and
imaginary parts set to 0. If literals are used for these operands, the compiler
enforces that only integers (in the C style) are used.

expression1 is the starting value in the array and expression2 the upper limit
value of the array. expression3 may optionally specify step increment. The
default step value is 1.

The number of values, N, generated from this operator is:

N = (expression2 – expression1)/expression3 – 1

The returned values from this operator are:

 expresion1 + 0*expression3, expresion1 + 1*expression3, … expresion1 + N*expression3

If expression1 > expression2, then expression3 must be specified and be
negative or an empty array is returned. If expression1 is equal to
expression2, an empty array is returned.

The range operator acts as a seed into the map and reduce operators to index
and create new arrays.

5.2.45.2.45.2.45.2.4 Array IndexerArray IndexerArray IndexerArray Indexer

expression:
 expression1 [expression2]

The array index operator is used to access specific elements of an array.
expression1 is of type array of Number. expression2 is of type Number.
Similarly to the range operator, expression2’s real part is rounded to nearest
integer and imaginary part set to 0. Also, only integer literals may be used
for expression2 .

This operator returns a Number type. It is possible to assign a value to an
array element using this operator if the array is mutable (5.4).

5.35.35.35.3 GroupingGroupingGroupingGrouping

The grouping operator is used, as in C, to force precedence for a sub-
expression where the precedence would otherwise cause an expression to be
evaluated differently.

It has the form:

expression:
 (expression)

expression inside the parentheses can be of type Number or array of Number.

5.45.45.45.4 Assignment OperatorAssignment OperatorAssignment OperatorAssignment Operator

The assignment operator is used to bind a Number or array of Number
expression to an identifier:

It has the form:

expression:
 identifier <- expression

expression is either a Number or an array of Number. Within the resulting
expression, identifier has no scope but rather must be used in conjunction
with the sequence operator and referenced from a proceeding expression (5.5).

This result of this operation is expression, with a side-effect of defining
identifier to be bound to expression. This operator is right associative.

5.55.55.55.5 SequenceSequenceSequenceSequence Operator Operator Operator Operator

The sequence operator is used to allow intermediate expressions, specifically
assignments (5.4), to be evaluated before the last expression in the sequence
which can incorporate the results of these intermediate expressions.

This operator has the form:

expression:
 expression1 ; expression2

expression1 would typically be an assignment and expression2 is the
resulting expression. Because of this behavior, any other sort of expression
besides assignment doesn’t usually make sense for expression1. However
other sorts of expressions are allowed for the sake of debugging (8).

expression1 and expression2 can be of different types.

Examples:

 a<-3; b<-a; b^2 # 9

 |� a’s scope is live from here

 x<-19; x<-x*2; x+1 # 35

 |� first x live from here
 |� second x live from here

 101; 97; 17.2 # 17.2

Identifiers can only be redefined using the same expression type. For
example, a Number cannot then be overridden to be an array of Number using
the sequence operator:

 x<-1..10; x<-x[3]; x # ERROR! 2nd x is different type.

5.65.65.65.6 Function InvocationFunction InvocationFunction InvocationFunction Invocation

Invoked named functions result in an expression defined as follows:

expression:
 identifier (invoke-argument-list-opt)

Invoked lambda’s result in an expression defined as follows:

expression:
 lambda-definition (invoke-argument-list)

Examples:

 f(x) + g(x+y)

 stuff(x, x^2, x^3) + 23

 (a, b-> if (a>b) then a*b else a/b !)(4,5)

 beg()..end()\step()

 #recursion
 fact(n) -> if (n=1) then 1 else (n * fact(n-1)) !

6666 Binding to CBinding to CBinding to CBinding to C

As described above, the COAL compiler will produce output consisting of .c
and .h files which can then be integrated into a target C application. In the
generated .h files will be C bound declarations of the COAL defined named
functions. There will also be C bound types used to represent the COAL
types, Number and array of Number, for return values and function
arguments. For C programs to easily use COAL functions, conversion macros
will also be provided to go back and forth between C and COAL types. Below
is table summarizing these macros:

COAL C macro Returns Description
TO_COAL_NUM(a, b) CoalNumber Real part set to a, imaginary to b
TO_DBL_RE(num) C double Real part of CoalNumber
TO_DBL_IM(num) C double Imaginary part of CoalNumber
TO_COAL_ARR_REAL(c_arr, N) CoalArray c_arr points to a C double array containing

only real elements. Actual size of c_arr is N
* sizeof(double).

TO_COAL_ARR_CPLX(c_arr, N) CoalArray c_arr points to a C double array containing
only real and imaginary elements, interleaved
(even offsets real). Actual size of c_arr is 2 *
N * sizeof(double).

COAL_ARR_IDX(coal_arr, idx) CoalNumber Access an element of CoalArray
COAL_ARR_LEN(coal_arr) C size_t Number of elements in CoalArray

A function called CoalArrayFree will also be provided for use by C clients so
that storage behind CoalArray’s returned from a function can be freed.

Example:

in file square.coal … Square(x) -> x*x !

in file square_coal.h … CoalNumber Square(CoalNumber number);

in file main.c …

 include<stdio.h>
 include“square_coal.h”

 int main()
 {
 CoalNumber num = Square(TO_COAL_NUM(2.0, 2.0));
 printf(“re: %f, im: %f”, TO_DBL_RE(num), TO_DBL_IM(num));
 }

7777 BuiltBuiltBuiltBuilt----in Functionsin Functionsin Functionsin Functions and Constants and Constants and Constants and Constants

Below is a list of built in functions to improve the usability of COAL.

Function Return Type Description
N(array of Number) Number Number of elements in array
Re(Number) Number Zero out imaginary part of

argument.
Im(Number) Number Zero out real part of argument.
distance(Number, Number) Number Distance, as a real number,

between two complex numbers
not(Number) Number If absolute value of real part of

argument less than .5, returns 1;
if greater than or equal to .5
returns 0.

sin(Number) Number Sine – argument in radians
cos(Number) Number Cosine – argument in radians
tan(Number) Number Tangent – argument in radians
atan(Number) Number Arctangent
exp(Number) Number Euler number to the power given

by argument.

The constant PI will be defined in the global scope to represent 3.1415927…

8888 Debug ModeDebug ModeDebug ModeDebug Mode

To minimize COAL’s complexity, a formatted output facility will not provided.
Instead, a debug mode will be settable on the compiler whereby operations
and evaluations of intermediate expressions will be dumped to standard out
for debug or test purposes.

9999 GrammarGrammarGrammarGrammar

The following is the grammar for COAL. Terminals identifier, real-literal,
and imaginary-literal are described above.

The opt suffix on a non-terminal means zero or more of the non-terminal.

program: zero or more
 program function-definition

expression:
 identifier
 real-literal
 imaginary-literal
 expression + expression
 expression - expression
 expression * expression
 expression / expression
 expression ^ expression
 - expression
 expression < expression
 expression <= expression
 expression > expression
 expression >= expression
 expression = expression
 expression <> expression
 identifier <- expression
 expression [expression]
 identifier (invoke-argument-list-opt)
 lambda-definition (invoke-argument-list)
 identifier {expression }
 identifier {expression, expression }
 lambda {expression }
 lambda {expression, expression }
 (expression)
 expression .. expression
 expression .. expression \ expression
 expression ; expression
 if expression then expression else expression

function-definition:
 identifier (argument-list-opt) -> expression !

lambda-definition:
 (argument-list -> expression !)

argument-list:
 identifier
 argument-list,identifier

invoke-argument-list:
 expression
 argument-list, expression

