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What are Embedded Systems?

Computers masquerading as non-computers.

iPhone Laser Keyboard Nikon D300 Video Watch

GPS Playstation 3 PC Keyboard SD Card



Embedded System Challenges

Differs from general-purpose

computing:

Real-time Constraints

Power Constraints

Exotic Hardware

Concurrency

Control-dominated systems

Signal-processing

User Interfaces

Laws of Physics



The Role of Languages

Language shapes how you solve a

problem.

Java, C, C++ and their ilk designed for

general-purpose systems programming.

Do not address timing, concurrency.

Domain-specific languages much more

concise.

Problem must fit the language.



Syllabus

Software languages: Assembly, C, and C++

Concurrency in Java and Real-Time Operating Systems

Dataflow Languages (SDF)

Hardware Languages (Verilog)

SystemC



Syntax, Semantics, and Model

Marionette Model

You have control through the syntax

of the language

The semantics of the language

connect the syntax to the model

You ultimately affect a model



Syntax

Formally:

Language: infinite set of strings from an alphabet

Language Alphabet

DNA A T G C

Student Transcripts w1007-02 w1009-01 w4995-02

English aardvard abacus abalone . . .

Verilog always module . . .



Computation Model

What the string ultimately affects

A language may have more than one

Language Model

DNA Proteins suspended in water

Student Transcripts Your knowledge

The admiration of others

English Natural Language Understanding

Verilog Discrete Event Simulator

Netlist of gates and flip-flops



Semantics

How to interpret strings

in the model

Also not necessarily unique

Language Semantics

DNA [[AGA ]]= Arginine

[[TAG ]]= STOP

Student Transcripts [[w1007-02 ]]= Java

English [[Look out! ]]= Somebody’s warning me

Verilog [[always @posedge clk ]]= Flip-flop



Defining Syntax

Generally done with a grammar

Recursively-defined rules for constructing valid sentences

“Backus-Naur Form”

expr ::

literal

|| expr + expr

|| expr * expr

Not a focus of this class: I’m assuming you’ve had a compilers class.



Operational Semantics

Describes the effect a program has on an abstract machine

Typical instruction observes and then advances machine state

Close to implementation, fairly easy to use to create the “obvious”

implementation

Often includes too many details, can be hard to show that a

particular implementation conforms



Specification and Modeling

How do you want to use the program?

Specification langauges say “build this please.”

Modeling languages allow you to describe

something that does or will exist

Distinction a function of the model and the

language’s semantics



Specification Versus Modeling

C is a specification language

Ï Semantics very operational

Ï Clear how the language is to be translated into assembly

language

Verilog is a modeling language

Ï Semantics suggestive of a simulation procedure

Ï Good for building a model that captures digital hardware

behavior (delays, unknown values)

Ï Not as good for specification: how do you build something

with a specific delay?



Concurrency

Why bother?

Harder model to program

Real world is concurrent

Good architecture: one concurrently-running process controls each

independent system component

E.g., process for the right brake, process for the left brake, process

for a brake pedal



Approaches to Concurrency

Shared memory / Every man for himself

Ï Adopted by Java, other software languages

Ï Everything’s shared, nothing synchronized by default

Ï Synchronization through locks/monitors/semaphores

Ï Most flexible, easy to get wrong

Synchronous

Ï Global clock regulates passage of time

Ï Robust in the presence of timing uncertainty

Ï Good for hardware; but has synchronization overhead



Communication and Concurrency

Idea: Let processes run

asynchronously and only force them

to synchronize when they communicate

C. A. R. Hoare’s Communicating Sequential Processes

Ï Rendezvous-style communication

Ï Processes that wish to communicate both wait until the other

is ready to send/receive

Kahn Process Networks (later in the course)

Ï Communicate through channels

Ï Reader waits for data; writer never waits



Nondeterminism

Does a program mean exactly one thing?

Example from C:

a = 0;
printf("%d %d %d", ++a, ++a, ++a);

Argument evaluation order is undefined

Program behavior subject to the whim of the compiler

Are you sure your program does what you think?



Nondeterministic is not Random

Deterministic: 1 + 1 = 2 always

Random: 1 + 1 = 2 50% of the time,

3 otherwise

Nondeterministic: 1 + 1 = 2 or 3, but I’m not

telling

Nondeterministic behavior can look deterministic, random, or

something worse.

Murphy’s law of nondeterminism: Something nondeterministic will

choose the worst possible outcome at the worst possible time.



Nondeterminism is Awful

Much harder to be sure your specification or model is correct

True nondeterminstic language difficult to simulate

Should produce “any of these results”

Must maintain all possible outcomes, which grows exponentially

Idiosyncrasies of a particular implementation of a nondeterministic

language often become the de facto standard



Example from Verilog

Concurrent procedure execution order undefined

always @(posedge clk)

$write( a )

always @(posedge clk)
$write( b )

First simulator moved procedures between two push-down stacks,

producing

a b b a a b b a a b b a a b a

Later simulators had to match this now-expected behavior.



Nondeterminism is Great

True nondeterministic specification often exponentially smaller

than deterministic counterpart

Implicit “all possible states” representation

E.g., nondeterministic finite automata for matching regular

expressions

If system itself is truly nondeterministic, shouldn’t its model also

be?

Can be used to expose design errors

More flexible: only there if you want to use it

Correctness remains more elusive



Communication

Memory

Ï Value written to location

Ï Value stays until written again

Ï Value can be read many times

Ï No synchronization

FIFO Buffer

Ï Value written to buffer

Ï Value held until read

Ï Values read in written order



Communication

Wires

Ï May or may not have explicit write operation

Ï Value immediately seen by all readers

Ï More like a system of equations than a sequence of operations



Hierarchy

Most languages can create pieces and assemble them

Advantage: Information hiding

Ï User does not know details of a piece

Ï Easier to change implementation of piece without breaking

whole system

Ï Easier to get small piece right

Ï Facilitates abstraction: easier to understand the whole

Advantage: Reuse

Ï Pieces less specific; can be used again

E.g., Functions in C, Classes in Java, Modules in Verilog



Part I

Assembly Language



Assembly Languages

One step up from machine

language

Originally a more user-friendly

way to program

Now mostly a compiler target

Model of computation: stored

program computer



Assembly Language Model

PC →

...

add r1,r2

sub r2,r3

cmp r3,r4

bne I1

sub r4,1

I1:

jmp I3
...

ALU ↔ Registers ↔ Memory



Assembly Language Instructions

Built from two pieces:

add R1, R3, 3

Opcode Operands

What to do with the data Where to get the data



Types of Opcodes

Arithmetic, logical

Ï add, sub, mult

Ï and, or

Ï Cmp

Memory load/store

Ï ld, st

Control transfer

Ï jmp

Ï bne

Complex

Ï movs



Operands

Each operand taken from a particular addressing mode:

Examples:

Register add r1, r2, r3

Immediate add r1, r2, 10

Indirect mov r1, (r2)

Offset mov r1, 10(r3)

PC Relative beq 100

Reflect processor data pathways



Types of Assembly Languages

Assembly language closely tied to processor architecture

At least four main types:

CISC: Complex Instruction-Set Computer

RISC: Reduced Instruction-Set Computer

DSP: Digital Signal Processor

VLIW: Very Long Instruction Word



CISC Assembly Language

Developed when people wrote assembly language

Complicated, often specialized instructions with many effects

Examples from x86 architecture

Ï String move

Ï Procedure enter, leave

Many, complicated addressing modes

So complicated, often executed by a little program (microcode)

Examples: Intel x86, 68000, PDP-11



RISC Assembly Language

Response to growing use of compilers

Easier-to-target, uniform instruction sets

“Make the most common operations as fast as possible”

Load-store architecture:

Ï Arithmetic only performed on registers

Ï Memory load/store instructions for memory-register transfers

Designed to be pipelined

Examples: SPARC, MIPS, HP-PA, PowerPC



DSP Assembly Language

Digital signal processors designed specifically for signal processing

algorithms

Lots of regular arithmetic on vectors

Often written by hand

Irregular architectures to save power, area

Substantial instruction-level parallelism

Examples: TI 320, Motorola 56000, Analog Devices



VLIW Assembly Language

Response to growing desire for instruction-level parallelism

Using more transistors cheaper than running them faster

Many parallel ALUs

Objective: keep them all busy all the time

Heavily pipelined

More regular instruction set

Very difficult to program by hand

Looks like parallel RISC instructions

Examples: Itanium, TI 320C6000



Example: Euclid’s Algorithm

int gcd(int m, int n)
{

int r;

while ((r = m % n) != 0) {
m = n;

n = r;
}

return n;

}



i386 Programmer’s Model

31 0

eax Mostly

ebx General-

ecx Purpose-

edx Registers

esi Source index

edi Destination index

ebp Base pointer

esp Stack pointer

eflags Status word

eip Instruction Pointer

15 0

cs Code segment

ds Data segment

ss Stack segment

es Extra segment

fs Data segment

gs Data segment



Euclid on the i386

.file "euclid.c" # Boilerplate

.version "01.01"

gcc2_compiled.:

.text # Executable

.align 4 # Start on 16-byte boundary

.globl gcd # Make “gcd” linker-visible

.type gcd,@function

gcd:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp),%eax

movl 12(%ebp),%ecx

jmp .L6

.p2align 4„7



Euclid on the i386

.file "euclid.c"

.version "01.01"

gcc2_compiled.:

.text

.align 4

.globl gcd

.type gcd,@function

gcd:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp),%eax

movl 12(%ebp),%ecx

jmp .L6

.p2align 4„7

Stack Before Call
n 8(%esp)
m 4(%esp)

%esp→ R. A. 0(%esp)

Stack After Entry
n 12(%ebp)
m 8(%ebp)

R. A. 4(%ebp)
%ebp→ old ebp 0(%ebp)
%esp→ old ebx −4(%ebp)



Euclid in the i386

jmp .L6 # Jump to local label .L6

.p2align 4„7 # Skip <= 7 bytes to a multiple of 16

.L4:

movl %ecx,%eax

movl %ebx,%ecx

.L6:

cltd # Sign-extend eax to edx:eax

idivl %ecx # Compute edx:eax / ecx

movl %edx,%ebx

testl %edx,%edx

jne .L4

movl %ecx,%eax

movl ­4(%ebp),%ebx

leave

ret



Euclid on the i386

jmp .L6

.p2align 4„7

.L4:

movl %ecx,%eax # m = n

movl %ebx,%ecx # n = r

.L6:

cltd

idivl %ecx

movl %edx,%ebx

testl %edx,%edx # AND of edx and edx

jne .L4 # branch if edx was != 0

movl %ecx,%eax # Return n

movl ­4(%ebp),%ebx

leave # Move ebp to esp, pop ebp

ret # Pop return address and branch



SPARC Programmer’s Model

31 0

r0 Always 0

r1 Global Registers
...

r7

r8/o0 Output Registers
...

r14/o6 Stack Pointer

r15/o7

r16/l0 Local Registers
...

r23/l7

31 0

r24/i0 Input Registers
...

r30/i6 Frame Pointer

r31/i7 Return Address

PSW Status Word

PC Program Counter

nPC Next PC



SPARC Register Windows

The output registers of the

calling procedure become

the inputs to the called

procedure

The global registers

remain unchanged

The local registers are not

visible across procedures

r8/o0...
r15/o7
r16/l0...
r23/l7

r8/o0 r24/i0... ...
r15/o7 r31/i7
r16/l0...
r23/l7

r8/o0 r24/i0... ...
r15/o7 r31/i7
r16/l0...
r23/l7
r24/i0...
r31/i7



Euclid on the SPARC

.file "euclid.c" # Boilerplate

gcc2_compiled.:

.global .rem # make .rem linker-visible

.section ".text" # Executable code

.align 4

.global gcd # make gcd linker-visible

.type gcd, #function

.proc 04

gcd:

save %sp, ­112, %sp # Next window, move SP

mov %i0, %o1 # Move m into o1

b .LL3 # Unconditional branch

mov %i1, %i0 # Move n into i0



Euclid on the SPARC

mov %i0, %o1

b .LL3

mov %i1, %i0

.LL5:

mov %o0, %i0 # n = r

.LL3:

mov %o1, %o0 # Compute the remainder of

call .rem, 0 # m/n, result in o0

mov %i0, %o1

cmp %o0, 0

bne .LL5

mov %i0, %o1 # m = n (always executed)

ret # Return (actually jmp i7 + 8)

restore # Restore previous window



Digital Signal Processor Apps.

Low-cost embedded systems

Ï Modems, cellular telephones, disk drives, printers

High-throughput applications

Ï Halftoning, base stations, 3-D sonar, tomography

PC based multimedia

Ï Compression/decompression of audio, graphics, video



Embedded Processor Requirements

Inexpensive with small area and volume

Deterministic interrupt service routine latency

Low power: ≈50 mW (TMS320C54x uses 0.36 µA/MIPS)



Conventional DSP Architecture

Harvard architecture

Ï Separate data memory/bus and program memory/bus

Ï Three reads and one or two writes per instruction cycle

Deterministic interrupt service routine latency

Multiply-accumulate in single instruction cycle

Special addressing modes supported in hardware

Ï Modulo addressing for circular buffers for FIR filters

Ï Bit-reversed addressing for fast Fourier transforms

Instructions to keep the pipeline (3-4 stages) full

Ï Zero-overhead looping (one pipeline flush to set up)

Ï Delayed branches



Conventional DSPs

Fixed-Point Floating-Point

Cost/Unit $5–$79 $5–$381

Architecture Accumulator load-store

Registers 2–4 data, 8 address 8–16 data, 8–16 address

Data Words 16 or 24 bit 32 bit

Chip Memory 2–64K data+program 8–64K data+program

Address Space 16–128K data 16M–4G data

16–64K program 16M–4G program

Compilers Bad C Better C, C++

Examples TI TMS320C5x TI TMS320C3x

Motorola 56000 Analog Devices SHARC



Conventional DSPs

Market share: 95% fixed-point, 5% floating-point

Each processor comes in dozens of configurations

Ï Data and program memory size

Ï Peripherals: A/D, D/A, serial, parallel ports, timers

Drawbacks

Ï No byte addressing (needed for image and video)

Ï Limited on-chip memory

Ï Limited addressable memory on most fixed-point DSPs

Ï Non-standard C extensions to support fixed-point data



Example

Finite Impulse Response filter (FIR)

Can be used for lowpass, highpass, bandpass, etc.

Basic DSP operation

For each sample, computes

yn =
k∑

i=0

ai xn+i

where

a0, . . . , ak are filter coffecients,

xn is the nth input sample, yn is the nth output sample.



56000 Programmer’s Model

55 4847 2423 0
x1 x0 Source
y1 y0 Registers

a2 a1 a0 Accumulator
b2 b1 b0 Accumulator
15 0

r7...
r4
r3...
r0

15 0
n7...
n4
n3...
n0

15 0
m7...
m4
m3...
m0

Address

Registers

15 0
Program Counter
Status Register
Loop Address
Loop Count

15 PC Stack...
0

15 SR Stack...
0

Stack pointer



56001 Memory Spaces

Three memory regions, each 64K:

Ï 24-bit Program memory

Ï 24-bit X data memory

Ï 24-bit Y data memory

Idea: enable simultaneous access of program, sample, and

coefficient memory

Three on-chip memory spaces can be used this way

One off-chip memory pathway connected to all three memory

spaces

Only one off-chip access per cycle maximum



56001 Address Generation

Addresses come from pointer register r0 . . . r7

Offset registers n0 . . . n7 can be added to pointer

Modifier registers cause the address to wrap around

Zero modifier causes reverse-carry arithmetic

Address Notation Next value of r0
r0 (r0) r0
r0 + n0 (r0+n0) r0
r0 (r0)+ (r0 + 1) mod m0
r0 - 1 -(r0) r0 - 1 mod m0
r0 (r0)- (r0 - 1) mod m0
r0 (r0)+n0 (r0 + n0) mod m0
r0 (r0)-n0 (r0 - n0) mod m0



FIR Filter in 56001

n equ 20 # Define symbolic constants

start equ $40

samples equ $0

coeffs equ $0

input equ $ffe0 # Memory-mapped I/O

output equ $ffe1

org p:start # Locate in prog. memory

move #samples, r0 # Pointers to samples

move #coeffs, r4 # and coefficients

move #n­1, m0 # Prepare circular buffer

move m0, m4



FIR Filter in 56001

movep y:input, x:(r0) # Load sample into memory

# Clear accumulator A

# Load a sample into x0

# Load a coefficient

clr a x:(r0)+, x0 y:(r4)+, y0

rep #n­1 # Repeat next instruction n-1 times

# a = x0 * y0

# Next sample

# Next coefficient

mac x0,y0,a x:(r0)+, x0 y:(r4)+, y0

macr x0,y0,a (r0)­

movep a, y:output # Write output sample



TI TMS320C6000 VLIW DSP

Eight instruction units dispatched by one very long instruction

word

Designed for DSP applications

Orthogonal instruction set

Big, uniform register file (16 32-bit registers)

Better compiler target than 56001

Deeply pipelined (up to 15 levels)

Complicated, but more regular, datapath



Pipelining on the C6

One instruction issued per clock cycle

Very deep pipeline

Ï 4 fetch cycles

Ï 2 decode cycles

Ï 1-10 execute cycles

Branch in pipeline disables interrupts

Conditional instructions avoid branch-induced stalls

No hardware to protect against hazards

Ï Assembler or compiler’s responsibility



FIR in One ’C6 Assembly Instruction

Load a halfword (16 bits)

Do this on unit D1

FIRLOOP:

LDH .D1 *A1++, A2 ; Fetch next sample

|| LDH .D2 *B1++, B2 ; Fetch next coeff.

|| [B0] SUB .L2 B0, 1, B0 ; Decrement count

|| [B0] B .S2 FIRLOOP ; Branch if non-zero

|| MPY .M1X A2, B2, A3 ; Sample * Coeff.

|| ADD .L1 A4, A3, A4 ; Accumulate result

Use the cross path

Predicated instruction (only if B0 non-zero)

Run these instruction in parallel



Part II

Peripherals



Peripherals

Often the whole point of the system

Memory-mapped I/O

Ï Magical memory locations that make something happen or

change on their own

Typical meanings:

Ï Configuration (write)

Ï Status (read)

Ï Address/Data (access more peripheral state)



Example: 56001 Port C

Nine pins each usable as either simple parallel I/O or as part of two

serial interfaces.

Pins:

Parallel Serial
PC0 RxD Serial Communication Interface (SCI)
PC1 TxD
PC2 SCLK

PC3 SC0 Synchronous Serial Interface (SSI)
PC4 SC1
PC5 SC2
PC6 SCK
PC7 SRD
PC8 STD



Port C Registers for Parallel Port

Port C Control Register

Selects mode (parallel or serial) of each pin

X: $FFE1 Lower 9 bits: 0 = parallel, 1 = serial

Port C Data Direction Register

I/O direction of parallel pins

X: $FFE3 Lower 9 bits: 0 = input, 1 = output

Port C Data Register

Read = parallel input data, Write = parallel data out

X: $FFE5 Lower 9 bits



Port C SCI

Three-pin interface

422 Kbit/s NRZ asynchronous interface (RS-232-like)

3.375 Mbit/s synchronous serial mode

Multidrop mode for multiprocessor systems

Two Wakeup modes

Ï Idle line

Ï Address bit

Wired-OR mode

On-chip or external baud rate generator

Four interrupt priority levels



Port C SCI Registers

SCI Control Register

X: $FFF0 Bits Function
0–2 Word select bits
3 Shift direction
4 Send break
5 Wakeup mode select
6 Receiver wakeup enable
7 Wired-OR mode select
8 Receiver enable
9 Transmitter enable
10 Idle line interrupt enable
11 Receive interrupt enable
12 Transmit interrupt enable
13 Timer interrupt enable
15 Clock polarity



Port C SCI Registers

SCI Status Register (Read only)

X: $FFF1 Bits Function
0 Transmitter Empty
1 Transmitter Reg Empty
2 Receive Data Full
3 Idle Line
4 Overrun Error
5 Parity Error
6 Framing Error
7 Received bit 8



Port C SCI Registers

SCI Clock Control Register

X: $FFF2 Bits Function
11–0 Clock Divider
12 Clock Output Divider
13 Clock Prescaler
14 Receive Clock Source
15 Transmit Clock Source



Port C SSI

Intended for synchronous, constant-rate protocols

Easy interface to serial ADCs and DACs

Many more operating modes than SCI

Six Pins (Rx, Tx, Clk, Rx Clk, Frame Sync, Tx Clk)

8, 12, 16, or 24-bit words



Port C SSI Registers

SSI Control Register A $FFEC

Prescaler, frame rate, word length

SSI Control Register B $FFED

Interrupt enables, various mode settings

SSI Status/Time Slot Register $FFEE

Sync, empty, oerrun

SSI Receive/Transmit Data Register $FFEF

8, 16, or 24 bits of read/write data.



Part III

The C Language



The C Language

Currently, the most

commonly-used language for

embedded systems

"High-level assembly"

Very portable: compilers exist for

virtually every processor

Easy-to-understand compilation

Produces efficient code

Fairly concise



C History

Developed between 1969 and 1973 along with Unix

Due mostly to Dennis Ritchie

Designed for systems programming

Ï Operating systems

Ï Utility programs

Ï Compilers

Ï Filters

Evolved from B, which evolved from BCPL



BCPL

Martin Richards, Cambridge, 1967

Typeless

Ï Everything a machine word (n-bit integer)

Ï Pointers (addresses) and integers identical

Memory: undifferentiated array of words

Natural model for word-addressed machines

Local variables depend on frame-pointer-relative addressing: no

dynamically-sized automatic objects

Strings awkward: Routines expand and pack bytes to/from word

arrays



C History

Original machine (DEC PDP-11)

was very small:

24K bytes of memory, 12K used

for operating system

Written when computers were

big, capital equipment

Group would get one, develop

new language, OS



C History

Many language features designed to reduce memory

Ï Forward declarations required for everything

Ï Designed to work in one pass: must know everything

Ï No function nesting

PDP-11 was byte-addressed

Ï Now standard

Ï Meant BCPL’s word-based model was insufficient



Euclid’s Algorithm in C

int gcd(int m, int n)

{

int r;
while ((r = m % n) != 0) {

m = n;

n = r;
}

return n;
}

“New syle” function

declaration lists

number and type of

arguments.

Originally only listed

return type.

Generated code did

not care how many

arguments were

actually passed, and

everything was a

word.

Arguments are

call-by-value



Euclid’s Algorithm in C

int gcd(int m, int n )
{

int r;

while ((r = m % n) != 0) {
m = n;

n = r;

}
return n;

}

← Ignored
n
m

FP → PC
r → SP

Automatic variable

Allocated on stack

when function

entered, released on

return

Parameters &

automatic variables

accessed via frame

pointer

Other temporaries

also stacked



Euclid on the PDP-11

.globl _gcd GPRs: r0–r7

.text r7=PC, r6=SP, r5=FP

_gcd:

jsr r5, rsave Save SP in FP

L2: mov 4(r5), r1 r1 = n

sxt r0 sign extend

div 6(r5), r0 r0, r1 = m / n

mov r1, ­10(r5) r = r1 (m % n)

jeq L3 if r == 0 goto L3

mov 6(r5), 4(r5) m = n

mov ­10(r5), 6(r5) n = r

jbr L2

L3: mov 6(r5), r0 r0 = n

jbr L1 non-optimizing compiler

L1: jmp rretrn return r0 (n)



Euclid on the PDP-11

.globl _gcd

.text

_gcd:

jsr r5, rsave

L2: mov 4(r5), r1

sxt r0

div 6(r5), r0

mov r1, ­10(r5)

jeq L3

mov 6(r5), 4(r5)

mov ­10(r5), 6(r5)

jbr L2

L3: mov 6(r5), r0

jbr L1

L1: jmp rretrn

Very natural

mapping from

C into PDP-11

instructions.

Complex

addressing

modes make

frame-pointer-relative accesses

easy.

Another idiosyncrasy: registers

were memory-mapped, so taking

address of a variable in a register

is straightforward.



Pieces of C

Types and Variables

Ï Definitions of data in memory

Expressions

Ï Arithmetic, logical, and assignment operators in an infix

notation

Statements

Ï Sequences of conditional, iteration, and branching

instructions

Functions

Ï Groups of statements invoked recursively



C Types

Basic types: char, int, float, and double

Meant to match the processor’s native types

Ï Natural translation into assembly

Ï Fundamentally nonportable: a function of processor

architecture



Declarators

Declaration: string of specifiers followed by a declarator

static unsigned

basic type
︷︸︸︷

int
︸ ︷︷ ︸

specifiers

(*f[10])(int, char*)[10];
︸ ︷︷ ︸

declarator

Declarator’s notation matches that of an expression: use it to return

the basic type.

Largely regarded as the worst syntactic aspect of C: both pre-

(pointers) and postfix operators (arrays, functions).



Struct bit-fields

Aggressively packs data into memory

struct {

unsigned int baud : 5;

unsigned int div2 : 1;
unsigned int use_external_clock : 1;

} flags;

Compiler will pack these fields into words.

Implementation-dependent packing, ordering, etc.

Usually not very efficient: requires masking, shifting, and

read-modify-write operations.



Code generated by bit fields

struct {

unsigned int a : 5;
unsigned int b : 2;

unsigned int c : 3;
} flags;

void foo(int c) {
unsigned int b1 = flags.b;

flags.c = c;

}

# unsigned int b1 = flags.b

movb flags, %al

shrb 5, %al

movzbl %al, %eax

andl 3, %eax

movl %eax, ­4(%ebp)

# flags.c = c;

movl flags, %eax

movl 8(%ebp), %edx

andl 7, %edx

sall 7, %edx

andl ­897, %eax

orl %edx, %eax

movl %eax, flags



C Unions

Like structs, but only stores the most-recently-written field.

union {

int ival;

float fval;
char *sval;

} u;

Useful for arrays of dissimilar objects

Potentially very dangerous: not type-safe

Good example of C’s philosophy: Provide powerful mechanisms

that can be abused



Layout of Records and Unions

Modern processors have byte-addressable memory.

0

1

2

3

4

Many data types (integers, addresses, floating-point numbers) are

wider than a byte.

16-bit integer: 1 0

32-bit integer: 3 2 1 0



Layout of Records and Unions

Modern memory systems read data in 32-, 64-, or 128-bit chunks:

3 2 1 0

7 6 5 4

11 10 9 8

Reading an aligned 32-bit value is fast: a single operation.

3 2 1 0

7 6 5 4

11 10 9 8



Layout of Records and Unions

Slower to read an unaligned value: two reads plus shift.

3 2 1 0

7 6 5 4

11 10 9 8

6 5 4 3

SPARC prohibits unaligned accesses.

MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.



Layout of Records and Unions

Most languages “pad” the layout of records to ensure alignment

restrictions.

struct padded {

int x; /* 4 bytes */
char z; /* 1 byte */

short y; /* 2 bytes */

char w; /* 1 byte */
};

x x x x

y y z

w

= Added padding



C Storage Classes

int global_static; /* global: visible to other files */

static int file_static; /* global: only in this file */

int foo(int auto_param) /* parameters passed on stack */

{

static int func_static; /* global: only in this func */

/* stacked: only visible to function */

int auto_i, auto_a[10];

/* array allocated on heap (pointer stacked) */
double *auto_d = malloc(sizeof(double) * 5);

/* return value passed in register */
return auto_i;

}



Part IV

Dynamic Memory Allocation



malloc() and free()

Library routines for managing the heap

int *a;
a = (int *) malloc(sizeof(int) * k);

a[5] = 3;
free(a);

Allocate and free arbitrary-sized chunks of memory in any order



malloc() and free()

More flexible than (stacked) automatic variables

More costly in time and space

malloc() and free() use non-constant-time algorithms

Two-word overhead for each allocated block:

Ï Pointer to next empty block

Ï Size of this block

Common source of errors:

Using uninitialized memory Using freed memory

Not allocating enough Indexing past block

Neglecting to free disused blocks (memory leaks)



malloc() and free()

Memory usage errors so pervasive, entire successful company (Pure

Software) founded to sell tool to track them down

Purify tool inserts code that verifies each memory access

Reports accesses of uninitialized memory, unallocated memory, etc.

Publicly-available Electric Fence tool does something similar



malloc() and free()

#include <stdlib.h>

struct point { int x, y; };

int play_with_points(int n)
{

struct point *points;
points = malloc(n*sizeof(struct point));

int i;

for ( i = 0 ; i < n ; i++ ) {
points[i].x = random();

points[i].y = random();

}

/* ... do something with the array here ... */

free(points);

}



Dynamic Storage Allocation

↓ free()

↓ malloc( )



Dynamic Storage Allocation

Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated



Simple Dynamic Storage Allocation

Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks



Dynamic Storage Allocation

S N S S N

↓ malloc( )

S S N S S N



Simple Dynamic Storage Allocation

S S N S S N

↓ free()

S S N



Dynamic Storage Allocation

Many, many other approaches.

Other “fit” algorithms

Segregation of objects by size

More clever data structures



malloc() and free() variants

ANSI does not define implementation of malloc()/free().

Memory-intensive programs may use alternatives:

Memory pools: Differently-managed heap areas

Stack-based pool: only free whole pool at once

Nice for build-once data structures

Single-size-object pool:

Fit, allocation, etc. much faster

Good for object-oriented programs

On unix, implemented on top of sbrk() system call (requests

additional memory from OS).



Fragmentation

malloc( ) seven times give

free() four times gives

malloc( ) ?

Need more memory; can’t use fragmented memory.



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

ha hb hc

*a *b *c

↓ compact

ha hb hc

*a *b *c

The original

Macintosh did this

to save memory.



Automatic Garbage Collection

Remove the need for explicit deallocation.

System periodically identifies reachable memory and frees

unreachable memory.

Reference counting one approach.

Mark-and-sweep another: cures fragmentation.

Used in Java, functional languages, etc.



Automatic Garbage Collection

Challenges:

How do you identify all reachable memory?

(Start from program variables, walk all data structures.)

Circular structures defy reference counting:

A B

Neither is reachable, yet both have non-zero reference counts.

Garbage collectors often conservative: don’t try to collect

everything, just that which is definitely garbage.



Arrays

Array: sequence of identical objects in memory

int a[10]; means space for ten integers

By itself, a is the address of the first integer

*a and a[0] mean the same thing

The address of a is not stored in memory: the compiler inserts code

to compute it when it appears

Ritchie calls this interpretation the biggest conceptual jump from

BCPL to C. Makes it unnecessary to initialize arrays in structures



Lazy Logical Operators

"Short circuit" tests save time

if ( a == 3 && b == 4 && c == 5 ) {

...
}

is equivalent to

if (a == 3) {

if (b == 4) {
if (c == 5) { ... }

}

}

Strict left-to-right evaluation order provides safety

if ( i <= SIZE && a[i] == 0 ) { ... }



The Switch Statment

switch (expr) {

case 1: /* ... */
break;

case 5:
case 6: /* ... */

break;

default: /* ... */
break;

}

tmp = expr;

if (tmp == 1) goto L1;

else if (tmp == 5) goto L5;
else if (tmp == 6) goto L6;

else goto Default;

L1: /* ... */
goto Break;

L5: ;
L6: /* ... */

goto Break;

Default: /* ... */
goto Break;

Break:



Switch Generates Interesting Code

Sparse labels tested sequentially

if (e == 1) goto L1;

else if (e == 10) goto L10;

else if (e == 100) goto L100;

Dense cases uses a jump table:

/* uses gcc extensions */

void *table[] = { &&L1, &&L2, &&Default, &&L4, &&L5 };

if (e >= 1 && e <= 5) goto *table[e];



setjmp/longjmp: Sloppy exceptions

#include <setjmp.h>

jmp_buf closure; /* address, stack */

void top(void) {

switch (setjmp(closure)) {

case 0: child(); break;
case 1: break;

}

}

void child() {
child2();

}

void child2() {

longjmp(closure, 1);

}

1. switch runs



setjmp/longjmp: Sloppy exceptions
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}
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void child() {
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}

void child2() {

longjmp(closure, 1);

}

1. switch runs

2. setjmp()

fills closure,

returns 0
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setjmp/longjmp: Sloppy exceptions

#include <setjmp.h>

jmp_buf closure; /* address, stack */

void top(void) {

switch (setjmp(closure)) {

case 0: child(); break;
case 1: break;

}

}

void child() {
child2();

}

void child2() {

longjmp(closure, 1);

}

1. switch runs

2. setjmp()

fills closure,

returns 0

3. child()

called

4. child2()

called

5. longjmp

called,

“throws”

exception

6. control

returns to

setjmp call,

1 returned

“Exception”



Nondeterminism in C

Library routines

Ï malloc() returns a nondeterministically-chosen address

Ï Address used as a hash key produces nondeterministic results

Argument evaluation order

Ï myfunc( func1(), func2(), func3() )

Ï func1, func2, and func3 may be called in any order



Nondeterminism in C

Word sizes

int a;
a = 1 << 16; /* Might be zero */

a = 1 << 32; /* Might be zero */

Uninitialized variables

Ï Automatic variables may take values from stack

Ï Global variables left to the whims of the OS?



Nondeterminism in C

Reading the wrong value from a union

union { int a; float b; } u;
u.a = 10;

printf("%g", u.b);

Pointer dereference

Ï *a undefined unless it points within an allocated array and has

been initialized

Ï Very easy to violate these rules

Ï Compiler accepts

int a[10]; a[­1] = 3; a[10] = 2; a[11] = 5;

Ï int *a, *b; a - b only defined if a and b point into the same array



Nondeterminism in C

How to deal with nondeterminism? Caveat programmer

Studiously avoid nondeterministic constructs

Compilers, lint, etc. don’t really help

Philosophy of C: get out of the programmer’s way

C treats you like a consenting adult

Created by a systems programmer (Ritchie)

Pascal treats you like a misbehaving child

Created by an educator (Wirth)

Ada treats you like a criminal

Created by the Department of Defense



Part V

The C++ Language



The C++ Language

Bjarne Stroupstrup, the language’s creator, explains

C++ was designed to provide Simula’s facilities for program

organization together with C’s efficiency and flexibility for systems

programming.



C++ Features

Classes

User-defined types

Operator overloading

Attach different meaning to expressions such as a + b

References

Pass-by-reference function arguments

Virtual Functions

Dispatched depending on type at run time

Templates

Macro-like polymorphism for containers (e.g., arrays)

Exceptions

More elegant error handling



Implementing Classes

Simple without virtual functions.

C++

class Stack {

char s[SIZE];
int sp;

public:

Stack();
void push(char);

char pop();

};

Equivalent C

struct Stack {

char s[SIZE];

int sp;
};

void St_Stack(Stack*);

void St_push(Stack*,char);

char St_pop(Stack*);



Operator Overloading

For manipulating user-defined

“numeric” types

complex c1(1, 5.3), c2(5); // Create objects

complex c3 = c1 + c2; // + means complex plus

c3 = c3 + 2.3; // 2.3 promoted to a complex number



Complex Number Type

class Complex {
double re, im;

public:

complex(double); // used, e.g., in c1 + 2.3
complex(double, double);

// Here, & means pass­by­reference: reduces copying

complex& operator += (const complex&);

};



References

Designed to avoid copying in overloaded operators

Especially efficient when code is inlined.

A mechanism for calling functions pass-by-reference

C only has pass-by-value: fakable with explicit pointer use

void bad_swap(int x, int y) {

int tmp = x; x = y; y = tmp; // Doesn’t work!
}

void swap(int &x, int &y) {
int tmp = x; x = y; y = tmp;

}



Function Overloading

Overloaded operators a

particular case of

function/method overloading

General: select specific method/operator based on name, number,

and type of arguments.

Return type not part of overloading

void foo(int);

void foo(int, int); // OK
void foo(char *); // OK

int foo(char *); // BAD



Const

Access control over variables,

arguments, and objects.

const double pi = 3.14159265; // Compile­time constant

int foo(const char* a) { // Constant argument

*a = ’a’; // Illegal: a is const
}

class bar {

// "object not modified"

int get_field() const { return field; }
};



Templates

Macro-preprocessor-like way of providing polymorphism.

Polymorphism: Using the same code for different types

Mostly intended for containiner classes (vectors of integers,

doubles, etc.)

Standard Template Library has templates for strings, lists, vectors,

hash tables, trees, etc.



Template Stack Class

template <class T> class Stack {

T s[SIZE]; // T is a type argument
int sp;

public:
Stack() { sp = 0; }

void push(T v) {

if (sp == SIZE) error("overflow");
s[sp++] = v;

}

T pop() {
if (sp == 0) error("underflow");

return s[­­sp];
}

};



Using a Template

Stack<char> cs; // Creates code specialized for char

cs.push(’a’);
char c = cs.pop();

Stack<double*> dps; // Creates version for double*
double d;

dps.push(&d);



Part VI

Implementing C++



Implementing Inheritance

Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class

Consequence: Derived classes can never remove fields

C++

class Shape {
double x, y;

};

class Box : Shape {

double h, w;
};

Equivalent C

struct Shape {

double x, y;

};

struct Box {

double x, y;
double h, w;

};



Virtual Functions

class Shape {

virtual void draw(); // Invoked by object’s class
}; // not its compile­time type.

class Line : public Shape {

void draw();

};

class Arc : public Shape {

void draw();
};

Shape *s[10];

s[0] = new Line;

s[1] = new Arc;
s[0]­>draw(); // Invoke Line::draw()

s[1]­>draw(); // Invoke Arc::draw()



Virtual Functions

The Trick: Add a “virtual table” pointer to each object.

struct A {

int x;

virtual void Foo();
virtual void Bar();

};

struct B : A {

int y;
virtual void Foo();

virtual void Baz();

};

A a1, a2; B b1;

A’s Vtbl

A::Foo

A::Bar

a1

vptr

x

a2

vptr

x

B’s Vtbl

B::Foo

A::Bar

B::Baz

b1

vptr

x

y



Virtual Functions

struct A {

int x;

virtual void Foo();
virtual void Bar()

{ do_something(); }
};

struct B : A {

int y;
virtual void Foo();

virtual void Baz();

};
A *a = new B;

a­>Bar();

B’s Vtbl

B::Foo

A::Bar

B::Baz

*a

vptr

x

y



Virtual Functions

struct A {
int x;

virtual void Foo();

virtual void Bar();
};

struct B : A {

int y;

virtual void Foo()
{ something_else(); }

virtual void Baz();

};

A *a = new B;
a­>Foo();

B’s Vtbl

B::Foo

A::Bar

B::Baz

*a

vptr

x

y



Multiple Inheritance

Rocket Science,

and nearly as dangerous

Inherit from two or more classes

class Window { ... };

class Border { ... };

class BWindow : public Window,

public Border {
...

};



Multiple Inheritance Ambiguities

class Window {

void draw();
};

class Border {
void draw(); // OK

};

class BWindow : public Window,

public Border { };

BWindow bw;

bw.draw(); // Compile­time error: ambiguous



Resolving Ambiguities Explicitly

class Window { void draw(); };

class Border { void draw(); };

class BWindow : public Window,

public Border {

void draw() { Window::draw(); }
};

BWindow bw;
bw.draw(); // OK



Duplicate Base Classes

A class may be inherited more than once

class Drawable { ... };

class Window : public Drawable { ... };
class Border : public Drawable { ... };

class BWindow : public Window, public Border { ... };

BWindow gets two copies of the Drawable base class.



Virtual Base Classes

Virtual base classes are inherited at most once

class Drawable { ... };

class Window : public virtual Drawable { ... };

class Border : public virtual Drawable { ... };
class BWindow : public Window, public Border { ... };

BWindow gets one copy of the Drawable base class



Implementing Multiple Inheritance

A virtual function expects a pointer to its object

struct A { int x; virtual void f(); }
struct B { int y; virtual void f(); }

struct C : A, B { int z; void f(); }

B *obj = new C;

obj­>f(); // Calls C::f()

“this” expected by C::f()→ x

B* obj→ y

z

“obj” is, by definition, a pointer to a B, not a C. Pointer must be

adjusted depending on the actual type of the object. At least two

ways to do this.



Implementation using Offsets

struct A { int x; virtual void f(); }
struct B {

int y;

virtual void f();
virtual void g();

}

struct C : A, B { int z; void f(); }

B *b = new C;
b­>f(); // Call C::f()

this→ vptr
x

b→ vptr
y
z

C’s Virtual Tbl
&C::f 0

B in C’s V. Tbl
&C::f −2
&B::g 0

adjust from offset



Implementation using Thunks

struct A { int x; virtual void f(); }

struct B { int y; virtual void f();
virtual void g(); }

struct C : A, B { int z; void f(); }

B *b = new C;
b­>f(); // Call C::f()

this→ vptr
x

b→ vptr
y
z

C vtbl
&C::f

B in C’s vtbl
&C::f_in_B
&B::g

void C::f_in_B}(void *this)
{

this = this ­ 2;

goto C::f;
}



Offsets vs. Thunks

Offsets Thunks

Offsets to virtual tables Helper functions

Can be implemented in C Needs “extra” semantics

All virtual functions cost more Only multiply-inherited functions cost

Tricky Very Tricky



Exceptions

A high-level replacement

for C’s setjmp/longjmp.

struct Except { };

void baz() { throw Except; }

void bar() { baz(); }

void foo() {

try {

bar();
} catch(Except e) {

printf("oops");
}

}



One Way to Implement Exceptions

try {

throw Ex;

} catch (Ex e) {
foo();

}

push(Ex, Handler);

throw(Ex);
pop();

goto Exit;

Handler:
foo();

Exit:

push() adds a handler to a stack

pop() removes a handler

throw() finds first matching handler

Problem: imposes overhead even with no exceptions



Implementing Exceptions Cleverly

Real question is the nearest handler for a given PC.

1 void foo() {

2

3 try {
4 bar();

5 } catch (Ex1 e) { H1: a(); }
6

7 }

8 void bar() {

9

10 try {
11 throw Ex1();

12 } catch (Ex2 e) { H2: b(); }
13

14 }

Lines Action

1–2 Reraise

3–5 H1

6–9 Reraise

10–12 H2

13–14 Reraise

look in table
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Implementing Exceptions Cleverly

Real question is the nearest handler for a given PC.

1 void foo() {

2

3 try {
4 bar();
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6

7 }
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9

10 try {
11 throw Ex1();
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13–14 Reraise
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H2 doesn’t handle Ex1, reraise

look in table

jump



Part VII

The C++ Standard Template Library



Standard Template Library

I/O Facilities

Ï iostream, fstream

Garbage-collected String class

Containers

Ï vector, list, queue, stack, map, set

Numerical

Ï complex, valarray

General algorithms

Ï search, sort



C++ I/O

C’s printing facility is clever but not type safe.

char *s; int d; double g;
printf("%s %d %g", s, d, g);

Hard for compiler to typecheck argument types against format

string.

C++ overloads the << and >> operators. This is type safe.

cout << *s << ’ ’ << d << ’ ’ << g;



C++ I/O

Easily extended to print user-defined types

ostream& operator <<(ostream& o, MyType& m) {

o << "An Object of MyType";
return o;

}

Input overloads the >> operator

int read_integer;

cin >> read_integer;



C++ String Class

Provides automatic garbage

collection, usually by

reference counting.

string s1, s2;

s1 = "Hello";

s2 = "There";
s1 += " goodbye";

s1 = ""; // Frees memory holding ‘‘Hello goodbye’’



C++ STL Containers

Vector: dynamically growing and shrinking array of elements.

vector<int> v;
v.push_back(3); // vector can behave as a stack

v.push_back(2);

int j = v[0]; // operator[] defined for vector



Iterators

Mechanism for stepping through containers

vector<int> v;

for ( vector<int>::iterator i = v.begin();

i != v.end() ; i++ ) {
int entry = *i;

}

· · ·
↑ ↑

v.begin() v.end()



Associative Containers

Keys must be totally ordered

Implemented with trees—O(log n)

Set of objects

set<int, less<int> > s;
s.insert(5);

set<int, less<int> >::iterator i = s.find(3);

Map: Associative array

map<int, char*> m;

m[3] = "example";



Part VIII

C++ In Embedded Systems



C++ In Embedded Systems

Ï Dangers of using C++:

Ï No or bad compiler for your particular processor

Ï Increased code size

Ï Slower program execution

Ï Much harder language to compile

Ï Unoptimized C++ code can be larger & slower than equivalent

C



C++ Features With No Impact

Classes

Ï Fancy way to describe functions and structs

Ï Equivalent to writing object-oriented C code

Single inheritance

Ï More compact way to write larger structures

Function name overloading

Ï Completely resolved at compile time

Namespaces

Ï Completely resolved at compile time



Inexpensive C++ Features

Default arguments

Ï Compiler adds code at call site to set default arguments

Ï Long argument lists costly in C and C++ anyway

Constructors and destructors

Ï Function call overhead when an object comes into scope

(normal case)

Ï Extra code inserted when object comes into scope (inlined

case)



Medium-cost Features

Virtual functions

Ï Extra level of indirection for each virtual function call

Ï Each object contains an extra pointer

References

Ï Often implemented with pointers

Ï Extra level of indirection in accessing data

Ï Can disappear with inline functions

Inline functions

Ï Can greatly increase code size for large functions

Ï Usually speeds execution



High-cost Features

Multiple inheritance

Ï Makes objects much larger (multiple virtual pointers)

Ï Virtual tables larger, more complicated

Ï Calling virtual functions even slower

Templates

Ï Compiler generates separate code for each copy

Ï Can greatly increase code sizes

Ï No performance penalty



High-cost Features

Exceptions

Ï Typical implementation:

Ï When exception is thrown, look up stack until handler is found

and destroy automatic objects on the way

Ï Mere presence of exceptions does not slow program

Ï Often requires extra tables or code to direct clean-up

Ï Throwing and exception often very slow



High-cost Features

Much of the standard template library

Ï Uses templates: often generates lots of code

Ï Very dynamic data structures have high memory-management

overhead

Ï Easy to inadvertently copy large data structures



The bottom line

C still generates better code

Easy to generate larger C++ executables

Harder to generate slower C++ executables

Exceptions most worrisome feature

Ï Consumes space without you asking

Ï GCC compiler has a flag to enable/disable exception support

­fexceptions and ­fno­exceptions
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