Television: 1939 Du Mont Model 181

The Model 181 is a high console model which provides television sight and sound entertainment with a selection of four (4) television channels. The black and white picture of pleasing contrast is reproduced on the screen of the 14 inch teletron, and measures 8 inches by 10 inches. The beautifully grained walnut cabinet of pleasing modern design measures 48% inches high, 23 inches wide and 26 inches deep. It is completely A.C., operated from standard 110 volt 60 cycle power lines. Twenty-two (22) tubes including the Du Mont Teletron are employed in the superhetrodyne circuit. A dynamic speaker is used for perfect sound reproduction. In addition, a three-band superhetrodyne all wave radio is provided for standard radio reception. This receiver employs 8 tubes, is completely A.C. operated from 110 volt 60 cycle power lines. Push button and manual tuning are provided. An individual dynamic speaker is used for broadcast sound reproduction.
Raster Scanning
Raster Scanning
Raster Scanning
Raster Scanning
NTSC or RS-170

Originally black-and-white
60 Hz vertical scan frequency
15.75 kHz horizontal frequency

\[
\frac{15.75 \text{ kHz}}{60 \text{ Hz}} = 262.5 \text{ lines per field}
\]

White 1 V
Black 0.075 V
Blank 0 V
Sync − 0.4 V
A Line of B&W Video

- White
- Black
- Blank
- Sync

Front Porch: 0.02H
Sync: 0.08H
Back Porch: 0.06H
Blanking: 0.16H
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Color added later: had to be backwards compatible.
Solution: continue to transmit a “black-and-white” signal and modulate two color signals on top of it.

RGB vs. YIQ colorspaces

\[
\begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31 \\
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B \\
\end{bmatrix}
=
\begin{bmatrix}
Y \\
I \\
Q \\
\end{bmatrix}
\]

Y baseband 4 MHz “black-and-white” signal
I as 1.5 MHz, Q as 0.5 MHz at 90°: modulated at 3.58 MHz
CIE Color Matching Curves
YIQ color space with $Y=0.5$
International Standards

<table>
<thead>
<tr>
<th></th>
<th>lines</th>
<th>active lines</th>
<th>vertical res.</th>
<th>aspect ratio</th>
<th>horiz. res.</th>
<th>frame rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>525</td>
<td>484</td>
<td>242</td>
<td>4:3</td>
<td>427</td>
<td>29.94 Hz</td>
</tr>
<tr>
<td>PAL</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>425</td>
<td>25 Hz</td>
</tr>
<tr>
<td>SECAM</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>465</td>
<td>25 Hz</td>
</tr>
</tbody>
</table>

PAL: Uses YUV instead of YIQ, flips phase of V every other line

SECAM: Transmits the two chrominance signals on alternate lines; no quadrature modulation
Computer Video: VGA

<table>
<thead>
<tr>
<th></th>
<th>1 Red</th>
<th>2 Green</th>
<th>3 Blue</th>
<th>4 ID2</th>
<th>5 GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>RGND</td>
<td>7 GGND</td>
<td>8 BGND</td>
<td>9 (+5V)</td>
<td>10 GND</td>
</tr>
<tr>
<td>11</td>
<td>ID0</td>
<td>12 ID1</td>
<td>13 hsync</td>
<td>14 vsync</td>
<td>15 ID3</td>
</tr>
</tbody>
</table>

ID2 ID0 ID1

- - GND Monochrome, $< 1024 \times 768$
- GND - Color, $< 1024 \times 768$
GND GND - Color, $\geq 1024 \times 768$

DDC1

ID2 Data from display
vsync also data clock

DDC2

ID1 I^2C SDA
ID3 I^2C SLC
VGA Timing

<table>
<thead>
<tr>
<th>Mode</th>
<th>Resolution</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Pixel Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>640 × 350</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640 × 400</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640 × 480</td>
<td>59.94 Hz</td>
<td>31.469 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>56 Hz</td>
<td>35.2 kHz</td>
<td>36 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>60 Hz</td>
<td>37.8 kHz</td>
<td>40 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800 × 600</td>
<td>72 Hz</td>
<td>48.0 kHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>XGA</td>
<td>1024 × 768</td>
<td>60 Hz</td>
<td>48.5 kHz</td>
<td>65 MHz</td>
</tr>
<tr>
<td>SXGA</td>
<td>1280 × 1024</td>
<td>61 Hz</td>
<td>64.2 kHz</td>
<td>110 MHz</td>
</tr>
<tr>
<td>HDTV</td>
<td>1920 × 1080i</td>
<td>60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXGA</td>
<td>1600 × 1200</td>
<td>60 Hz</td>
<td>75 kHz</td>
<td>162 MHz</td>
</tr>
<tr>
<td>UXGA</td>
<td>1600 × 1200</td>
<td>85 Hz</td>
<td>105.77 kHz</td>
<td>220 MHz</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1920 × 1200</td>
<td>70 Hz</td>
<td>87.5 kHz</td>
<td>230 MHz</td>
</tr>
</tbody>
</table>
Detailed VGA Timing

640 × 480, “60 Hz”

25.175 MHz Dot Clock
31.469 kHz Line Frequency
59.94 Hz Field Frequency

pixels role
8 Front Porch
96 Horizontal Sync
40 Back Porch
8 Left border
640 Active
8 Right border

lines role
2 Front Porch
2 Vertical Sync
25 Back Porch
8 Top Border
480 Active
8 Bottom Border

800 total per line
525 total per field

Active-low Horizontal and Vertical sync signals.
Challenge: A white rectangle

Let’s build a VHDL module that displays a 640×480 VGA raster with a white rectangle in the center against a blue background.
Horizontal Timing

For a 25.175 MHz pixel clock,

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSYNC</td>
<td>96 pixels</td>
</tr>
<tr>
<td>BACK_PORCH</td>
<td>48</td>
</tr>
<tr>
<td>HACTIVE</td>
<td>640</td>
</tr>
<tr>
<td>FRONT_PORCH</td>
<td>16</td>
</tr>
<tr>
<td>HTOTAL</td>
<td>800</td>
</tr>
</tbody>
</table>
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity de2_vga_raster is

port (
 reset : in std_logic;
 clk : in std_logic;
 VGA_CLK,
 VGA_HS,
 VGA_VS,
 VGA_BLANK,
 VGA_SYNC : out std_logic;
 VGA_R,
 VGA_G,
 VGA_B : out unsigned(9 downto 0)
);

end de2_vga_raster;
architecture rtl of de2_vga_raster is

-- Video parameters

constant HTOTAL : integer := 800;
constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;
constant HFRONT_PORCH : integer := 16;

constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;

constant RECTANGLE_HSTART : integer := 100;
constant RECTANGLE_HEND : integer := 540;
constant RECTANGLE_VSTART : integer := 100;
constant RECTANGLE_VEND : integer := 380;
-- Signals for the video controller

-- Horizontal position (0-800)
signal Hcount : unsigned(9 downto 0);

-- Vertical position (0-524)
signal Vcount : unsigned(9 downto 0);

signal EndOfLine, EndOfField : std_logic;

signal vga_hblank, vga_hsync,
 vga_vblank, vga_vsync : std_logic; -- Sync. signals

-- rectangle area
signal rectangle_h, rectangle_v, rectangle : std_logic;

begin
Counters

HCounter : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' or EndOfLine = '1' then
 Hcount <= (others => '0');
 else
 Hcount <= Hcount + 1;
 end if;
 end if;
end process HCounter;

EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

VCounter: process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then
 Vcount <= (others => '0');
 elsif
 EndOfLine = '1' then
 if EndOfField = '1' then
 Vcount <= (others => '0');
 else
 Vcount <= Vcount + 1;
 end if;
 end if;
 end if;
end process VCounter;

EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';
Horizontal signals

HSyncGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' or EndOfLine = '1' then
 vga_hsync <= '1';
 elsif Hcount = HSYNC - 1 then
 vga_hsync <= '0';
 end if;
 end if;
end process HSyncGen;

HBlankGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then
 vga_hblank <= '1';
 elsif Hcount = HSYNC + HBACK_PORCH then
 vga_hblank <= '0';
 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then
 vga_hblank <= '1';
 end if;
 end if;
end process HBlankGen;
Vertical signals

VSyncGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then vga_vsync <= '1';
 elsif EndOfLine = '1' then
 if EndOfField = '1' then vga_vsync <= '1';
 elsif Vcount = VSYNC - 1 then vga_vsync <= '0';
 end if;
 end if;
 end if;
end process VSyncGen;

VBlankGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then vga_vblank <= '1';
 elsif EndOfLine = '1' then
 if Vcount = VSYNC + VBACK_PORCH - 1 then
 vga_vblank <= '0';
 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
 vga_vblank <= '1';
 end if; end if; end if;
 end process VBlankGen;
The Rectangle

RectangleHGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' or Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HSTART then
 rectangle_h <= '1';
 elsif Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HEND then
 rectangle_h <= '0';
 end if; end if;
 end if;
end process RectangleHGen;

RectangleVGen : process (clk)
begin
 if rising_edge(clk) then
 if reset = '1' then rectangle_v <= '0';
 elsif EndOfLine = '1' then
 if Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VSTART then
 rectangle_v <= '1';
 elsif Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VEND then
 rectangle_v <= '0';
 end if; end if; end if;
 end if;
end process RectangleVGen;

rectangle <= rectangle_h and rectangle_v;
Output signals

VideoOut: process (clk, reset)
begin
 if reset = '1' then
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "0000000000";
 elsif clk'event and clk = '1' then
 if rectangle = '1' then
 VGA_R <= "1111111111"; VGA_G <= "1111111111"; VGA_B <= "1111111111"
 elsif vga_hblank = '0' and vga_vblank = '0' then
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "1111111111"
 else
 VGA_R <= "0000000000"; VGA_G <= "0000000000"; VGA_B <= "0000000000"
 end if;
 end if;
end process VideoOut;

VGA_CLK <= clk;
VGA_HS <= not vga_hsync;
VGA_VS <= not vga_vsync;
VGA_SYNC <= '0';
VGA_BLANK <= not (vga_hsync or vga_vsync);
end rtl;