Early Serial Communication

Morse Code Key

<table>
<thead>
<tr>
<th>Letters</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>- ---</td>
</tr>
<tr>
<td>C</td>
<td>- ---</td>
</tr>
<tr>
<td>D</td>
<td>- ---</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>- ---</td>
</tr>
<tr>
<td>G</td>
<td>- ---</td>
</tr>
<tr>
<td>H</td>
<td>- ---</td>
</tr>
<tr>
<td>I</td>
<td>- ---</td>
</tr>
<tr>
<td>J</td>
<td>- ---</td>
</tr>
<tr>
<td>K</td>
<td>- ---</td>
</tr>
<tr>
<td>L</td>
<td>- ---</td>
</tr>
<tr>
<td>M</td>
<td>- ---</td>
</tr>
<tr>
<td>N</td>
<td>- ---</td>
</tr>
<tr>
<td>O</td>
<td>- ---</td>
</tr>
<tr>
<td>P</td>
<td>- ---</td>
</tr>
<tr>
<td>Q</td>
<td>- ---</td>
</tr>
<tr>
<td>R</td>
<td>- ---</td>
</tr>
<tr>
<td>S</td>
<td>- ---</td>
</tr>
<tr>
<td>T</td>
<td>- ---</td>
</tr>
<tr>
<td>U</td>
<td>- ---</td>
</tr>
<tr>
<td>V</td>
<td>- ---</td>
</tr>
<tr>
<td>W</td>
<td>- ---</td>
</tr>
<tr>
<td>X</td>
<td>- ---</td>
</tr>
<tr>
<td>Y</td>
<td>- ---</td>
</tr>
<tr>
<td>Z</td>
<td>- ---</td>
</tr>
</tbody>
</table>
Later Serial Communication

Data Terminal Equipment
RS-232

Defined in early 1960s
Serial, Asynchronous, Full-duplex,
Voltage-based, point-to-point, 100 ft+ cables

\[
\begin{align*}
+12V & \quad \text{SPACE} = 0 \\
+3V & \\
-3V & \quad \text{MARK} = 1 \\
-12V &
\end{align*}
\]

Idle Start LSB B1 B2 B3 B4 B5 B6 MSB Stop

Tx
RS-232 Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>DB-9 DTE</th>
<th>DCE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxD</td>
<td>2</td>
<td>←</td>
<td>Data received by DTE</td>
</tr>
<tr>
<td>TxD</td>
<td>3</td>
<td>→</td>
<td>Data sent by DTE</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>←</td>
<td>Data Set Ready (I’m alive)</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>→</td>
<td>Data Terminal Ready (me, too)</td>
</tr>
<tr>
<td>DCD</td>
<td>1</td>
<td>←</td>
<td>Carrier Detect (hear a carrier)</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>→</td>
<td>Request To Send (Yo?)</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>←</td>
<td>Clear To Send (Yo!)</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>←</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>
Receiving RS-232

Most UARTs actually use 16× clocks
Parity bit: \((\text{Even} = \text{true when even number of 1s})\)

Two stop bits:

Serial Communication – p.
Baud Rate

Baud: bits per second

<table>
<thead>
<tr>
<th>Baud</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>ASR-33 Teletype</td>
</tr>
<tr>
<td>300</td>
<td>Early acoustic modems</td>
</tr>
<tr>
<td>1200</td>
<td>Direct-coupled modems c. 1980</td>
</tr>
<tr>
<td>2400</td>
<td>Modems c. 1990</td>
</tr>
<tr>
<td>9600</td>
<td>Serial terminals</td>
</tr>
<tr>
<td>19200</td>
<td></td>
</tr>
<tr>
<td>38400</td>
<td>Typical maximum</td>
</tr>
</tbody>
</table>
Connectors: DB-25, DB-9, Mini DIN-8
RS-422: Differential signaling RS-485: Bus-like
Philips invented the Inter-IC bus c. 1980 as a very cheap way to communicate slowly among chips. For example, good for setting control registers. The bitrates are 100, 400, and 3400 kHz.

SCL: Clock, generated by a single master.
SDA: Data, controlled by either master or slaves.
I2C Bus Transaction

Idle Start “0” “1” Ack Stop

SCL

SDA

Write data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>W</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
</table>

< n data bytes >

Read data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>R</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
</table>

< n data bytes > last data byte

Master transmitter Slave receiver

Master transmitter Slave receiver

S = Start condition
A = Acknowledge
P = Stop condition
R/W = read / write not
A = Not Acknowledge
USB: Universal Serial Bus

1.5 Mbps, 12 Mbps, and 480 Mbps (USB 2.0)
Point-to-point, differential, twisted pair
3–5m maximum cable length
USB Connectors

Series "A" Connectors
- Series "A" plugs are always oriented **upstream** towards the *Host System*

Series "B" Connectors
- Series "B" plugs are always oriented **downstream** towards the *USB Device*
USB signaling

NRZI: 0 = toggle, 1 = no change

Bit stuffing: 0 automatically inserted after six consecutive 1s

Each packet prefixed by a SYNC field: 3 0s followed by two 1s

Low- vs. full-speed devices identified by different pull-ups on D+/D- lines
USB Packets

Always start with SYNC
Then 4-bit type, 4-bit type complemented
2 bits distinguish Token, Data, Handshake, and Special, other two bits select sub-types
Then data, depending on packet type
Data checked using a CRC
Addresses (1-128) assigned by bus master, each with 16 possible endpoints
Polled bus: host initiates all transfers.
Most transactions involve three packets:
 - “Token” packet from host requesting data
 - Data packet from target
 - Acknowledge from host
Supports both streams of bytes and structured messages (e.g., control changes).
USB Data Flow Types

- **Control**
 For configuration, etc.

- **Bulk Data**
 Arbitrary data stream: bursty

- **Interrupt Data**
 Timely, reliable delivery of data. Usually events.

- **Isochronous Data**
 For streaming real-time transfer: prenegotiated bandwidth and latency
Bus 001 Device 002: ID 05e3:0760 Genesys Logic, Inc.
bcdUSB 2.00
bMaxPacketSize0 64
idVendor 0x05e3 Genesys Logic, Inc.
idProduct 0x0760
bcdDevice 1.14
iManufacturer 2 Genesys
iProduct 3 Flash Reader
iSerial 4 002364
Configuration Descriptor:
 bNumInterfaces 1
 MaxPower 300mA
Interface Descriptor:
 bNumEndpoints 2
 bInterfaceClass 8 Mass Storage
 bInterfaceSubClass 6 SCSI
 bInterfaceProtocol 80 Bulk (Zip)
Endpoint Descriptor:
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type none
 wMaxPacketSize 64
Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x02 EP 2 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type none
 wMaxPacketSize 64
Language IDs: (length=4)
 0409 English(US)
USB: Mouse Device

Bus 002 Device 002: ID 04b4:0001 Cypress Semiconductor Mouse

Device Descriptor:

bcdUSB 1.00
idVendor 0x04b4 Cypress Semiconductor
idProduct 0x0001 Mouse
bcdDevice 4.90
iManufacturer 1 Adomax Sem.
iProduct 2 USB Mouse
iSerial 0

Configuration Descriptor:

bNumInterfaces 1
bmAttributes 0xa0
Remote Wakeup
MaxPower 100mA

Interface Descriptor:

bNumEndpoints 1
bInterfaceClass 3 Human Interface Devices
bInterfaceSubClass 1 Boot Interface Subclass
bInterfaceProtocol 2 Mouse
iInterface 5 EndPoint1 Interrupt Pipe

HID Device Descriptor:

bDescriptorType 34 Report
wDescriptorLength 52

Endpoint Descriptor:

bEndpointAddress 0x81 EP 1 IN
bmAttributes 3
Transfer Type Interrupt
Synch Type none
wMaxPacketSize 4
bInterval 10

Language IDs: (length=4)
0409 English(US)
Philips ISP1362 USB 2.0 Controller

On the DE2, one downstream port, one host
Operates at 12 or 480 Mbps speeds
Two control endpoints + 14 user endpoints
4096 (host) + 2462 (device) bytes buffer memory
Supports DMA data transfers
Many configuration and status registers
150-page data “sheet” + 99-page embedded programming guide