Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

Light saber generator-Return of the Jedi
[CSEE 4840 Project Report — May 2009]

Anusha Dachepally Roopa Kakarlapudi Devesh Dedhia
(ad2657) (rk2489) (ddd2121)
Raghu Binnamangalam
(rsb2145)

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
Contents
1 INTRODUCGTION. .. ettt ettt ettt sttt ettt s bt e saee st sab e et ebe e beesbeesaeesaseenseebeesseesanenas 4
2 TOP LEVEL SYSTEM DESIGNcoiiitiiiiitiieee ettt ettt st st et sbe e st st st s 6
3 HARDWARE DESIGN ..ottt ettt sttt et st st st e et e she e satesatesbeesbeenns 7
3.1 (1O ol o} T =W] =Y o] o TSP SPR 7
3.2 ITU DECODER ...ttt sttt ettt ettt st st et e b e b e s b e e sbeesaeeeateebeesbeenbeesneenas 7
3.2.1 Understanding the ITU Standardccuveieeiiiiiicceec e e e e 7
3.2.2 YCPCD STIEAM ..ottt ettt b e st st et et e b e s bt e satesanesabeebeebeenes 7
3.2.3 SAV and EAV tiMING COUES ...eiiiiiiiiiiiiiiie ittt ceitee sttt e e eettee e st e e s satee e s sbaeeessbteeessseeeeesnnes 9
3.2.4 VERTICAL BLANKING INTERVALS.......eoiiiitiirieiiteteete ettt st steeteesbeesbeesaeesaeesanesbeenseeneas 9
3.25 VERILOG MODULE.......ciiiiiitiieesitesite sttt ettt ettt st st te e st e saaesatesatessbeenbaesbeesaeesaseensean 10
3.2.6 SLIDING WINDOWeiiiuiiiiieieeiteetee sttt ettt et sbeesbte st st s be e bt e bt e sbeesaeesateeateesbeesaeesanenas 10
3.2.7 DOWN SAMPLE 720 £0 640 ...cuueiiutiiieeieeieestee ettt ettt ettt sttt e b e saee st sabeebeenes 11
3.2.8 ACTIVE VIDEO ... etiitiiiteiteetee ettt ettt ettt b e sttt et e s bt e sae e st e s bt et e e bt e smeesmeeeneeeneean 11
3.2.9 XY DETECTION ..ctietteitteeiie ettt ettt ettt sttt e sb e st e st e enteebeesbeesaaesatesasesnbeebaesneesanesnseensenn 11
3.2.10 YCrCb TO RGB CONVERTORcctiiiieiieniiisitenieeie et e sitesatesatesbeebee bt esbeesanesasesnteenseesaeesanesas 12
3.2.11 HANDLING SPECIAL CASES ...ttt ettt st sttt ettt s st be e sbeesaee e 13
3.2.12 AVALON COMMUNICATORciitieteeitesite sttt ettt et sit e sttt et e bt e sbeesaee st e ebeesbeesbeesaeeeas 13
3.2.13 WRITE TRANSFERS ...ttt ettt st sttt et be e bt sae e st e e beesbeesbeesanenas 14
3.2.14 READ TRANSFERS ...ttt ettt st sttt eeneesneesreesane e 14
3.2.15 SYNCHRONIZATIONeiiuiiriieteettete ettt sttt ettt ettt et e s b e sreesaeeeneereesneesane e 14
3.3 VGA UNIEe ittt et sttt b e s b et s e et e e n e e reesreesnne e 15
3.3.1 BASIC DESIGN ...ttt ettt ettt sttt e bt e sbe e sae e sab e et e e sbeesbeesatesabeeabeebeens 15
3.3.2 DESIGN DECISIONttt sttt ettt ettt sttt et e sbeesae e st e et e e sbeesbeesatesabeeabeebeennes 15
3.33 PROBLEMS FACED AND SOLUTIONSotiiiiiienitenie ettt ettt sttt et st st 15
MODIFIED DISPLAY FOR LIGHT SABER ..ottt sttt 16
4 SOFTWARE SYSTEM ..ottt ettt st sttt sae e st st be e b e sreesaee e s 16
4.1 INTRODUCTIONeetiiitteeittete ettt sttt sttt ettt sb e st st st e b e b e sbeesaeeest e et e e beesneesmnesanesareeareenns 16
4.2 IDENTIFICATION OF CENTER OF IMIASS ..ottt ettt ettt sttt ettt e 16
42.1 ROUTINE .t e e s s e e s s e e s s e e s s mnee e s e nreees 17

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
4.2.2 TiMING REQUITEMENT:eiiiiiiiii e aa e e e aasnaaaasnanansnsnsnsnsnsnnnsnnnnnnnnnnnn 18
4.2.3 LIGHT SABER CALCULATIONuuuiiiii e 18
4.2.4 OPTIMIZATION ...ttt ettt ettt sttt et e b e s bt e st st e bt e bt e beesbeesaeeeateeteenbeesbeesanenas 20
4.2.5 FINAL OUTPUT .ttt sttt ettt st st sttt e bt e sme e st e et e e sbeesbeesatesanesabeebeennes 20

5 RESOURCE UTILIZATION ...ooiiiiiiiieieee ettt ettt ettt sttt sbe e sae e st eneesbeesbeesane e 21

6 DESIGN EXPERIENCES.....coiitiiiee ettt sttt ettt st st e sb e b e s bt st sabeesbeesbeesaaesaeeeas 22

6.1 CHALLENGES FACED IN HARDWARE ... e e 22
6.1.1 Y81 a1 a1 2= 4 o] o SRR 22
6.1.2 (@fo] 0] o1 YA Te] T D= F- 1V SRR 22
6.1.3 Y IO 1 o] [@l fo Yol QDo T4 0 =11 o L3 USRS 22
6.1.4 SOFTWARE DESIGN CHALLENGES ..ottt ettt sttt et svee s 22
6.1.5 Floating point COMPULAtIoON:ccoiciiiii e e e s rbae e e abeeas 22
6.1.6 Sampling signals(from hardware) at higher frequency:cccoeovv e, 22

7 PITFALLS AND SUGGESTIONS ...ttt ettt sttt st sttt sbe e sbeesaee e 23
7.1.1 (6e] [Tl D=1 =Tl 4[] o AU PR PRRPUTURRUPROPORt 23
7.1.2 Computational delay in SOftWaArE:.........oi i et raee e 23

8 LESSONS LEARNT ..ottt ettt ettt st sttt st e he e st st sabe et e e b e e baesbeesaeesnteenteenbeesbeesanenas 23

9 PICTURES Of the JEDI ...cuiiiiiiiiiiiesieeeeect ettt ettt et st sttt sbe e s ae e st st e e teesbeesbeesanenns 24

10 TASK DIVISTON ..ttt sttt s s et ene e n e sneesnne e 24

11 ACKNOWLEDGEMENT ..ottt sttt sttt ettt st et e b e smeesmeeeneeeneean 24

12 REFERENCES ...ttt st st sttt b e be e sae e st e eteebeesbeesaee e 25

13 APPENDIX L.ttt ettt sttt e bt e bt e s bt e s a et e bt et e be e bt e e beesaeeeaeeeatean 25

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

ABSTRACT

The goal of this project was to create special effects on the incoming video and display it in real-time at
60fps. Specifically, we aimed to recognize a sword in the input video and replace it with a light saber (of
the Star Wars fame).The Light saber generator system designed was robust and could successfully
emulate a real light saber with a halo around the sword even from a significant distance from the
camera.

1 INTRODUCTION

The Light Saber Generator (henceforth referred to as LSG) is a fairly complex video processing
application which can be used in the entertainment industry (for sequels of Star Wars!!).

The motivation in choosing this project was our passion for Video processing. A plus point of this choice
was the ease of debugging with the help of output display.

The project is a Hardware/Software co-design. We developed a customized video accelerator (LSG) in
which the hardware components provide for real-time processing and the software adds flexibility to
the special effects that can be created. In our design, the decisions to implement sub-blocks either in
hardware/software were made to obtain maximum efficiency. The block that recognizes blue and green
pixels (ends of sword) has been implemented in hardware. It sends this information to the software
which draws the light saber in place of the sword.

In this project, we implemented the Light Saber Generator on the Cyclone Il FPGA embedded in the
Altera DE2 board. The video input to the system comes from a camera connected to the S-video input
on the board, and is an analog signal that carries the video data as two separate signals, lumen
(luminance) and chroma (color).

The ADV7181B integrated video decoder converts this signal compatible with NTSC standard into 4:2:2
component video data-compatible with 16-bit/8-bit ITU-R BT.656/601. This data stream goes to the LSG
implemented on the FPGA. The LSG uses straightforward image processing techniques to identify the
sword (i.e., green and blue markers at the ends) and processes it to create the desired special effects on
the output video. This data stream is then sent to ADV7123 chip on board which produces the output
stream for the VGA display.

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
TV VGA
Decoder Output
ADV7181 ADV7123
1
EP2C35

Figure 1 System Level Diagram

A kick start for the project was the DE2 Terasic TV Box Demonstration[1] example which displays real-
time video out. We tried to comprehend this code which was useful in implementing those blocks in LSG
responsible for providing video output.

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

2 TOP LEVEL SYSTEM DESIGN

The following figure shows the complete LSG system followed by a description of the data flow from the
Camera input right up to the display.

YChCrto
RGB

XY

Detection

A Initiation
D Delay
v timer
7 A
VGA Controller

1 D_Hs Locked
8 Detector
1 D VS

|12c_scul

12C_AV
ch_sm Config

Figure 2 Top level Block Diagram

The data stream that comes out of the ADV7181 is a digital output 8 bits wide encoded in the ITU R 656
format. The ITU protocol builds upon the 4:2:2 digital video encoding parameters defined in ITU-R
Recommendation BT.601, which provides interlaced video data, streaming each field separately, and
uses the YCrCb color space and operates at 13.5 MHz sampling frequency for pixels.

This data is analyzed by the ITU decoder block shown in the figure which down-samples the incoming
pixels and also extracts the required YCrCb color information. This color information is in 4:2:2 format
and is converted to 4:4:4 format by the converter block shown. A color space conversion from YCrCb to
RGB is necessary because the ADV7123 chip reads data in RGB color space only. The chip also needs
horizontal sync signal for every line and vertical sync signal for each frame which are generated by the
VGA block.

The YCrCb color information is also used by the XY detection module which recognizes the blue and
green pixels in every line. This is information is sent to the NIOS Il processor through the Avalon bus and
this communication is facilitated by the Avalon Communicator in VGA block.

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

The processor acts upon this information by computing the Centers of Mass of both green and blue
markers on the sword. It uses this information to computes a lookup table for the coordinates the edges
of the sword for every line. This lookup table is then stored in a dual-ported RAM block in hardware
through the Avalon bus. The VGA component refers to the lookup table in the RAM to modify the output
to make a saber in each frame.

3 HARDWARE DESIGN

This section gives details about the various blocks involved in the LSG shown above zeroing on the
functionality and operation of each module with timing diagrams wherever required.

3.1 12C configuration:

The ADV7181 must be set up via the I,C interface. Through the 12C 40 configuration registers are set
which control the sync width, width of the back porch and front porch, whether the signals are active
high /low. These registers are completely configured in hardware.

I12C Interface: the 12C interface comprises two lines -a clock, and a serial data line. Each write to a
register in the ADV7181 happens in the following steps

e Send a START bit; this is done by pulling the data line low and then pulling the clock line low.

e Send the WRITE mode slave address with the SDATA being clocked by the SCLK line

e Receive a single bit ACK

e Send the register address (8 bits) on the SDATA line, again accompanied by the SCLK

e Receive a single bit ACK

3.2 ITUDECODER
3.2.1 Understanding the ITU Standard

The ITU-R BT 656 defines the parallel and serial interfaces for transmitting 4:2:2 YCrCb digital video
between equipment. The active video resolutions are either 720X486 (525/60 video systems) or
720X576 (625/50 video systems). For the LSG we have used the NTSC format which is 525 lines with a
frame rate of 60 frames/sec.

The BT 656 parallel interface uses 8 or 10 bits of multiplexed YCrCb data and 27MHz clock. Instead of
conventional video timing signals (HSYNC, VSYNC and VBLANK) also being transmitted, BT 656 uses
unique timing codes embedded within video stream.

3.2.2 YCrCb Stream

Each line of video is sampled at 13.5MHz generating 720 active samples of 24-bit 4:4:4 YCrCb data as
shown in the figure below which is converted to 16-bit 4:2:2 YCrCb data resulting in 720 active samples
of Y per line, and 360 active samples each of Cb and Cr per line. After each SAV code the stream of active

Columbia University

Embedded Systems Design
CSEE 4840 Final Project report

Light Saber Generator

data words always begins with a Cb sample. The Y data and the CbCr data are multiplexed, and the
13.5MHz sample clock rate is increased by two times to 27MHz.

T = 1/13.5MHz
\ - 16T
4 _ 1 _ _ _50%SYNC
LEVEL
DIGITAL
L BLANKING _| DIGITAL ACTIVELINE _
1387 290T
(720-857) (0-718)
TOTAL LINE
- -
858T
(0-857)

Figure 3 BT 656 Horizontal timing for 525/60 video system

The 4:2:2 YCrCb data is multiplexed into an 8-bit or 10-bit stream: CbOYOCrOY1Cb2Y2Cr2... etc. The
following figure illustrates the format:

J H CONTROL SIGNAL
|
START OF DIGITAL LINE START OF DIGITAL ACTIVE LINE NEXT LINE
EAV CODE BLANKING SAV CODE |CO-SITED CO-SITED
22 {2 DIGITAL
FloJo[xX|&l1]8]1] = |s[1[FlojolX[c|Y[c]Y[clY[c]Y] " [c|Y[F
FloJo|y]o|lolo]o olo|F|lo|lo]|¥Y|B R B R R F VIDEO
2 22 STREAM
4 268 4 1440
- - - ol
1716

Figure 4 BT 656 8 bit parallel interface data format for 525/60 video system

Embedded Systems Design
Light Saber Generator

3.2.3 SAV and EAV timing codes

Columbia University
CSEE 4840 Final Project report

SAV (start of active video) and EAV (end of active video) codes are embedded within the YCrCb video
stream. The XY status word which also indicates whether it is an SAV or EAV sequence, is defined as:

F=0 for field 1; F=1 for field2

V=1 during vertical blanking

H_=0 at SAV, H=1 at EAV
P3-P0 =protection bits

8-BIT DATA 10-BIT DATA
D9
(MSB) D8 D7 Dé D5 D4 D3 D2 D1 DO
Preamble 1 1 1 1 1 I I 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Status Word 1 F v H P3 P2 P1 PO 0 0

3.2.4 VERTICAL BLANKING INTERVALS

BT.656 uses the BT.601-defined vertical blanking intervals, as shown in following figure. Note that the
active resolutions other than 720X486 and 720X576 may be supported (effectively cropping the image)
by adjusting where the EAV and SAV codes and vertical blanking internals occur.

Note that in every field (even/odd), the active video is followed by a Blanking period.

Embedded Systems Design

Columbia University

Light Saber Generator CSEE 4840 Final Project report
LINE1(V=1)
LINE 4 —
BLANKING
FIELD 1 LINE 21 (V =0)
(F=0)
oDD FIELD 1
ACTIVE VIDEQ
LINE 264 (V=1
LINE 266 —— ()
BLANKING
FIELD 2 LINE 283 (V = 0)
(F=1)
EVEN FIELD 2
ACTIVE VIDEQ
LINE 525 (V =0)
LINE 3 I |
1 1
H=1 H=0
EAV SAV

Figure 5 Bt 656 Vertical blanking interval for 525/60 video

3.2.5 VERILOG MODULE

The ITU decoder Verilog module that we have implemented does the following two things functionally:

1. Down sample the number of incoming pixels from 720 to 640 per each line.

2. Extract the YCrCb information from the incoming encoded video stream ONLY in Active region

and output 16 bit color information for each pixel.

3. Also generate a “data valid” signal for every active data that we receive.

3.2.6 SLIDING WINDOW
To analyze the continuous data stream we utilize the concept of sliding window, where we define a

window of 24 bits, i.e. 3 bytes. A 24-bit window is chosen as it aids us for two things:
a. The SAV and EAV codes are both 4 bytes as shown in figure (). Of the 4 bytes the MSB 3
bytes are FF, 00, and 00. This facilitates in distinguishing between the control code and the

active data.

b. Also since the complete pixel information will be 24 bits, i.e., 1 byte of each Y, Cr, and Cb.

We append each incoming byte with the MSB 16 bits of the previous window for analysis and this helps

us to hold each byte for 3 clock cycles which is sufficient time for the computation.

10

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

3.2.7 DOWN SAMPLE 720 to 640

For the VGA Display that we use, the active resolution is 640X480. Therefore, we need to down sample
the number of incoming pixels from 720 to 640.

To do this we have used an algorithm, which eliminates the excess 80 pixels, by skipping every 9" pixel
of the active video. By doing so we do not lose any color information since we only skip Y component
each time.

3.2.8 ACTIVE VIDEO

To distinguish the control code (SAV/EAV) we first check if sliding window has a 24’hFFO000 and analyze
the control word XY for its 5™ and 6" bits that indicate the H and V values.
In order to check for active video, a series of conditions must be met:

e Valid frame?

e Start of frame?

e check SAV?

e check skip pixel?
By a logical AND check the validity of all these conditions and we only assert a data valid as 1 when all of
them are met and we accept the current pixel as an active pixel.

3.2.9 XY DETECTION

The two markers at the ends of the swords must be recognized in order to determine the exact position
of the sword in every frame. Green and blue colors were chosen for the two markers as they are least
like the skin tone. This choice also imposes an implicit restriction on the usage of clothes or objects of
the same shades of green and blue in the video.

Color detection is typically done by specifying a base color and accepting all colors within a small
Euclidean distance to the base color. However, this method is computationally intensive and involves
square and square root calculations. To avoid complexity of the hardware design, we chose to simply
specify ranges for the blue and green shades.

The color detection can be done in YCrCb or the RGB color space. Initial experiments of color detection
in the RGB color space were not too successful. This is because a single color can have a very wide range
of values of R, G and B when exposed to different intensities of light. When the hue of a color is
increased the R, G, B values do not change linearly. These problems made us shift to the YCrCb domain
for color detection.

In the YCrCb color space, only the Y component changes with varying intensities of light on the color and
the variations in Cb or Cr are minimal. By allowing a wide range for Y, we can detect the blue and green
markers with varying light exposure (This happens very often while brandishing the sword). After a lot
of experiments, these are the final ranges for the green and blue markers.

Green - iY>100 && iCb<120 && iCr<110
Blue - iY>85&& iCb>140 && iCr<120

11

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

Our original plan was to compute the Centers of mass of all the green pixels and blue pixels in hardware
to pin-point the ends of the sword. But implementing even a simple algorithm to eliminate noise (stray
blue/green pixels in the video) would increase the hardware complexity tremendously. Hence this task
was left to be performed by the software. The XY detection unit only sends information about the
number and position of blue/green pixels in every line to the software for it to do the rest of the
computations.

There were a couple of ideas for communication of blue/green pixel info from XY Detector to the NIOS
processor. One option is to send the blue/green information after every line using the Avalon
communicator. The NIOS processor would use it in the center of mass computation as and when it reads
this information. We had doubts regarding the synchronization aspect of this design as the hardware
blocks function at 27MHz while the processor operates at 50MHz. The second option was to use a dual
ported RAM where the XY detector would fill up the RAM after processing each line. The processor
would read the information about the entire frame after the TS_VS signal goes high and then computes
the centers of masses. Eventually we chose the first design idea because of the following limitation
faced at the software end. The processor has the following tasks to complete between two frames -
centre of mass calculation, light saber table computation, writing the table in a dual ported RAM
through the Avalon bus. These tasks already take long enough that they do not complete during the
time and TD_VS is high. Adding the task of reading the RAM for blue/green information during TD_VS
would only worsen the problem and hence it was avoided.

3.2.10 YCrCb TO RGB CONVERTOR

The pixel information given by the ADV7181 chip is in 8 bit YCrCb format. In the YCrCb color
space, Y is the luma component and Cb and Cr are the blue-difference and red-difference
chroma components. The ADV7123 chip reads data only in 10 bit RGB format. Thus, it's
essential to convert from 8 bit YCrCb format to 10 bit RGB format.

Following are the equations to convert from 8 bit YCrCb to 8 bit RGB.

B =1.164(Y - 16) + 2.018(Cb - 128)
G = 1.164(Y - 16) - 0.813(Cr - 128) - 0.391(Cb - 128)
R = 1.164(Y - 16) + 1.596(Cr - 128)

The equations if implemented as they appear above clearly require floating point computations which
must be avoided if possible. The equations are simplified as follows to avoid floating point arithmetic.

B=1.164Y +2.018Cb - 276.928

G =1.164Y - 0.813Cr - 0.391Cb + 135.488
R=1.164Y + 1.596Cr - 222.912

12

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

Multiplying and dividing the equations by 512 and approximating, we get

B =(596Y + 1033Cb) /512 - 141787/512

G =(596Y - 416Cr - 200Cb) / 512 + 69370/512

R =(596Y +817Cr) /512 - 114131/512

The above equations have no floating point arithmetic. The multiplications are performed by the MAC
unit. The division by 512 can be done right-shifting the value by 9. Note that the values obtained are in 8
bit RGB format. We need the data in 10 bit RGB format. This is done by a scaling factor of 4, R, G, B
values are multiplied by 4 (left-shifted twice) to obtain the corresponding 10 bit RGB data.

3.2.11 HANDLING SPECIAL CASES

With the above scheme of YCrCb to RGB conversion, the output video was pretty clear. However,
saturated colors in the input video had a very different shade in the output video. After we confirmed
that the problem was with only saturated colors, we inferred that the problem may be related to
overflow problems. Note that there may be an overflow in some of the multiplications or bits shifts
described above. These problems were solved by clipping method. The final results of the computations
are first stored in temporary registers which are wider than 10 bits. If any of the values in these registers
are greater than 1023, they are clipped at 1023 before they are stored in the final 10 bit registers.

3.2.12 AVALON COMMUNICATOR

This block is embedded in the VGA block and is mainly used for the purpose of transferring data
between hardware and software (NIOS II).

The Avalon Memory-Mapped (Avalon-MM) interface specification is designed to accommodate
peripheral development for the system-on-a programmable-chip (SOPC) environment. The specification
provides peripheral designers with a basis for describing the address-based read/write interface found
on master and slave peripherals, such as microprocessors, memory, UART, timer, etc.

The Avalon-MM interface defines:
e Aset of signal types
e The behavior of these signals
e The types of transfers supported by these signals

The communication process with NIOS Il takes place at 50MHz as the NIOS processor functions typically
at that frequency.

In our system, since all the hardware modules run at 27MHz whereas the NIOS processor runs at
50MHz, we have used a dual-ported RAMs into which we store the values before we transmit/after
receiving.

13

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

3.2.13 WRITE TRANSFERS

The data from software is communicated to the hardware using the “writedata” signal of the Avalon-
MM interface. In order to transfer data we must also assert the “chipselect” signal high and the
hardware asserts the “write” signal high by initiating a write call.

The Software computes the X1 and X2 co-ordinates (outer ends of sword - halo) and inner_X1 and
inner_X2 co-ordinates (inner ends of sword — solid white saber)of the saber for each line of the previous
and sends it to the VGA for display in the TD_VS time, i.e. the during the vertical sync blanking period.
Every time we receive these values, we store them in the RAM to avoid loss of information between
transfers.

3.2.14 READ TRANSFERS

The data from the hardware is communicated to the software using the “readdata” signal of the Avalon-
MM interface. In order to transfer data we must also assert the “chipselect” signal high and the
software asserts the “read” signal high by initiating a read call.

3.2.15 SYNCHRONIZATION

The synchronization of various transfers between software and hardware is very important in our
design, mainly because we operate at 2 different frequencies. Another important factor that demands
synchronization is the process of generating the video as it needs horizontal sync for every line and a
vertical sync for every frame.
If the data does not arrive/is not transmitted at a requested time instant then it might lead to the
following problems:

o The data may be old or may interrupt the current frame and lead to junk being displayed

e The data may overflow into the next frame information and this may lead into a cycle, if this

were to happen it would lead to the chain problem in every frame being displayed

Therefore, in order to for the synchronization of data between hardware and software we also send the
TD_HS,TD_VS, VGA_HS, and VGA_VS (described in later part of the report).

We also transmit the number of blue/green pixels per line and the co-ordinates X1 and X2 for each line
and also the line count information.

14

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

3.3 VGA Unit
3.3.1 BASIC DESIGN

This unit is the master controller of Video Generation. It is responsible for sending the Blanking and the
Sync signals to the ADV7123 chip along with a clock and R,G,B data.

3.3.2 DESIGN DECISION

The ITU Decoder sends interlaced video by sending the odd field and even field alternately. A TD_VS
signal is asserted between two fields. There are a number of methods to deinterlace the video. In field
combination deinterlacing, weaving is done by adding consecutive fields together. Weaving requires a
frame buffer. Using the SDRAM as a frame buffer may slow down the LSG due to its slow access time.
Using an SRAM too has its disadvantages, since it is not dual ported. Writing the frame into the SRAM
and reading from it has to be sequential which can act as a bottleneck. For these reasons, field
combination interlacing was not used.

The other method of deinterlacing is field extension deinterlacing. In this method, only one field is
displayed at a time. Hence the VGA VS signal must have the same frequency as TD_VS. Single field
display is done either by reducing the vertical resolution to half or by displaying each line twice. We used
the latter of the two options to main the vertical resolution. In order to avoid any loss of information,
we need to be able to display a line twice in the same amount of time that it takes to receive one line.
Hence the VGA_HS signal must have twice the frequency of TD_HS. This method of display necessitates
two line buffers of length 640 and data width. The relevant timing diagram is shown below. When Line
bufferl was being filled the VGA would read from the Line buffer2, they would switch on every TD_HS
going high.

TD_VS

16 ms (60 fps)

VGA_VS

Figure 6 Timing diagram of TD_VS and VGA_VS

3.3.3 PROBLEMS FACED AND SOLUTIONS

It was quite a challenge to get generate the horizontal and vertical sync signals. Apart from achieving the
desired frequencies for these signals, it was also important that these signals get aligned with the
incoming TD_HS and TD_VS signals. It was found using a cathode ray oscilloscope that the width of the
vertical sync received (TD_VS) was 60 lines instead of 2 lines. Hence edge detection circuit was used and
the sync of the required width was created using counters.

15

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

Another problem was that the TD_HS has the frequency of 2 lines. Hence accurate counters were
required to place an extra sync signal of the required width exactly in the center of 2 TD_HS signals

TD_HS

Fillup 1 line buffer

VGA_HS

Read 1 line buffer

MODIFIED DISPLAY FOR LIGHT SABER

The RAM block is the lookup table for drawing the light saber. For every line, if edge co-ordinates of
sword are present in the corresponding address of the RAM, the VGA draws a light saber between the
coordinates. To emulate the light saber shown in the Star Wars series, we wanted our saber to have a
bright white core and a transparent green glow around it. The white core was pretty straightforward
(R=G=B=1023). The green halo around it was achieved by adding a significant component of green to the
existing color pixel data. This gives it a translucent effect.

4 SOFTWARE SYSTEM
4.1 INTRODUCTION

The NIOS Il processor family uses a 32-bit RISC architecture. The instance that it is used in this project is
the Nios II/f processor, clocked at 50 MHz and attached to an instruction cache of 4 KB and a data Cache
of 2 KB. Also, the processor is built with hardware multiplication and hardware division units along with
a dynamic Branch Prediction and barrel Shifter logic. The entire detection of the centre of mass and
creation of the light saber is performed in software. We rely on the fact that the human eye cannot
distinguish the one frame delay between the detection of the center of mass and the display of the light
saber. That clearly makes it evident that the time available to the software for detection of the markers
and creation of the light saber is 1frame time (i.e. 16 ms). The Design is very time critical and at every
stage of the software an effort has been made to optimize the design to satisfy the timing requirements.
Another important point to note would be that the hardware provides only 263 lines between 2 vertical
syncs (lines per field) these have been duplicated to provide a 525 lines in the VGA unit. Hence the Y
coordinate of the center of mass should be doubled.

4.2 IDENTIFICATION OF CENTER OF MASS

The marker position module determines position of the marker by taking the average of the position of
all the marker pixels. For each line the last marker pixel seen with the no. of marker pixels is recorded.

16

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

The ideal method to detect the center of mass would be
Xcenter=3$ X/N
Ycenter=3 Y/N

Where, N is the no of marker pixels.

But this method is computationally intensive and doesn’t satisfy the timing requirement. Hence for each
line we record the mean of the X coordinates and average the means for all the lines at the end of the
frame. For Y coordinates we implemented a less reliable but computationally less intensive method. We
record the line count of the first and the last line of the marker and average it out at the end of the
frame.

4.2.1 Routine
LineCount= ReadLightSaber(CORE_NIOS_BASE,26);
//record the marker pixels when the count changes

if(LineCount!=prevlc)

{
//blue Detection

b1l.count= ReadLightSaber(CORE_NIOS_BASE,8);//get the no. of blue pixel for line

X_blue = ReadLightSaber(CORE_NIOS_BASE,10);// read the X coordinate for last
Blue pixel on the line

b1.x1=X_blue-bl.count;

b1.x2=X_blue;

//Green Detection
gl.count= ReadLightSaber(CORE_NIOS_BASE,12);
X_green = ReadLightSaber(CORE_NIOS_BASE,14);
g1.x1=X_green-gl.count;
gl.x2=X_green;

}

For every change in the line count we record the no of marker pixels with the last marker pixel seen. The
x1 and x2 coordinates of the marker pixels are calculated as

X 2= Xjast marker pixel
X1= Xjast marker pixel— N0 of marker pixels.

The mean for each line is calculated as (x1+x2) / 2.

17

Embedded Systems Design
Light Saber Generator

4.2.2 Timing Requirement:

Columbia University
CSEE 4840 Final Project report

< »
u Ll

The time between 2 horizontal syncs =64 us

In the above time we record the means for the X coordinate and sum it to means of the previous line.

A

Vertical Sync time

v

In the vertical sync time we do the averaging to find the center of mass of the markers. The centers of
mass of the 2 markers are given to the light saber calculation routine which returns an array of with light

saber coordinates. These values are written into ram in hardware.

4.2.3 LIGHT SABER CALCULATION

We first used the normal line equations to make the light saber. The computation involved floating point
arithmetic in a loop. Floating point arithmetic proved to be costly in the time domain. It took software
50 seconds to draw the light saber on the screen! Therefore we explored line drawing algorithms in the
graphics. The algorithm most widely used is the Bresenham's line algorithm.

Figure 7 Breesenhams Algorithm

4.2.3.3 Algorithm: To draw a line given 2 points.
function line(x0, x1, y0, y1)
boolean steep := abs (y1 - y0) > abs(x1 - x0)
if steep then
swap(x0, y0)
swap(x1, y1)
if x0 > x1 then
swap(x0, x1)
swap(y0, y1)

18

4.2.3.1

4.2.3.2

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

int deltax := x1 - x0
int deltay := abs(y1 - y0)
int error := deltax / 2
int ystep
inty:=y0
if yO < y1 then ystep := 1 else ystep :=-1
for x from x0 to x1
if steep then plot(y,x) else plot(x,y)
error := error - deltay
if error < 0 then
y =y +ystep
error := error + deltax

The algorithm can track, instead of possibly large y values, a small error value between -0.5 and 0.5: the
vertical distance between the rounded and the exact y values for the current x. Each time x is increased,
the error is increased by the slope; if it exceeds 0.5, the rasterization y is increased by 1 (the line
continues on the next lower row of the raster) and the error is decremented by 1.0

We use the algorithm to join the 4 points of the light saber.

Xo-Xosin®, Y +Y,cosO

X+Xosin®, Y,-Y,cos@

X,-X,sin®, Y,+Y,cos@

X,+X;sinB, Y,-Y,cosO

Figure 8 tracking coordinates for light saber

19

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

4.2.4 OPTIMIZATION

For the calculation of the 6 we use fixed point calculation instead of floating point. For finding the
square root we use bit shifting.

4.2.5 FINAL OUTPUT

The software must provide the hardware with the boundaries between which the light saber must be
drawn per line. A table (an array) is created to store L1 and L2 values for the line.

L1 \ 2
N\

H \ L2

. .

_—

L2

Line No (Table Index) | L1 L2

20

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

5 RESOURCE UTILIZATION

Shown below is the compilation summary for the project which gives a description on the resource
utilization by the LSG

'3 Compilation Report
-&3B Legal Notice
&SR Flow Summary
5B Flow Settings
- ¢SHER Flow Non-Default Global Setti
- ¢3B8 Flow Elapsed Time
-&BB FlowLog

- &H(] Analysis & Synthesis
&1 Fitter
0 &

ssembler
}-6 iming Analyzer

21

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

6 DESIGN EXPERIENCES
6.1 CHALLENGES FACED IN HARDWARE
6.1.1 Synchronization:

The ADV7123 needs accurate frequencies for the sync signals. Achieving these frequencies was difficult
and proved to be a road-block, as no video processing could be done without getting the real-time video
working. This was solved by generating local HS and VS signals in the VGA controller (described in VGA)

6.1.2 Compilation Delay:

The ROM type memory which was used for line buffers in VGA controller lead to a very high compilation
time and this occasionally discouraging as we could not proceed without analyzing the results of the
current compilation. During the later stages we figured that using a RAM in place of the ROM type
memory would serve the same purpose but with a lesser compilation time.

6.1.3 Multiple Clock Domains:

Our design demanded the use of two different clock frequencies — 27 MHz and 50MHz, as all our
hardware components were functional at 27MHz while we wanted an operating frequency of 50MHz for
the NIOS processor. Our understanding of the Avalon bus signals in detail helped us successfully set up
two different clocks in LSG

6.1.4 SOFTWARE DESIGN CHALLENGES

6.1.5 Floating point computation:

In the software design, calculations involving the slope and width of the saber required floating point
arithmetic. But this had to be avoided at any cost to generate the saber at real-time. Hence, we
converted all the computations into fixed-point with the help of Breshenham’s Line Drawing Algorithm.

6.1.6 Sampling signals(from hardware) at higher frequency:

Since the hardware functions at a frequency lower than the NIOS processor operating frequency, we
faced the problem of software sampling hardware signals multiple times. In order to avoid this, we set
up flags which would be set in hardware but reset in software

22

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

7 PITFALLS AND SUGGESTIONS

7.1.1 Color Detection:

Our color detection is slightly flawed as it can pick up a few shades of blue that are unwanted. Use of
Euclidean distance calculations would have made the color detection more robust.

7.1.2 Computational delay in software:

The software has to perform final centre of mass calculation, line drawing algorithm and writing into the
RAM — all in the vertical blank time. Failure to do so would lead to some of these computations
overflowing into active display time and hence affect the quality of output video with saber. One
optimization that can be used to save time is sending X coordinate information only to those lines where
the saber is present. This would effectively save some time spent in unnecessary write operations.

8 LESSONS LEARNT

1. Gain a thorough understanding of all the peripheral ICs involved in the design. In our project, an
accurate understanding of the ADV7123 chip at an earlier stage would have helped us save time.
Ignorant of the fact that the output data stream would be sent to a DAC before displaying, we
constrained the VGA unit’s clock frequency to 25MHz which gave us many problems integrating it
with the rest of the system.

2. RAMs help in isolating processes functional at different clock frequencies and set up a reliable
communication system.

3. Watch out for carries and overflow bits in all computations. If ignored, the error may propagate and
manifest itself in a way which is not suggestive of the root of the bug.

4. Oscilloscope — can prove to be a better debugging tool than simulators in some cases. In our project,
while generating the synchronization signals, their frequencies observed on the CRO were the last
resort as the video was not comprehendible.

5. When multiple clocks used in the design are declared as ‘clock’ in the SOPC builder, it maps all of
them to a single signal in the generated file. In order to avoid this, one of the clocks must be an
‘export’ signal.

23

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

9 PICTURES of the JEDI

10 TASK DIVISION

Our project was more of group work than individual effort. Brain storming in the group on various
design decisions to be made helped us get rid of some of the pitfalls that we may have run into
individually.

However, once we overcame the challenges of displaying video in real-time we split into two teams.
Anusha and Roopa worked on hardware blocks while Devesh and Raghu worked on software routines.

11 ACKNOWLEDGEMENT

Firstly we would like to thank Prof. Edwards for his valuable suggestions and giving us the right pointers
at every major hurdle in our design. We are grateful to the Teaching assistants Nalini and Sung jun for

their support.
We would like to thank a few of our seniors whose reports and project files were extremely helpful.

24

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

12 REFERENCES

[1] BT. 656 Video interface for ICs — Intersil corporation
http://www.intersil.com/data/an/an9728.pdf

[2] DE2 Development and Educational Board User Manual — Altera Corporation

[3] Altera documentation (Found on course 4840 webpage)
http://www1.cs.columbia.edu/~sedwards/classes/2009/4840/index.html

[4] Previous Semester Projects (Found on Course 4840 webpage)
http://www1.cs.columbia.edu/~sedwards/classes/2008/4840/index.html

13 APPENDIX

HARDWARE BLOCKS CODE

-- DE2 top-level module that includes the simple VGA raster generator

-- Stephen A. Edwards, Columbia University, sedwards@cs.columbia.edu
-- From an original by Terasic Technology, Inc.

-- (DE2_TOP.v, part of the DE2 system board CD supplied by Altera)

-- Modified by : Anusha Dachepally

- Devesh Dedhia

-- Raghu Binnamangalam

-- Roopa Karkarlapudi

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity LIGHT_SABER is

port (
-- Clocks
0SC_50,
0SC_27, --27 MHz
EXT_CLOCK :in std_logic; -- External Clock

25

Embedded Systems Design
Light Saber Generator

KEY: in std_logic_vector (3 downto 0);

-- VGA output

VGA_CLK, -- Clock

VGA_HS, --H_SYNC

VGA_VS, --V_SYNC

VGA_BLANK, -- BLANK

VGA_SYNC : out std_logic; -- SYNC

VGA_R, -- Red[9:0]

VGA G, -- Green[9:0]

VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]

TD_DATA : in std_logic_vector(7 downto 0);
8 bits
TD_RESET: out std_logic;

Columbia University
CSEE 4840 Final Project report

--TV Decoder Data bus

TD_HS, -- TV Decoder H_SYNC

TD_VS: in std_logic;
Decoder V_SYNC
--TV Decoder Reset

- TV

--12C
I2C_SDAT : inout std_logic; -- I12C Data
I2C_SCLK: out std_logic; - 12C Clock
--SRAM signals

SRAM_DQ :inout std_logic_vector(15 downto 0);
SRAM_ADDR : out std_logic_vector(17 downto 0);
SRAM_UB_N, SRAM_LB_N : out std_logic;
SRAM_WE_N, SRAM_CE_N : out std_logic;

SRAM_OE_N : out std_logic
);

end LIGHT_SABER;

architecture datapath of LIGHT_SABER is

signal 12C_SDAT1 : std_logic :=12C_SDAT;

signal iY_core, iCb_core, iCr_core : std_logic_vector(7 downto 0);

signal tempaddr : std_logic_vector(9 downto 0);
signal X_blue,blue_count: std_logic_vector(9 downto 0);

26

Embedded Systems Design
Light Saber Generator

component I2C_AV_Config port(

end component;

begin

VO0: 12C_AV_Config port map(

V4: entity work.nios_top port map (

-- VGA output

-- Clock

- H_SYNC

- V_SYNC

VGA_BLANK,

-- SYNC

-- Red[9:0]

-- Green[9:0]

-- Blue[9:0]
-- TD ports

Host Side

iCLK,

iRST_N :in std_logic;

-- 12C Side

I2C_SCLK : out std_logic;
I2C_SDAT : inout std_logic);

Host Side

iCLK => 0SC_27,
iRST_N=>'1",

- 12C Side
12C_SCLK => 12C_SCLK,
12C_SDAT => 12C_SDAT1);

clk =>0SC_50, --
reset n=>"'1', --

Columbia University
CSEE 4840 Final Project report

KEY_core_to_the_CORE_nios => KEY,
clk27 to_the CORE_nios => OSC_27,

VGA_CLK_core_from_the_CORE_nios =>

VGA_HS core_from_the CORE_nios =>

VGA_VS_core_from_the_CORE_nios =>

VGA_BLANK_core_from_the_CORE_nios

VGA_SYNC_core_from_the CORE_nios =>

VGA_R_core_from_the_CORE_nios =>
VGA_G_core_from_the_CORE_nios =>
VGA_B_core_from_the_CORE_nios =>

VGA_CLK,

VGA_HS,

VGA_VS,

VGA_SYNC,

VGA_R,

VGA_G,

VGA_B,

TD_DATA _core_to_the CORE_nios =>TD_DATA,

--TV Decoder Data bus 8 bits

27

Embedded Systems Design
Light Saber Generator

-- clk27_to_the_XY_GEN_nios => OSC_27,
-- KEY_XY_to_the_XY_GEN_nios => KEY,
-- TD_HS_to_the XY_GEN_nios =>TD_HS,
-- TD_VS_to_the_XY_GEN_nios =>TD_VS,
-- iY_to_the_XY_GEN_nios =>iY_core,

-- iCb_to the XY _GEN_nios =>iCbh_core,
-- iCr_to_the XY _GEN_nios =>iCr_core,

clk27 _to_the Blue_inst =>0SC_27,

TD_HS to_the_ Blue_inst =>TD_HS,
tempaddr_to_the Blue_inst => tempaddr,
X_blue_to_the_ Blue_inst => X_blue,
blue_count_to_the_Blue_inst => blue_count,

--v12: entity work.XY_GEN port map (

- reset_ n=>"'1,

-- clk27_to_the XY _GEN_nios =>clk27,
-- clk => CLK50,

Columbia University
CSEE 4840 Final Project report

TD_RESET core_from_the CORE_nios => TD_RESET,
TD_HS core_to_the_ CORE_nios =>TD_HS,

-- TV Decoder H_SYNC
TD_VS core_to_the CORE_nios =>TD_VS,
Linecount_core_from_the_CORE_nios => tempaddr,
bluecount_from_the_CORE_nios => blue_count,
x_blue_from_the_CORE_nios => X_blue,
oCb_from_the_CORE_nios =>iCb_core,
oCr_from_the_CORE_nios =>iCr_core,
oY_from_the_CORE_nios =>iY_core,

SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_ADDR_from_the_sram =>SRAM_ADDR,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_LB_N_from_the_sram =>SRAM_LB_N,
SRAM_WE_N_from_the_sram =>SRAM_WE_N,
SRAM_CE_N_from_the_sram =>SRAM_CE_N,
SRAM_OE_N_from_the_sram =>SRAM_OE_N

28

Embedded Systems Design
Light Saber Generator

KEY_XY_to_the_XY_GEN_nios => KEY,
TD_HS_to_the_XY_GEN_nios =>TD_HS,
TD_VS_to_the_XY_GEN_nios =>TD_VS,
iY_to_the_XY_GEN_nios =>iY_core,
iCb_to_the_XY_GEN_nios =>iCb_core,
iCr_to_the_XY_GEN_nios =>iCr_core

-- Avalon_signals

end datapath;

Columbia University
CSEE 4840 Final Project report

-- Modified by : Anusha Dachepally

Devesh Dedhia
Raghu Binnamangalam
Roopa Karkarlapudi

module 12C_AV_Config (//
// Host Side

input iCLK;

input iRST_N;

// 12C Side

output 12C_SCLK;

inout 12C_SDAT;

// Internal Registers/Wires
reg [15:0] mI2C_CLK_DIV;
reg [23:0] mI2C_DATA;

reg mI2C_CTRL_CLK;
reg mil2C_GO;

wire mIl2C_END;

wire mi2C_ACK;

reg [15:0] LUT_DATA;

reg [5:0] LUT_INDEX;

reg [3:0] mSetup_ST;

Host Side
iCLK,
iRST_N,

// 12C Side

12C_SCLK,
12C_SDAT

29

);

Embedded Systems Design
Light Saber Generator

// Clock Setting
parameter CLK_Freq

parameter 12C_Freq = 20000; // 20 KHz
// LUT Data Number

parameter LUT_SIZE = 51;
// Audio Data Index

parameter Dummy_DATA = 0;
parameter SET_LIN_L = 1;
parameter SET_LIN_R = 2;
parameter SET_HEAD L = 3;
parameter SET_HEAD R = 4;
parameter A_PATH_CTRL = 5;
parameter D_PATH_CTRL = 6;
parameter POWER_ON = 7;
parameter SET_FORMAT = 8;
parameter SAMPLE_CTRL = 9;
parameter SET_ACTIVE = 10;
// Video Data Index

parameter SET_VIDEO = 11;

[1111111117117117171]7 - 12C Control Clock NN
always@(posedge iCLK or negedge iRST_N)

begin
if(liRST_N)
begin
mI2C_CTRL_CLK<= 0;
mI2C_CLK_DIV <= 0;
end
else
begin
if(mI2C_CLK_DIV< (CLK_Freq/I2C_Freq))
mI2C_CLK_DIV <= mI2C_CLK_DIV+1;
else
begin
mI2C_CLK_DIV <= 0;
mI2C_CTRL_CLK<= ~ml2C_CTRL_CLK;
end
end
end
T 177717
I2C_Controller u0 (.CLOCK(mI2C_CTRL_CLK), //

30

50000000; // 50 MHz

Columbia University
CSEE 4840 Final Project report

Controller Work Clock

Embedded Systems Design

Columbia University

Light Saber Generator CSEE 4840 Final Project report
.12C_SCLK(12C_SCLK), // 12C CLOCK
.I2C_SDAT(I12C_SDAT), // 12C DATA
.12C_DATA(mI2C_DATA), //
DATA:[SLAVE_ADDR,SUB_ADDR,DATA]
.GO(mI2C_GO), // GO transfor
.END(mI2C_END), // END
transfor
ACK(mI2C_ACK), // ACK

.RESET(iRST_N));
i

[1H1T1T711711711711 - Config Control ///1711711111111111111111717
always@(posedge mI2C_CTRL_CLK or negedge iRST_N)

begin
if(1iRST_N)
begin
LUT_INDEX <= 0;
mSetup_ST <= 0;
mi2C_GO <= 0;
end
else
begin
if(LUT_INDEX<LUT_SIZE)
begin
case(mSetup_ST)
0: begin
if(LUT_INDEX<SET_VIDEO)
ml2C_DATA <= {8'h34,LUT_DATA};
else
ml2C_DATA <= {8'n40,LUT_DATA};
ml2C_GO <= 1
mSetup_ST <= 1;
end
1: begin
if(mI2C_END)
begin
if(!mI2C_ACK)
mSetup_ST <= 2;
else

mSetup_ST <=0;

mi2C_GO <= 0;
end

31

Embedded Systems Design
Light Saber Generator

end
end
end

end
2: begin
LUT_INDEX <= LUT_INDEX+1;
mSetup_ST <= 0;
end
endcase

i

1T
always
begin

Config Data LUT //////1111111111111111111]

case(LUT_INDEX)

// Audio Config Data

Dummy_DATA : LUT_DATA <= 16'h0000;
SET_LIN_L LUT_DATA <= 16'h001A;
SET_LIN_R LUT_DATA <= 16'h021A;
SET_HEAD_L LUT_DATA <= 16'h0478B;
SET_HEAD R LUT_DATA <= 16'h067B;
A_PATH_CTRL LUT_DATA <= 16'h08F8;
D_PATH_CTRL : LUT_DATA <= 16'h0A06;
POWER_ON LUT_DATA <= 16'h0CO0;
SET_FORMAT LUT_DATA <= 16'h0EQ1;
SAMPLE_CTRL : LUT_DATA <= 16'h1002;
SET_ACTIVE LUT_DATA <= 16'h1201;
// Video Config Data

SET_VIDEO+0 LUT_DATA <= 16'h1500;
SET_VIDEO+1 LUT_DATA <= 16'h1741;
SET_VIDEO+2 LUT_DATA <= 16'h3als6;
SET_VIDEO+3 LUT_DATA <= 16'h5004;
SET_VIDEO+4 LUT_DATA <= 16'hc305;
SET_VIDEO+5 LUT_DATA <= 16'hc480;
SET_VIDEO+6 LUT_DATA <= 16'h0e80;
SET_VIDEO+7 LUT_DATA <= 16'h5020;
SET_VIDEO+8 LUT_DATA <= 16'h5218;
SET_VIDEO+9 : LUT_DATA <= 16'h58ed;
SET_VIDEO+10 : LUT_DATA <= 16'h77c5;
SET_VIDEO+11 : LUT_DATA <= 16'h7c93;
SET_VIDEO+12 : LUT_DATA <= 16'h7d00;
SET_VIDEO+13 : LUT_DATA <= 16'hd048;
SET_VIDEO+14 : LUT_DATA <= 16'hd5a0;

32

Columbia University
CSEE 4840 Final Project report

Embedded Systems Design
Light Saber Generator

SET_VIDEO+15 :
SET_VIDEO+16 :
SET_VIDEO+17 :
SET_VIDEO+18 :
SET_VIDEO+19 :
SET_VIDEO+20 :
SET_VIDEO+21 :
SET_VIDEO+22 :
SET_VIDEO+23 :
SET_VIDEO+24 :
SET_VIDEO+25 :
SET_VIDEO+26 :
SET_VIDEO+27 :
SET_VIDEO+28 :
SET_VIDEO+29 :
SET_VIDEO+30 :
SET_VIDEO+31 :
SET_VIDEO+32 :
SET_VIDEO+33 :
SET_VIDEO+34 :
SET_VIDEO+35 :
SET_VIDEO+36 :
SET_VIDEO+37 :
SET_VIDEO+38 :
SET_VIDEO+39 :
default: LUT_DAT
endcase
end

LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
LUT_DATA <=
<= 16'h0000;

16'hd7ea;
16'he43e;
16'hea0f;

16'h3112;
16'h3281;
16'h3384;
16'h37A0;
16'he580;
16'he603;
16'he785;
16'h5000;
16'n5100;
16'h0050;
16'h1000;
16'h0402;
16'h0860;
16'h0als;
16'h1100;
16'h2b00;
16'h2c8c;
16'h2df8;
16'h2eee;
16'h2ff4;

16'h30d2;
16'h0e05;

s

endmodule

Columbia University
CSEE 4840 Final Project report

-- Authors : Anusha Dachepally
-- Devesh Dedhia

-- Raghu Binnamangalam

-- Roopa Karkarlapudi
library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity CORE is

33

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

port (

clk27 :in std_logic;

reset_n :in std_logic;

CLK50 : in std_logic;

KEY_core :in std_logic_vector (3 downto 0);

-- VGA output
VGA_CLK core, -- Clock
VGA_HS core, -- H_SYNC
VGA_VS_core, --V_SYNC
VGA_BLANK core, -- BLANK
VGA _SYNC core : out std_logic; -- SYNC
VGA_R_core, -- Red[9:0]
VGA_G_core, -- Green[9:0]
VGA_B_core : out std_logic_vector(9 downto 0); -- Blue[9:0]

TD_DATA core :in std_logic_vector(7 downto 0); -TV
Decoder Data bus 8 bits

TD_RESET core: out std_logic;

TD_HS_core, -- TV Decoder
H_SYNC

TD_VS_core: instd_logic;

-- TV Decoder V_SYNC
--TV Decoder Reset

--0Y, oCb, oCr : out std_logic_vector(7 downto 0); --XY_Gen

Linecount_core : out std_logic_vector(9 downto 0);

X_blue : out std_logic_vector(9 downto 0);

bluecount : out std_logic_vector(9 downto 0);

-- Avalon_signals

signal address : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
signal chipselect : IN STD_LOGIC;

signal read : IN STD_LOGIC;

signal write : IN STD_LOGIC;

signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

end CORE;

34

Embedded Systems Design
Light Saber Generator

architecture datapath of CORE is

signal globalvalid: std_logic;

signal remain_sig: std_logic;

signal YCbCr : std_logic_vector (23 downto 0);

signal TV_X : std_logic_vector (9 downto 0);

signal TV_DVAL : std_logic;

signal DLY1 : std_logic;

signal DLY2,TD_Stable : std_logic;

signal quotient : std_logic_vector(9 downto 0);

signal DLYO : std_logic;

signal remain : std_logic_vector (3 downto 0);

signal vga_vsync_edge, TD_HS_edge: std_logic;

signal Y_sig, Cb_sig, Cr_sig: std_logic_vector(7 downto 0);
signal RGB : std_logic_vector(14 downto 0);

sighalb_c, g c,x_b,x _g:std_logic_vector(9 downto 0);

signal Linecount_core_sig : std_logic_vector(9 downto 0);

component VGA port (
reset_n :in std_logic;
clk27 :instd_logic;
clk50 : in std_logic;

VGA_CLK, -- Clock
VGA_HS, -- H_SYNC
VGA_VS, --V_SYNC
VGA_BLANK, -- BLANK
VGA_SYNC : out std_logic; -- SYNC
VGA_R, -- Red[9:0]
VGA_G, -- Green[9:0]

VGA_B : out std_logic_vector(9 downto 0); -- Blue[9:0]
readin:in std_logic_vector(14 downto 0);
TD_HS,TD_HS_edge,

TD_VS: in std_logic;
vga_vsync_edge: in std_logic;
data_valid: in std_logic;

bluecount, greencount : in std_logic_vector(9 downto 0);
x_blue, x_green : in std_logic_vector(9 downto 0);

Linecount_vga : in std_logic_vector(9 downto 0);

35

Columbia University
CSEE 4840 Final Project report

-@@

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

address : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
chipselect : IN STD_LOGIC;

read : IN STD_LOGIC;

write : IN STD_LOGIC;

writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

end component;

component ITU_656_Decoder port(-- TV Decoder Input
iTD_DATA : in std_logic_vector(7 downto 0);
-- Position Output
oTV_X,
oTV_Y : out std_logic_vector(9 downto 0);
oTV_Cont : out std_logic_vector(31 downto 0);
-- YUV 4:2:2 Output
0oYCDbCr :out std_logic_vector(23 downto 0);
oDVAL : out std_logic;
-- Control Signals
iSwap_CbCr,
iSkip,
iRST_N,
iCLK_27 :instd_logic);

end component;

component DIV port(
aclr,
clock :in std_logic;
denom :in std_logic_vector(3 downto 0);
numer:in std_logic_vector(9 downto 0);
quotient :out std_logic_vector(9 downto 0);
remain:out std_logic_vector(3 downto 0);
remain_0: out std_logic);

end component;

component Reset_Delay port (iCLK,iRST : in std_logic;
ORST_0,0RST_1,0RST_2 : out std_logic);
end component;

component TD_Detect port(oTD_Stable : out std_logic;

36

Embedded Systems Design
Light Saber Generator

end component;

component YUV422_to_444 port(

downto 0);

downto 0);

downto 0);

end component;

Columbia University
CSEE 4840 Final Project report

iTD_HS,
iRST_N :in std_logic);

-- YUV 4:2:2 Input

iYCbCr:in std_logic_vector(23

iFlag: in std_logic;
--valid: in std_logic;
--YUV 4:4:4 Qutput

--RGB : out std_logic_vector(15

oY,
oCb,

oCr: out std_logic_vector(7

--Control Signals
--iFlag,

iCLK,

iRST_N:in std_logic

component YCbCr2RGB port(oRGB : out std_logic_vector(14 downto 0);

std_logic_vector(9 downto 0);

end component;

component edge_detector port(

);

end component;

component h_edge_detector is

-- oDVAL: out std_logic;
X_blue, x_green, bluecount, greencount

datavalid, TD_HS, TD_VS: in std_logic;
Linecount : out std_logic_vector(9 downto 0);
iY,iCb,iCr: in std_logic_vector(7 downto 0);
iRESET,iCLK : in std_logic --, iDVAL

);

clk:in std_logic;
TD_VS: in std_logic;
vga_vsync_edge: out std_logic

37

out

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

port(
clk:in std_logic;
TD_HS: in std_logic;
hsync_edge: out std_logic
);

end component;

begin

TD_RESET core <=KEY_core(0);

Linecount_core <= Linecount_core_sig; -@@

bluecount <=b_c;
X_blue <=x_b;

--0Y <=y _sig;

--0Cb <= Cb_sig;

--oCr <= Cr_sig; --Xy_GEn

v5: Reset_Delayport map(iCLK =>clk27,

iRST =>TD_Stable,
ORST_0 =>DLYO0,
OoRST_1=>DLY1,
ORST_2 =>DLY2);

v6: TD_Detect port map(oTD_Stable =>TD_Stable,
iTD_VS =>TD_VS_core,
iTD_HS =>TD_HS_core,
iRST_N =>KEY_core(0));

vl: ITU_656_Decoder port map(iTD_DATA =>TD_DATA_core,
oTV_X =>TV_X,
oYCbCr =>YCbCr,
oDVAL=>globalvalid,
iSwap_CbCr =>Quotient(0),
iSkip=>remain_sig,
iRST_N =>DLY1,
iCLK_27=>clk27);

v8:YUV422 to_ 444 port map(
iYCbCr=>YCbCr,
iFlag => globalvalid,

38

Embedded Systems Design
Light Saber Generator

v10: YCbCr2RGB port map (

v3: DIV port map(

V4. VGA port map (
reset n=>"1',
clk27 =>clk27,

clk50 => CLK50,

VGA_CLK =>VGA_CLK_core,
VGA_HS =>VGA_HS_core,
VGA_VS =>VGA_VS_core,
VGA_BLANK =>VGA_BLANK_core,
VGA_SYNC => VGA_SYNC_core,
VGA_R =>VGA_R_core,
VGA_G =>VGA_G_core,
VGA_B =>VGA_B_core,

Columbia University
CSEE 4840 Final Project report

oY =>y sig,

oCr => Cr_sig,

oCb => Cb_sig,

-- Control Signals
iCLK=>clk27,
iRST_N=>KEY_core(0));

oRGB => RGB,

iY=>y sig,

iCb =>Cb_sig,

iCr =>Cr_sig,

iRESET =>"'0',

TD_HS =>TD_HS core,
TD_VS=>TD_VS_core,
Linecount => Linecount_core_sig,
datavalid => globalvalid,
bluecount =>b_g,
greencount =>g_c,
x_blue =>x_b,

X_green =>x_g,

iCLK => clk27);

aclr => not (DLYO),

clock =>clk27,

denom =>"1001",

numer =>TV_X,

guotient =>Quotient,
remain =>Remain,
remain_0 => remain_sig);

39

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

TD_HS =>TD_HS_core,

TD_VS => not(TD_VS_core),
vga_vsync_edge=>vga_vsync_edge,
readin => RGB,
data_valid=>globalvalid,
TD_HS_edge =>TD_HS_edge,
bluecount =>b_c,

greencount =>g c,

X_blue =>x_b,

X_green =>x_g,

Linecount_vga => Linecount_core_sig,

address => address,
chipselect => chipselect,
read => read,

write => write,
writedata => writedata,
readdata => readdata

V9: edge_detector port map(
clk=>clk27,

TD_VS=>TD_VS_core,
vga_vsync_edge=>vga_vsync_edge

);

v12:h_edge_detector port map(
clk => clk27,

TD_HS =>TD_HS_core,
hsync_edge =>TD_HS_edge

);

end datapath;

-- Modified by : Anusha Dachepally

-- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

40

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

module Reset_Delay(iCLK,iRST,oRST_0,0RST_1,0RST_2);
input iCLK;

input iRST;

output reg ORST_O;

output reg ORST_1;

output reg ORST_2;

reg [21:0] Cont;

always@(posedge iCLK or negedge iRST)
begin
if(1iRST)
begin
Cont <=
ORST 0 <=
ORST_1<=
ORST_2 <=

~ ~ ~=

oo oo

~=

end
else
begin

if(Cont!=22'h228F5B) //228F5B.9F4CC1086
Cont <= Cont+1;
if(Cont>=22'h1147AD) //1147AD.8A87A8312
ORST_0 <= 1;

if

(Cont>=22'h19EB84) //19EB84.94EA349CC

ORST_1<= 1;
if(Cont>=22'h228F5B) //228F5B.9F4CC1086
ORST_2 <= 1;

// if(Cont!=22"h3FFFFF)

/ Cont <= Cont+1;

/1 if(Cont>=22'h1FFFFF)

/1 ORST 0<= 1

/1 if(Cont>=22'h2FFFFF)

/1 ORST_1<= 1;

1/ if(Cont>=22'h3FFFFF)

/1 ORST 2<= 1
end

end

41

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

endmodule

-- Modified by : Anusha Dachepally

-- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

module TD_Detect(oTD_Stable,

iTD_VS,
iTD_HS,
iRST_N);

input iTD_VS;

input iTD_HS;

input iRST_N;

output oTD_Stable;

reg TD_Stable;

reg Pre_VS;

reg [7:0] Stable_Cont;

assign oTD_Stable = TD_Stable;

always@(posedge iTD_HS or negedge iRST_N)

begin

if(1iRST_N)

begin
TD_Stable <= 1'b0;
Stable_Cont <= 4'h0;
Pre_VS <= 1'b0;

end

else

begin
Pre_VS <= iTD_VS;
if(liTD_VS)
Stable_Cont <= Stable_Cont+1'b1;
else
Stable_Cont <= 0;

if({Pre_VS,iTD_VS}==2'b01)
begin

42

Embedded Systems Design

Light Saber Generator
end
end
end
endmodule

if(Stable_Cont==9)
TD_Stable <=
else

TD_Stable <=

1'b1;

1'b0;

Columbia University
CSEE 4840 Final Project report

-- Modified by : Anusha

Dachepally

- Devesh Dedhia
-- Raghu Binnamangalam

-- Roopa Karkarlapudi

module ITU_656_Decoder(//

input [7:0] iTD_DATA;

input iSwap_CbCr;
input iSkip;

input iRST_N;
input iCLK_27;
output [23:0] oYCbCr;

output [9:0] oTV_X;

output [9:0] oTV.Y;

output [31:0] oTV_Cont;

output oDVAL;

43

TV Decoder Input

iTD_DATA,

// Position Output
oTV_X,

oTV_Y,

oTV_Cont,

// YUV 4:2:2 Output

oYCbCr,

oDVAL,

// Control Signals
iSwap_CbCr,

iSkip,

iRST_N,

iCLK_27);

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
// For detection

reg [23:0] Window; // Sliding window register
reg [17:0] Cont; // Counter
reg Active_Video;

reg Start;

reg Data_Valid;

reg Pre_Field;

reg Field;

wire SAV;

reg FVAL;

reg [9:0] TV_Y;

reg [31:0] Data_Cont;

// For ITU-R 656 to ITU-R 601

reg [7:0] Cb;

reg [7:0] Cr;

reg [23:0] YCbCr;

assign oTV_X = Cont>>1;

assign oTV_Y = TVY;

assign oYCbCr = YCbCr;

assign oDVAL = Data_Valid;

assign SAV

= (Window==24'hFF0000)&(iTD_DATA[4]==1'b0);

assign oTV_Cont= Data_Cont;

always@(posedge iCLK_27 or negedge iRST_N)

begin

if(liRST_N)

begin
// Register initial
Active_Video<=1'b0;
Start <= 1'b0;
Data_Valid <= 1'b0;
Pre_Field <= 1'b0;
Field <= 1'b0;
Window <= 24'h0;
Cont <= 18'h0;
Cb <= 8'h0;
Cr <= 8'h0;
YCbCr <= 23'h0;
FVAL <= 1'b0;

44

Embedded Systems Design

Light Saber Generator

TV_Y <= 10'hO;
Data_Cont <= 32'h0;

end

else

begin
// Sliding window
Window <= {Window[15:0],iTD_DATA};
// Active data counter
if(SAV)
Cont <= 18'h0;
else if(Cont<1440)
Cont <= Cont+1'b1;
// Check the video data is active?
if(SAV)

Active_Video<=1'b1;
else if(Cont==1440)
Active_Video<=1'b0;

// Is frame start?

Pre_Field <= Field;

if({Pre_Field,Field}==2'b10)

Start <= 1'bl;

// Field and frame valid check

if(Window==24'hFF0000)

begin
FVAL <= liTD_DATA[5];
Field <= iTD_DATA[6];

end

// ITU-R 656 to ITU-R 601

if(iSwap_CbCr)

begin
case(Cont[1:0]) // Swap
0: Cb <= iTD_DATA;
1: YCbCr <= {iTD_DATA,Cb,Cr};
2: Cr <= iTD_DATA;
3: YCbCr <= {iTD_DATA,Cb,Cr};
endcase

end

else

begin
case(Cont[1:0]) // Normal
0: Cb <= iTD_DATA;
1: YCbCr <= {iTD_DATA,Cb,Cr};

45

Columbia University
CSEE 4840 Final Project report

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
2: Cr <= iTD_DATA;
3: YCbCr <= {iTD_DATA,Cb,Cr};
endcase
end
// Check data valid
if(Start // Frame Start?
&& FVAL // Frame valid?
&& Active_Video // Active video?
&& Cont[0] // Complete ITU-R 601?
&& liSkip) // Is non-skip pixel?
Data_Valid <= 1'b1;
else
Data_Valid <= 1'b0;
// TV decoder line counter for one field
//if(FVAL && SAV)
//TV_Y<= TV _Y+1;
//if(IFVAL)
//TV_Y<= 0;
// Data counter for one field
//if(IFVAL)
//Data_Cont <= 0;
//if(Data_Valid)
//Data_Cont <= Data_Cont+1'b1;
end
end
endmodule

-- Modified by : Anusha Dachepally

-- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

module YUV422 to_444 (// YUV 4:2:2 Input
iYCbCr,

iFlag,

46

Embedded Systems Design
Light Saber Generator

// YUV 4:2:2 Input
input [23:0] iYCbCr;

// YUV 4:4:4 Output
output [7:0] oY;

output [7:0] oCb;

output [7:0] oCr;

// Control Signals

input [9:0] iX;

input iCLK;
input iFlag;
//input valid;
input iRST_N;
// Internal Registers
reg [7:0] my;
reg [7:0] mCb;
reg [7:0] mCr;
reg flag;

assign oY = mY;
assign oCb = mCb;
assign oCr = mCr;
initial begin

flag=0;

end

always@(posedge iCLK or negedge iRST_N)

begin
if(1iRST_N)
begin
mY <= 0;
mCb <= 0;
mCr <= 0;
end

47

Columbia University
CSEE 4840 Final Project report

//valid,

// YUV
oY,

oCb,

oCr,

4:4:4 Qutput

// Control Signals
iX,

iCLK,

iRST_N);

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
else
begin

// if(iFlag)

// flag <="flag;

// if(flag)

// {mY,mCr} <= iYCbCr;

// else

// {mY,mCb} <= iYCbCr;

{mY,mCb,mCr} <= iYCbCr;
end
end

//always@(valid)
//begin

// flag <="flag;
//end

Endmodule

-- Modified by : Anusha Dachepally
- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

module YCbCr2RGB (//Red,Green,Blue,0DVAL,
oRGB, x_blue, x_green, bluecount, greencount,
datavalid, TD_HS,
Linecount, TD_VS,
iY,iCb,iCr,//iDVAL,
iRESET,iCLK);

// Input

input [7:0]iY,iCb,iCr;

//input //iDVAL,

input iRESET,iCLK;

input datavalid, TD_HS, TD_VS;

// Output

output [14:0]oRGB;

output [9:0] Linecount;

output [9:0] x_blue, x_green, bluecount, greencount;

//output [9:0] Red,Green,Blue;

48

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

//output reg oDVAL;

// Internal Registers/Wires

reg [14:0] oRGB_sig;

reg [9:0] Linecount;

reg [9:0] oRed,oGreen,oBlue;

reg [9:0] x_blue, x_green,Temp_x_blue,Temp_x_green;
reg [10:0] Temp_bluecount,Temp_greencount,bluecount,greencount;
//reg [3:0] oDVAL_d;

reg [19:0] X_OUT,Y_OUT,Z_OUT;

wire [26:0] X,Y,Z;

reg [12:0] Xcount,Reset_count;

assign oRGB = oRGB_sig;

//assignRed = oRed;

//assignGreen= oGreen;

//assignBlue = oBlue;

// manages the count values
always@(posedge iCLK)

begin
if iRESET | | TD_HS)
begin
Xcount<=0;
end
else if (datavalid)
Xcount <= Xcount + 1;
end
//line count
always@(posedge iCLK)
begin
if(datavalid)
begin
if(Xcount == 638)
Linecount<= Linecount + 1;
else
Linecount<= Linecount + O;
end
if(ITD_VS)
Linecount <=0;
end

49

Embedded Systems Design
Light Saber Generator

//temp values assigned at TD_HS
always@(posedge iCLK)

begin
if(TD_HS)
begin
bluecount<=Temp_bluecount;
greencount<=Temp_greencount;
X_blue<=Temp_x_blue;
Xx_green<=Temp_x_green;
end
end
// main part
always@(posedge iCLK)
begin

Reset_count<=Reset_count+1;

if(iRESET || TD_HS)

begin
oRed<=0;
oGreen<=0;
oBlue<=0;
Reset_count<=0;
end

//The Temp values reset 10 clockcycles after TD_HS
else if(Reset_count==5)
begin
Temp_x_blue<=0; Temp_x_green <=0;
Temp_bluecount<=0; Temp_greencount<= 0;
end

else if (datavalid)

begin

if(iy > 85 && iCb>140 && iCr<120) //iY>130
//if (1)

begin

Temp_bluecount<= Temp_bluecount + 1;

oRed<=1023;

50

Columbia University
CSEE 4840 Final Project report

// blue detection

Embedded Systems Design
Light Saber Generator

oGreen<=1023;
oBlue<=1023;
Temp_x_blue <= Xcount;
end

else if(iY>100 && iCb<120 && iCr<110)
begin

Temp_greencount <= Temp_greencount + 1;
oRed<=1023;

oGreen<=1023;

oBlue<=1023;

Temp_x_green <= Xcount;

end

else //if(iDVAL)
begin
// Red
if(X_OUT[19])
oRed<=0;
else if(X_OUT[18:0]>1023)
oRed<=1023;
else
oRed<=X_0UTI[9:0];

// Green

if(Y_OUT[19])

oGreen<=0;

else if(Y_OUT[18:0]>1023)
oGreen<=1023;

else
oGreen<=Y_QUT[9:0];

// Blue

if(Z_OUT[19])

oBlue<=0;

else if(Z_OUT[18:0]>1023)
oBlue<=1023;

else

oBlue<=Z_0UT[9:0];

// Control
//{oDVAL,0DVAL_d}<={oDVAL_d,iDVAL};
//oDVAL <= 1;

51

Columbia University
CSEE 4840 Final Project report

// green detection

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

end

end

oRGB_sig <= {oRed[9:5], oGreen[9:5], oBlue[9:5]};
end

always@(posedge iCLK)

begin
if(iRESET)
begin
X_0UT<=0;
Y_OUT<=0;
Z_0UT<=0;
end
else //if(iDVAL)
begin
X_OUT<=(X - 114131) >>7;
Y_OUT<=(Y + 69370) >>7;
Z OUT<=(Z- 141787) >>7;
end
end
// Y 596, 0, 817
MAC_3 uQ(iy, iCb, iCr,
17'h00254, 17'h00000, 17'n00331,
X, iRESET, iCLK);
// Cb 596, -200, -416
MAC_3 ul(iy, iCb, iCr,
17'h00254, 17'h3FF38, 17'h3FE60,
Y, iRESET, iCLK);
// Cr 596, 1033, 0
MAC_3 u2(iy, iCb, iCr,
17'h00254, 17'h00409, 17'h00000,
Z, iRESET, iCLK);
Endmodule

-- Authors: Anusha Dachepally

52

Embedded Systems Design
Light Saber Generator

-= Devesh Dedhia
- Raghu Binnamangalam
- Roopa Karkarlapudi--

Columbia University
CSEE 4840 Final Project report

library ieee;
use leee.std logic 1164.all;
use lieee.numeric std.all;

entity VGA is

generic
(
DATA WIDTH natural
ADDR WIDTH natural
)
port (
reset n in std logic;
clk27 in std logic;
clk50 in std logic;
VGA CLK,
VGA HS,
VGA_ VS,
VGA BLANK,
VGA SYNC out std logic;
VGA R,
VGA G,
VGA B

= 64;
=10

out std logic vector(9 downto 0);

Clock

H SYNC

V_SYNC

BLANK

SYNC

Red[9:0]
Green[9:0]

-— Blue[9:0]

readin:in std logic vector (14 downto 0);
--1G,iR,1iB: in std logic vector (7 downto 0);

TD _HS,TD HS edge,
TD _VS: in std logic;

vga vsync _edge: in std logic;

data valid: in std logic;

bluecount, greencount
X blue, x green
Linecount vga

signal address

signal chipselect
signal read
signal write
signal writedata
signal readdata

) ;
end VGA;
architecture rtl of VGA is

component ram dual

53

in std logic vector (9 downto 0);

in std logic vector (9 downto 0);
in std logic vector (9 downto 0);
-- Avalon signals

--@e

IN STD LOGIC_VECTOR (15 DOWNTO 0);
IN STD LOGIC;
IN STD LOGIC;
IN STD LOGIC;
IN STD LOGIC_VECTOR (15 DOWNTO 0);
OUT STD LOGIC_VECTOR (15 DOWNTO O0)

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

port (
rclk : in std logic;
wclk : in std logic;
raddr : in natural range 0 to 2**ADDR WIDTH - 1;
waddr : in natural range 0 to 2**ADDR WIDTH - 1;
data : in std logic vector ((DATA WIDTH-1) downto 0);
we : in std logic := '1"';
q : out std logic vector ((DATA WIDTH -1) downto 0)
) ;

end component;

constant HTOTAL : integer := 858;

constant HSYNC : integer := 103;

constant HBACK PORCH : integer := 76;

constant HACTIVE : integer := 640;

constant HFRONT PORCH : integer := 39;

constant VTOTAL : integer := 524;

constant VSYNC : integer := 2;

constant VBACK PORCH : integer := 17; --34;
constant VACTIVE : integer := 500;,--478;

constant VFRONT PORCH : integer := 5;--10;

-- Signals for the video controller

signal Hcount : unsigned (10 downto 0); -- Horizontal position (0-800)
signal Vcount : unsigned(9 downto 0); —-— Vertical position (0-524)
signal EndOfLine, EndOfField : std logic;

--signal vga x : std logic := '0';

signal vga hblank, vga hsync,
vga vblank, vga vsync,
flag TD HS edge, flag TD VS edge,flag TD HS edge reset : std logic; --
Sync. signals

type ROMType is array (0 to 640)of std logic vector (14 downto 0);

signal ROM1, ROM2:ROMType := (others => "000000000000000")
signal Read HS flag : std logic := '0';
signal a,b,c: std logic;
signal INDEX : integer range 0 to 800;
signal regxl, regx2, inner regxl, inner regx2 : integer := 0;

--range 0 to 640;

signal x info from nios, x info to vga : std logic vector (63 downto 0);
signal ram index : integer range 0 to 500:=0;

begin

VGA RAM : ram dual port map (
rclk => clk27,
wclk => clk50,
raddr =>(to_integer (Vcount) -VSYNC - VBACK_PORCH),

54

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

) ;

ReadfromRAM

begin

waddr => ram index,
data => x info from nios,
g => x_info to vga

process (clk27)

if rising edge(clk27) then

regxl <= to_ integer (unsigned(x info to vga(l5 downto 0)));
regx2 <= to_integer (unsigned(x_info to vga (31 downto 16)));
inner regxl<=to integer (unsigned(x info to vga (47 downto 32)));
inner regx2<=to integer (unsigned(x info to vga (63 downto 48)));

end if;

end process ReadfromRAM;

HCounter
begin

process (clk27)

if rising edge(clk27) then
if reset n = '0' then-- or
Hcount <= (others => '0"');
elsif TD HS='l'then

end

Hcount <= (others =>'0");
else

Hcount <= Hcount+1l;

if;

end if;
end process HCounter;

VCounter:
begin

process (clk27)

if rising edge(clk27) then
if reset n = 'O'then
Vcount <= (others => '0"');
elsif vga vsync edge='l' then

Vcount <= (others => '0");

elsif TD HS='l' then

Vcount<=Vcount+1;

end if;

end if;

end process VCounter;

-- State machines to generate HSYNC, VSYNC, HBLANK, and VBLANK

HSyncGen
begin

process (clk27)

if rising edge(clk27) then
if reset n = '0' then
vga _hsync <= '1';

elsif TD HS='l' then

vga _hsync <= '1';

elsif Hcount=Htotal-1 then
vga _hsync <= '1';

elsif Hcount = HSYNC - 1 or Hcount=HTOTAL+HSYNC-1 then
vga _hsync <= '0';

55

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

end 1f;
end if;
end process HSyncGen;

HBlankGen : process (clk27)
begin
if rising edge(clk27) then
if reset n = '0' then
vga _hblank <= '1"';
elsif Hcount HSYNC + HBACK PORCH-1 or Hcount = HTOTAL+HSYNC +
HBACK_PORCH—l then
vga hblank <= '0';
elsif Hcount HSYNC + HBACK PORCH + HACTIVE-1 or
Hcount = HTOTAL + HSYNC + HBACK PORCH + HACTIVE-1 then
vga hblank <= '1"';
end if;
end if;
end process HBlankGen;

VSyncGen : process (clk27)

begin
if rising edge(clk27) then
if reset n = '0' then

vga vsync <= 'l1';
elsif vga vsync edge='l' then
vga vsync<='l";
elsif Vcount = VSYNC - 1 then
vga vsync <= '0';

end if;
end 1if;
end process VSyncGen;

VBlankGen : process (clk27)
begin
if rising edge(clk27) then
if reset n = '0' then
vga vblank <= '1"';
if Vcount = VSYNC+VBACK PORCH - 1 then
vga vblank <= '0';
elsif Vcount =VSYNC+VBACK PORCH + VACTIVE - 1 then
vga vblank <= '1";
end if;
end if;
end if;
end process VBlankGen;

Read HS: process (TD _HS)
begin
if TD HS'event and TD HS = 'l' then
Read HS flag <= not Read HS flag;
end if;

56

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

end process Read HS;

fill buffer: process(clk27,data valid)

variable i,3j : integer range 0 to 720 := 0;
begin
if rising edge(clk27) then
if Read HS flag = 'l' and data valid='l' then
ROM1 (1) <= readin ;
i = i+ 1;
if i = 639 then
i := 0;
elsif TD HS='l'"' then
i:=0;
end if;

elsif Read HS flag='0' and data valid='l' then
ROM2 (j) <= readin ;
J o= J+1;
if § = 639 then
J o= 0;
elsif TD HS='l' then
J:=0;
end if;
end if;
end if;
end process fill buffer;

-—bus_comm: process (clk50)

-- begin

- if rising edge (clk50) then

—-— if (chipselect = '1l'")then

- if address (4 downto 0) = "00000" then

- if write = '1' then

- regxl <= to_integer (unsigned(writedata));--x1
- end if;

-= elsif address (4 downto 0) = "00010" then

- if write = '1l' then

-- regx2 <= to_integer (unsigned(writedata));--x2
- end if;

- end 1if;

- end if;

-- end if;

-—- end process bus_comm;

bus comm: process (clk50)

begin
if rising edge (clk50) then
if (chipselect = '1')then
if address (4 downto 0) = "00000" then

57

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
if write = '1' then
x info from nios (15 downto 0) <= writedata;--x1
end 1if;
elsif address (4 downto 0) = "00010" then
if write = '1' then
x info from nios (31 downto 16) <= writedata;--x2
end if;
elsif address (4 downto 0) = "11110" then --- using
address 30 inner x1
if write = '1' then
x info from nios (47 downto 32) <= writedata;
end if;
elsif address (4 downto 0) = "10010" then --- using
address 18 inner x2
if write = '1' then
x info from nios (63 downto 48) <= writedata;
end if;
elsif address (4 downto 0) = "11000" then -— unused
address 24
if write = '1' then
ram index <= to integer (unsigned(writedata));
end 1if;
end if;
end if;
end if;

end process bus_comm;

Read process: process (clk50)

begin
if rising edge(clk50) then
if vga vsync_edge = 'l' then
flag TD VS edge <= '1"';
end if;
if TD HS='l' then
flag TD HS edge<='l';
end if;
if (chipselect = '1')then
——————————————————————————————————— VSFlagwrite (ADDR 20) ————-————-———————————
if address (4 downto 0) = "10100" then
if write = '1' then
flag TD VS edge <= '0';
end if;
end if;
——————————————————————————————————— HS FlagWrite (ADDR 30)-—————-—-——-———————~
- if address (4 downto 0) = "11110" then

58

Embedded Systems Design Columbia University

Light Saber Generator CSEE 4840 Final Project report
-— if write = '1l' then

- flag TD HS edge <= '0';

-= end if;

-— end if;

if address (4 downto 0) = "00100" then
if read = '1l' then
if vga hsync='l' then
readdata<="0000000000000001";
-— We send VGA HS in form of 1 or O

else
readdata<=(others=>'0");
end if;

end if;

end if;

—————————————————————— ROW NO (ADDR 6) ——=———=———=—————————————————————

if address (4 downto 0) = "00110" then

if read = '1l' then

if vga hsync='0' then
if (to_integer (Vcount)-VSYNC -
VBACK_PORCH)>O and (to_integer(Vcount)—VSYNC - VBACK_PORCH) < 478 then
--— line number is sent to NIOS
readdata <=
std logic vector (to unsigned((to_ integer (Vcount)-VSYNC - VBACK PORCH),
16)); -

else
readdata<= (others=>'0");
end if;
end if;
end if;
end if;
——————————————————————————— Blue count (ADDR 8)——=——=="=""="—"="="—————————
if address (4 downto 0) = "01000" then
if read = '1l' then
--if TD HS = '0' then
readdata <= ("000000" & bluecount);
end if;
end if;
--end 1if;
——————————————————————————————— Xblue (ADDR 10) ————=———————————————————————
if address (4 downto 0) = "01010" then
if read = '1l' then
-- 1f TD HS = '0' then
readdata <= ("000000" & x blue);

-- software must find x blue - bluecount

59

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

end if;
end if;
-—end 1if;
—————————————————————————————————— Green count (ADDR 12)---—--——-—-—————————-

if address (4 downto 0) = "01100" then
if read = '1l' then
-—1f TD HS = '0' then
readdata <= ("000000" & greencount);
end 1if;
end if;

—————————————————————————————————— Xgreen (ADDR 14)-——-—-——-—-————————————————

if address (4 downto 0) = "01110" then
if read = 'l' then
readdata <= ("000000" & x green);
-—- software must find x green - greencount
end if;
end 1if;

if address (4 downto 0) = "10000" then
if read ='1"' then
if vga vsync='l' then
readdata<="0000000000000001";
-— We send VGA VS in form of 1 or O
else
readdata<= (others=>'0");
end if;
end if;
end if;
——————————————————————— TD_HS (ADDR 18) === === — ———
- if address (4 downto 0) ="10010" then
-- if read='1l' then
-- if TD HS ='l'then
- readdata<="0000000000000001"; -— We send
TD HS in form of 1 or O
-= else
-— readdata<=(others=>'0");
-= end if;
-— end if;
-- end if;

- if address (4 downto 0) ="10110" then

- if read='1l' then

-= if flag TD HS edge = 'l' then

- readdata<= "0000000000000001"; -—- We send
TD HS in form of 1 or O

60

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

- else

- readdata<=(others=>'0");
-— end 1if;

-— end if;

-— end 1if;

if address (4 downto 0) ="11010" then
if read='l' then
--if TD HS = '1' then

readdata<= "000000" & Linecount vga; --
send line count

end if;
end 1if;
———————————————————————————————— VS edge (ADDR 28) ————-—-——————————————————-
if address (4 downto 0) ="11100" then
if read='1l' then
if flag TD VS edge = 'l' then
readdata<= "0000000000000001"; -—- We send
TD VS edge
else
readdata<=(others=>'0");
end 1if;
end if;
end 1if;
end if;
end if;

end process Read process;

VideoOut: process (clk27, reset n)
begin
if rising edge(clk27) then
if (Hcount<HTOTAL) then
INDEX<=to_integer (HCOUNT—HSYNC—HBACK_PORCH) ; -=
else
INDEX<=tO_integer (HCOUNT—HSYNC—HBACK_PORCH—HTOTAL) ; -—
end if;
if reset n = '0' then
VGA R <= "0000000000";
VGA G <= "0000000000";
VGA B <= "0000000000";

else
if vga hblank = '0' and vga vblank ='0' then
if Read HS flag = 'l' then

if INDEX > regxl and INDEX < regx2 then
if (INDEX > inner regxl and INDEX <
inner regx2) then
VGA R <= "1111111111";
VGA G <= "1111111111"; -- making a plain
green light saber

61

Embedded Systems Design
Light Saber Generator

transparent light saber

else

VGA R <= ROM2 (INDEX) (14 downto 10) &

Columbia University
CSEE 4840 Final Project report

VGA B <= "1111111111";

else

VGA R <= ROM2 (INDEX) (14 downto 10) & "11111";
VGA G <= ROM2 (INDEX) (9) & "111111111"; --
VGA B <= ROM2 (INDEX) (4 downto 0)& "11111";
end if;

"00000";

VGA G <= ROM2 (INDEX) (9 downto 5)& "00000";
VGA B <= ROM2 (INDEX) (4 downto 0)& "00000";
end 1if;
elsif Read HS flag = 'O' then
if INDEX > regxl and INDEX < regx2 then
if (INDEX > inner regxl and INDEX <

inner regx2) then

VGA R <= "1111111111";

VGA G <= "1111111111";
green light saber

VGA B <= "1111111111";

else

VGA R <=

VGA G <= ROML (INDEX) (9)
transparent light saber

VGA B <=

end if;

else

-- making a plain

= ROM1 (INDEX) (14 downto 10)
"111111111";

ROM1 (INDEX) (4 downto 0) &

VGA R <= ROMI (INDEX) (14 downto 10)
VGA G <= ROMI (INDEX) (9 downto 5)& "00000";

VGA B <= ROMI1 (INDEX)
end if;
else
VGA R <= "0000000000";
VGA G <= "0000000000";
VGA B <= "0000000000";
end if;
end if;
end if;
end if;
end process VideoOut;

VGA CLK <= clk27;

VGA HS <= not vga hsync;
VGA VS <= not vga vsync;
VGA SYNC <= '0';
VGA BLANK <= not (vga hsync or vga vsync);

end rtl;

-— Authors

Anusha Dachepally
Devesh Dedhia
Raghu Binnamangalam

62

(4 downto 0) &

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

- Roopa Karkarlapudi
library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

entity edge detector is
port (
clk:in std logic;
TD VS: in std logic;
vga_ vsync_edge: out std logic
)7

end edge detector;

architecture rtl of edge detector is
signal g: std logic;
begin

process (clk)

begin

if rising edge(clk) then
g<=TD_VS;

end if;

end process;

vga vsync edge<=q and not (TD VS);
end rtl;

—-— Authors : Anusha Dachepally
-- Devesh Dedhia

-= Raghu Binnamangalam
-- Roopa Karkarlapudi
library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

entity h edge detector is
port (

clk:in std logic;

TD HS: in std logic;

hsync _edge: out std logic

);

end h edge detector;

architecture rtl of h edge detector is
signal g: std logic;
begin
process (clk)
begin
if rising edge(clk) then
g<=TD_HS;
end if;
end process;

63

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

hsync edge<=g and not (TD HS);
end rtl;

SOFTWARE CODE

-- Authors : Anusha Dachepally

- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

#include <io.h>
#include <system.h>
#include <unistd.h>
#include <stdio.h>
#include "light_saber.h"

#define WriteLightSaber(base, address, data) IOWR_16DIRECT(base, address*2, data)
#define ReadLightSaber(base,address) IORD_16DIRECT(base, address*2)
#define ReadXY(base,address) IORD_32DIRECT(base, address*4)

struct color{
int x1;
int x2;
int count;
int first;
long average;
int last;
int final_x;
int final_y;
int mycount_x;
int mean;

int main(){
int mycount_blue=0,mycount_green=0;

64

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

int i,X_Blue,X_green;
int LineCount;
struct color b1;
struct color g1;
int previc=0,TD_VS_edge;
int VGA_HS;
struct lookuptable table[506];
LineCount= ReadLightSaber(CORE_NIOS_BASE,26);
int b=0;
int a=0;
while(1){
previc=LineCount;
LineCount= ReadLightSaber(CORE_NIOS_BASE,26);

// X-Y calculation

if(LineCount!=previc){
//blue calc
int blue_data = ReadXY(BLUE_INST_BASE,LineCount);
int temp_bluedata = blue_data;
bl.count = OXxOFFFF & temp_bluedata;
X_Blue =temp_bluedata >> 16;
b1.x1=(X_Blue+1)-bl.count;
if(b1.x1==1)
b1.x1=0;
b1.x2=X_Blue;

//green calc
gl.count=ReadLightSaber(CORE_NIOS_BASE,12);
X_green=ReadLightSaber(CORE_NIOS_BASE,14);
gl.x1=(X_green+1)-gl.count;

if(g1l.x1==1){

g1.x1=0;

}

gl.x2=X_green;

if (b1l.count>0) {
if(b1.first ==0){
b1.first=LineCount;
!

b1.last=LineCount;

65

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

mycount_blue ++;
bl.mean=(b1.x1+b1.x2)>>1;
bl.average=(bl.average+bl.mean);

}

if (g1.count>0) {
if(g1.first ==0){
gl.first=LineCount;
}
gl.last=LineCount;
mycount_green ++;
gl.mean=(gl.x1+g1.x2)>>1;
gl.average=(gl.average+gl.mean);

// LightSaber Calculation //
TD_VS_edge=ReadLightSaber(CORE_NIOS_BASE,28);

if(TD_VS_edge==1){

WriteLightSaber(CORE_NIOS_BASE,20,0); //rest the TD_VS_flag
b1l.final_y=(b1l.last+b1.first);
bl.final_y =bl.final_y>>1;

gl.final_y=(gl.last+gl.first)>>1;

if(mycount_blue>0)
b1.final_x=bl.average/mycount_blue;
else

b1.final_x=0;

if(mycount_green>0)
gl.final_x=gl.average/mycount_green;
else

gl.final_x=0;

gl.average=0;
bl.average=0;
mycount_green =0;
mycount_blue=0;

66

Embedded Systems Design Columbia University
Light Saber Generator CSEE 4840 Final Project report

b1.first=0;
b1.last=0;
gl.first=0;
gl.last=0;
gl.count=0;
bl.count =0;
b=0;

for(i=0;i<506;i++){
table[i].x1=0;
table[i].x2=0;
tableli].in_x1=0;
table[i].in_x2=0;

if((b1.final_x>0 && (b1.final_y<<1)>0) && (gl.final_x>0 && (gl.final_y<<1)>0))
DrawlLightSaber(b1.final_x,(b1.final_y<<1),g1.final_x,(gl.final_y<<1),table);

for (i = 0; i<506; i++)

{

WriteLightSaber(CORE_NIOS_BASE, O,tableli].in_x1);
WriteLightSaber(CORE_NIOS_BASE, 2,table[i].in_x2);
WriteLightSaber(CORE_NIOS_BASE, 30,table[i].x1);
WriteLightSaber(CORE_NIOS_BASE, 18,table[i].x2);
WriteLightSaber(CORE_NIOS_BASE, 24, i);

return O;

67

Embedded Systems Design
Light Saber Generator

-- Modified by : Anusha Dachepally
- Devesh Dedhia

-- Raghu Binnamangalam
-- Roopa Karkarlapudi

#define SHIFT 7

#include <stdio.h>

#include <io.h>

#include <system.h>

#include <unistd.h>

#include "light_saber.h"

#define SWAP(x0,y0) {(x0 *= y0); (yO = x0); (x0 *=y0);}

int sqrt(int num);
void linel(int x0, int yO, int x1, int y1,struct lookuptable *table);

// Draw Light Saber //

void DrawlLightSaber(int x0,int y0,int x1,int y1,struct lookuptable* table)

{
//struct lookuptable table[480];

int dx = x0 - x1;

intdy =y0 -y1;

int hyp = sqrt((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 -y1));
int costheta = dy << SHIFT / hyp;

int sintheta = dx << SHIFT / hyp;

int deltay = (swordwidth * sintheta) >> SHIFT;
int deltax = (swordwidth * costheta) >> SHIFT;

line1(x0 + deltax + 1, yO - deltay - 1, x1 + deltax +1, y1 - deltay - 1 ,table);
linel(x0 - deltax - 1, yO + deltay + 1, x1 - deltax - 1, y1 + deltay + 1,table);
linel(x0 - deltax - 1, yO + deltay + 1, xO + deltax + 1, yO - deltay - 1 ,table);
linel(x1 + deltax + 1, y1 - deltay - 1, x1 - deltax - 1, y1 + deltay + 1 ,table);

void linel(int x0, int y0, int x1, int y1,struct lookuptable *table) {
int Dx = x1 - x0;

68

Columbia University
CSEE 4840 Final Project report

Embedded Systems Design
Light Saber Generator

int Dy =y1 - y0;
int steep = (abs(Dy) >= abs(Dx));
if (steep) {
SWAP(x0, y0);
SWAP(x1, y1);
// recompute Dx, Dy after swap
Dx =x1 - x0;
Dy =y1-y0;
}
int xstep = 1;
if (Dx < 0) {
xstep =-1;
Dx = -Dx;
}
int ystep =1;
if (Dy < 0) {
ystep =-1;
Dy =-Dy;
}
int TwoDy = Dy<<1;
int TwoDyTwoDx = TwoDy - (Dx<<1); // 2*Dy - 2*Dx
int E = TwoDy - Dx; //2*Dy - Dx
inty =vyo0;
int xDraw, yDraw;
int x;
int prev_YDraw;
prev_YDraw=yDraw;
for (x = x0; x = x1; x += xstep) {
if (steep) {
xDraw =y;
yDraw =x;
} else {
XDraw = x;
yDraw =vy;
}
// plot
if (table[yDraw].x1 == 0){
table[yDraw].x1 = xDraw;
table[yDraw].in_x1=xDraw-Halowidth;
}
if (xDraw < table[yDraw].x1){
table[yDraw].x1 = xDraw;

69

Columbia University
CSEE 4840 Final Project report

Embedded Systems Design
Light Saber Generator

table[yDraw].in_x1=xDraw-Halowidth;
}
if (table[yDraw].x1<0){
table[yDraw].x1 = 1;
table[yDraw].in_x1=1;
}

if(xDraw>0){
if (table[yDraw].x2 == 0){
table[yDraw].x2 = xDraw;
table[yDraw].in_x2=xDraw+Halowidth;
}
if (xDraw > table[yDraw].x2){
table[yDraw].x2 = xDraw;
table[yDraw].in_x2=xDraw+Halowidth;
}
if (table[yDraw].in_x2>639){
table[yDraw].x2 = 639;
table[yDraw].in_x2=639;
}
}

// next

if (E>0){
E += TwoDyTwoDx; //E += 2*Dy - 2*Dx;
y =y +ystep;

}else {
E += TwoDy; //E += 2*Dy;

int sqrt(int num) {
int op = num;
intres=0;
int one = 1 << 14; // The second-to-top bit is set: 1L.<<30 for long

// "one" starts at the highest power of four <= the argument.

while (one > op)
one >>=2;

70

Columbia University
CSEE 4840 Final Project report

Embedded Systems Design
Light Saber Generator

while (one !=0) {
if (op >=res + one) {
op -=res + one;
res +=one<<1;
}
res >>=1;
one >>=2;
}

return res;

Columbia University
CSEE 4840 Final Project report

END OF CODE

71

