
Pivoting Object Tracking System

 Damian Ancukiewicz

 Arjun Roy

 Baolin Shao

 Jinglin Shen

CSEE 4840 Embedded System Design, Spring 2009

Outline

 Project overview
 Key points in different components
 Experience and lessons learned

System overview

Hardware components:
 Video decoder controller: ADV 7181 interface,

YUV->RGB, Buffer to Avalon bus
 VGA frame buffer
 I2C controller

Software components:
 DMA transfer
 Object tracking
 Robot control

Project Overview: hardware structure

Project overview: software structure

Object Tracking Algorithm

DMA transfer from
decoder to SDRAM

DMA transfer from
SDRAM to SRAM

Robot
control

ADV 7181
decoder

IRobot Create SRAM

Video Controller

 System needs video for recognition
 Solution: analog video camera
 DE2 has an onboard ADC (ADV7181)

Video Controller

 ADV7181 interface
 Output format: 1716 clocks, 8 bits wide, YUYV
 Two interlaced fields of 262 lines
 Horizontal/vertical sync
 I2C configuration

Video Controller

 YUV->RGB
 Y: luma (brightness); U/V: chroma (color)
 Conversion done on a two-pixel YUYV block
 Output: single 16-bit RGB pixel

Video Controller

Transfer through Avalon bus
 Frame needs to be sent to SDRAM using DMA
 Problem: SDRAM has lax timings
 Solutions attempted: FIFO, line buffer

 FIFO
 ADV7181 interface puts in pixels, Avalon bus pulls pixels
 Avalon flow control
 Problem: different clock speeds, so not synchronous!
 Data lost, corrupted image

 New idea: line buffer
 Double buffering: two lines stored in block memory
 Video ADC output writes to one while other is output

through Avalon interface

VGA buffer

 The need for VGA

 Use POTS as automated remote surveillance
 Needs video output for human observers
 Choice of stream or framebuffer
 Choice of SRAM, SDRAM, Flash framebuffer

VGA buffer

 Implementation

 Went with SRAM
 Advantages : Fast, Simple
 Disadvantages : Single Ported
 Implications : Synchronize when to read/write

VGA buffer

 Results

 Results : Slower than anticipated, some frame
tearing

 Ended up not being a big deal
 Future directions: double buffering, change of

backing memory type, modesetting?

DMA

 The need for DMA

 Handle large transfers without using NIOS II
 Also allows us to implement flow control with

Avalon peripherals
 Data transfer at a rate determined by limiting

factor (the peripheral)
 Just a drop in device

DMA

 Results

 Slower than anticipated for SDRAM to SRAM
 Weird race condition when processor writing to

SDRAM and initiating a DMA transfer from/to
SDRAM

Robot

 iRobot Create

 Differential drive robot, moves in 2D plane
 Only need a subset of capabilities (rotate)
 Serves as mount for camera

Robot

 Implementation

 Communicates using RS-232, which is just drop
in peripheral for NIOS

 Has an interface of opcodes which are simple
bytes and allow basic scripting

 "Turn left at a given speed till a given angle is
sweeped out"

 Only complication - had to expertly fabricate a
null modem adapter

OBJECT TRACKING

Step 1: Recognize the target object in an image

Step 2: Calculate how the target is moving

Step 3: Reposition the device such that the target is always in
sight

We recognize an object by its color
(Assumption: an object has only one color)

We calculate an object’s motion by its center’s
position.
(Assumption: an object has regular shape)

OUR ALGORITHM
- A UTOPIAN SCENARIO

pixel

N x N block

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

WHAT MAKES LIFE EVEN HARDER

 DE2 has limited computational power

 Computer is not good at interpreting colors

 Image has noise

 Video is not stable

TRICKS TO ALLEVIATE COMPUTATION

Divide an image into blocks
- Reduce number of comparisons

Replace multiplications by shifts and additions
- x*320 = (x<<8)+(x<<6)

Replace divisions by shifts, additions and
subtractions
-

Experiences

 Design of a embedded system with focusing
on the most critical issue: all about timing!

 Usage of the ADV 7181 decoder, DMA
 Data transfer between different frequency

domains
 Simple image recognition algorithm
 Interfacing between different hardware

components

Lessons learned

 Importance of a good design
 Always keep things synchronous
 Try to keep things simple unless you have a

good reason to make it complicated
 Don’t trust the hardware
 Be careful with estimating how much time

something will take (both in real life and in
hardware!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

