
Pivoting Object Tracking System

 Damian Ancukiewicz

 Arjun Roy

 Baolin Shao

 Jinglin Shen

CSEE 4840 Embedded System Design, Spring 2009

Outline

 Project overview
 Key points in different components
 Experience and lessons learned

System overview

Hardware components:
 Video decoder controller: ADV 7181 interface,

YUV->RGB, Buffer to Avalon bus
 VGA frame buffer
 I2C controller

Software components:
 DMA transfer
 Object tracking
 Robot control

Project Overview: hardware structure

Project overview: software structure

Object Tracking Algorithm

DMA transfer from
decoder to SDRAM

DMA transfer from
SDRAM to SRAM

Robot
control

ADV 7181
decoder

IRobot Create SRAM

Video Controller

 System needs video for recognition
 Solution: analog video camera
 DE2 has an onboard ADC (ADV7181)

Video Controller

 ADV7181 interface
 Output format: 1716 clocks, 8 bits wide, YUYV
 Two interlaced fields of 262 lines
 Horizontal/vertical sync
 I2C configuration

Video Controller

 YUV->RGB
 Y: luma (brightness); U/V: chroma (color)
 Conversion done on a two-pixel YUYV block
 Output: single 16-bit RGB pixel

Video Controller

Transfer through Avalon bus
 Frame needs to be sent to SDRAM using DMA
 Problem: SDRAM has lax timings
 Solutions attempted: FIFO, line buffer

 FIFO
 ADV7181 interface puts in pixels, Avalon bus pulls pixels
 Avalon flow control
 Problem: different clock speeds, so not synchronous!
 Data lost, corrupted image

 New idea: line buffer
 Double buffering: two lines stored in block memory
 Video ADC output writes to one while other is output

through Avalon interface

VGA buffer

 The need for VGA

 Use POTS as automated remote surveillance
 Needs video output for human observers
 Choice of stream or framebuffer
 Choice of SRAM, SDRAM, Flash framebuffer

VGA buffer

 Implementation

 Went with SRAM
 Advantages : Fast, Simple
 Disadvantages : Single Ported
 Implications : Synchronize when to read/write

VGA buffer

 Results

 Results : Slower than anticipated, some frame
tearing

 Ended up not being a big deal
 Future directions: double buffering, change of

backing memory type, modesetting?

DMA

 The need for DMA

 Handle large transfers without using NIOS II
 Also allows us to implement flow control with

Avalon peripherals
 Data transfer at a rate determined by limiting

factor (the peripheral)
 Just a drop in device

DMA

 Results

 Slower than anticipated for SDRAM to SRAM
 Weird race condition when processor writing to

SDRAM and initiating a DMA transfer from/to
SDRAM

Robot

 iRobot Create

 Differential drive robot, moves in 2D plane
 Only need a subset of capabilities (rotate)
 Serves as mount for camera

Robot

 Implementation

 Communicates using RS-232, which is just drop
in peripheral for NIOS

 Has an interface of opcodes which are simple
bytes and allow basic scripting

 "Turn left at a given speed till a given angle is
sweeped out"

 Only complication - had to expertly fabricate a
null modem adapter

OBJECT TRACKING

Step 1: Recognize the target object in an image

Step 2: Calculate how the target is moving

Step 3: Reposition the device such that the target is always in
sight

We recognize an object by its color
(Assumption: an object has only one color)

We calculate an object’s motion by its center’s
position.
(Assumption: an object has regular shape)

OUR ALGORITHM
- A UTOPIAN SCENARIO

pixel

N x N block

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

OUR ALGORITHM
- A UTOPIAN SCENARIO

WHAT MAKES LIFE EVEN HARDER

 DE2 has limited computational power

 Computer is not good at interpreting colors

 Image has noise

 Video is not stable

TRICKS TO ALLEVIATE COMPUTATION

Divide an image into blocks
- Reduce number of comparisons

Replace multiplications by shifts and additions
- x*320 = (x<<8)+(x<<6)

Replace divisions by shifts, additions and
subtractions
-

Experiences

 Design of a embedded system with focusing
on the most critical issue: all about timing!

 Usage of the ADV 7181 decoder, DMA
 Data transfer between different frequency

domains
 Simple image recognition algorithm
 Interfacing between different hardware

components

Lessons learned

 Importance of a good design
 Always keep things synchronous
 Try to keep things simple unless you have a

good reason to make it complicated
 Don’t trust the hardware
 Be careful with estimating how much time

something will take (both in real life and in
hardware!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

