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System overview

Hardware components:
 Video decoder controller: ADV 7181 interface, 

YUV->RGB, Buffer to Avalon bus
 VGA frame buffer
 I2C controller

Software components:
 DMA transfer
 Object tracking
 Robot control



Project Overview: hardware structure



Project overview: software structure

Object Tracking Algorithm

DMA transfer from 
decoder to SDRAM

DMA transfer from 
SDRAM to SRAM

Robot 
control

ADV 7181 
decoder

IRobot Create SRAM



Video Controller

 System needs video for recognition
 Solution: analog video camera
 DE2 has an onboard ADC (ADV7181)



Video Controller

 ADV7181 interface
 Output format: 1716 clocks, 8 bits wide, YUYV
 Two interlaced fields of 262 lines
 Horizontal/vertical sync
 I2C configuration



Video Controller

 YUV->RGB
 Y: luma (brightness); U/V: chroma (color)
 Conversion done on a two-pixel YUYV block
 Output: single 16-bit RGB pixel



Video Controller

Transfer through Avalon bus
 Frame needs to be sent to SDRAM using DMA
 Problem: SDRAM has lax timings 
 Solutions attempted: FIFO, line buffer

 FIFO
 ADV7181 interface puts in pixels, Avalon bus pulls pixels
 Avalon flow control
 Problem: different clock speeds, so not synchronous!
 Data lost, corrupted image

 New idea: line buffer
 Double buffering: two lines stored in block memory
 Video ADC output writes to one while other is output 

through Avalon interface



VGA buffer

 The need for VGA

 Use POTS as automated remote surveillance
 Needs video output for human observers
 Choice of stream or framebuffer
 Choice of SRAM, SDRAM, Flash framebuffer



VGA buffer

 Implementation

  Went with SRAM
 Advantages : Fast, Simple
 Disadvantages : Single Ported
 Implications : Synchronize when to read/write



VGA buffer

 Results

 Results : Slower than anticipated, some frame  
tearing

 Ended up not being a big deal
 Future directions: double buffering, change of 

backing memory type, modesetting?



DMA

 The need for DMA

 Handle large transfers without using NIOS II
 Also allows us to implement flow control with 

Avalon peripherals
 Data transfer at a rate determined by limiting 

factor (the peripheral)
 Just a drop in device



DMA

 Results

 Slower than anticipated for SDRAM to SRAM
 Weird race condition when processor writing to 

SDRAM and initiating a DMA transfer from/to 
SDRAM



Robot

 iRobot Create

 Differential drive robot, moves in 2D plane
 Only need a subset of capabilities (rotate)
 Serves as mount for camera



Robot

 Implementation

 Communicates using RS-232, which is just drop 
in peripheral for NIOS

 Has an interface of opcodes which are simple 
bytes and allow basic scripting

 "Turn left at a given speed till a given angle is 
sweeped out"

 Only complication - had to expertly fabricate a 
null modem adapter



OBJECT TRACKING

Step 1: Recognize the target object in an image

Step 2: Calculate how the target is moving

Step 3: Reposition the device such that the target is always in 
sight

We recognize an object by its color 
(Assumption: an object has only one color) 

We calculate an object’s motion by its center’s 
position.
(Assumption: an object has regular shape)



OUR ALGORITHM
- A UTOPIAN SCENARIO   

pixel

N x N block
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WHAT MAKES LIFE EVEN HARDER

 DE2 has limited computational power

 Computer is not good at interpreting colors

 Image has noise

 Video is not stable 



TRICKS TO ALLEVIATE  COMPUTATION

Divide an image into blocks
- Reduce number of comparisons 

Replace multiplications by shifts and additions
- x*320 = (x<<8)+(x<<6)

Replace divisions by shifts, additions and 
subtractions
- 



Experiences

 Design of a embedded system with focusing 
on the most critical issue: all about timing!

 Usage of the ADV 7181 decoder, DMA
 Data transfer between different frequency 

domains
 Simple image recognition algorithm
 Interfacing between different hardware 

components



Lessons learned

 Importance of a good design 
 Always keep things synchronous
 Try to keep things simple unless you have a 

good reason to make it complicated
 Don’t trust the hardware
 Be careful with estimating how much time 

something will take (both in real life and in 
hardware!)
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