

Project Name Here
CSEE 4840 Project
Design Document

Thomas Chau tc2165@columbia.edu
Ben Sack bs2535@columbia.edu

Peter Tsonev pvt2101@columbia.edu

Page 2 of 11

Table of contents:

Introduction Page 3
Block Diagram Page 4
Hardware:

Proximity sensor Page 6
 Car hardware Page 8

 Mouse Page 10
 Control

Milestones Page 11

Page 3 of 11

1) Introduction

Our project seeks to achieve the following goal: create a hardware and software co-
design that leverages the computational power and interface capabilities of the DE2 board
to an autonomously control a stock RC car on a preprogrammed course while avoiding
obstacles that might pose a threat for the car.

Page 4 of 11

2) Block Diagram:

1. NIOS II processor module

1.1 Avalon Bus interface

 1.1.1 UART

1.1.1.1 Proximity Sensor

 1.1.2 SDRAM Controller

 1.1.2.1 8MB SDRAM

1.1.3 Custom Car Control Hardware (PWM?)

 1.1.3.1 Car Hardware: Motor and Steering Control

 1.1.4 PS/2 Controller
 1.1.4.1 PS/2 Mouse

The figure above describes the basic functionality. The NIOS processor will run a C
program residing in the SDRAM. The C code will output left/right and forward/backward
commands to two memory-mapped registers in a VHDL component. The latter will
constantly read the registers and generate the proper signal for the car hardware (more on

Page 5 of 11

that later). The C program will also constantly poll registers in another VHDL component
that uses the RS232 interface to read the proximity sensors. Based on the values of those
registers, the C code will be able to recognize upcoming obstacles and take corrective
action. The car might also need to be aware of its direction of motion relative to previous
directions so that if it turns left/right to avoid an obstacle, it can then make the opposite
turn and tell if it is going again in the original direction. To achieve that we use a mouse
which will interface through PS/2 and write to registers through a VHDL component. The
registers will be then polled by NIOS to get their values into the C code.

Page 6 of 11

3) Proximity sensor : Maxbotix LV-MaxSonar-EZ0

Our project will rely on an ultrasonic proximity sensor to gain awareness of obstacles in
its path. Ultrasonic sensors emit sound pulses at a 42khz and wait to detect an echo up to
a predefined timeout. Based on the time difference between the emitted pulse and the
echo detection, the distance to an obstacle can be calculated. To avoid irrelevant results,
most sensors are tuned to operate best for specific tasks. The tuning normally includes
adjustment of the width of the sound pulses the sensors emits. For our application, the
Communication is done via RS232 protocol, PWM or analog.

For the project purpose, we will use the RS232 format which the DE2 board natively
supports.

Figure 1 - LV-MaxSonar-EZ01

Figure 1 contains front and back views of the sensors in addition to a graph which show
the detection pattern for a large object. Each square on the grid represents 1 foot.

To use the sensor, we would need to connect only three pins: power, gnd and rx.
To communicate over the serial line, the onboard MAX232 chip would bridge between
the UART module and the external sensor. The synthesized UART module would have to
be set to communicate at 9600 baud, 8 bits, no parity and with one stop bit.
The DE2 board supports all three pins and communication rates without any
modifications. To obtain readings from the sensor, all you need to do is connect it to the
board. Once the sensor is powered up, it auto calibrates for 100ms. Once done, the sensor
will produce measurements once every 49ms. Each measurement is outputted as a string
consisting of the letter ‘R’ followed by the distance to the nearest obstacle in inches.

Serial communication is made possible by the NIOS II processor’s UART module. The
software controls the UART through the use of five memory mapped 16 bit registers.

1 Image Taken from http://www.trossenrobotics.com/maxbotix-lv-maxsonar-ez0.aspx

Page 7 of 11

Tx and Rx registers are used to read and transmit data, while the Control and Status
registers are used to set and get the information related to the operation of the device.
In addition, a dedicated devisor register is used to determine the baud rate of the module.
In addition the above registers, the module supports interrupts in the event polling is not
proffered. figure 2 below describes the timing diagram for one word transmitted over the
UART line. This information is not needed for the current project as the exact behavior of
the UART is abstracted thanks to Altera’s built in support for serial communications.

Figure 2 – RSR232 timing diagram2

2 Image taken from UCSB’s ECE153b lecture notes, by Professor Butner.
http://vader.ece.ucsb.edu/ece153b/handouts/L15-Serial1.pdf

Page 8 of 11

4) The Car:

The diagram below illustrates the hardware modules of the car and their interconnections.
The percentages designate the duty cycle of the controlling signals for different
commands (left/right and forward/backward). All of these will be now explained.

The DE2 needs to interface with the car hardware in order to control it. As it is, the car
has an RF transceiver, steering module, and speed control unit. There is one connection
from the transceiver to the steering module and a second connection from the transceiver
to the engine module. Each connection uses three wires. Two of the wires are power
(0.5V) and ground and the third one carries the control signal to the corresponding
modules. Thus, in our case, we can leave all power connections intact and just drive the
two control wires that leave the transceiver and go to the steering and speed control
modules. Both control signals use the same waveforms, but are independent of each
other. Each signal is a square wave of a constant frequency of 50Hz. Information is
transmitted by changing the duty cycle of the wave (e.g. pulse width modulation). In the
neutral state (when the car is doing nothing), the waveform is square with duty cycle of
8.1%. If there is a left/right or forward/backward command, the only thing that changes is
the duty cycle on the corresponding control wire. It swings between 5.9% and 11%. Thus,
if the car is to turn right, we have to drive the control wire for the steering module with a
square waveform of duty cycle greater than 5.9%. If we want to turn left, we change the
duty cycle to less than 5.9%. To go forward or backward, we drive the control wire of the
speed module in the same way. This technique is called pulse width modulation and is

Page 9 of 11

very useful because it enables one to use a single bit connection to control an analog
device.

To enable NIOS to control the movements of the car, we need to connect a VHDL
component to the Avalon bus and to a peripheral on the board (most likely the expansion
header). The component will accept memory-mapped instructions from the processor and
can use the 50MHz clock to derive a square output signal of the right frequency and duty
cycle. We need three pins from the output interface – one ground, one for the steering
control signal, and one for the engine control signal.

The figure below illustrates an exaggerated timing diagram. The control signal is
supposed to be 50 Hz, and the clock – 50Mhz. When the car is motionless, both control
signals will resemble the second signal in the figure (the first one below the clock). If it is
going forward and left, the control signal for the engine will be like the signal on the
bottom, and the control signal for the steering module would be like the third signal
below.

We will need some external hardware to get the output signal to the voltage swing
expected by the car hardware – 1/4V. The output voltage of the expansion header is either
3.3V or 5V and since the car hardware doesn’t have to talk back to the board, we only
need to worry about reducing the voltage to 1/4V.

Page 10 of 11

5) Mouse and PS/2 Controller:

To provide the car with displacement feedback, we decided to explore the use of a cheap
and readily available position tracking technology: the mouse. the DE2 board can support
mice using both USB and PS/2 standards. To keep development overhead for the mouse
component low, we chose to use the PS/2 connection. In addition there are two available
technologies for the mouse hardware: trackball and optical. The optical interface is more
accurate and might be possible to use without any the need to maintain a physical contact
with the ground. Otherwise, a trackball mouse can be used instead, which will require
physical contact with the ground at all times.

Communicating with the mouse is done with over a serial line and is achieved using only
two signals: clock and data as shown in figure 5 below.

Figure 5 - Mouse communication timing diagram3

This communication pattern is used to transmit data packets consisting of 3 bytes. Each packet
contains X and Y displacement values, 1 bytes each, in addition to 1 byte of status information such as
sign bits, button state and overflow. The exact structure of a data packet is show in figure 6 below.

Figure 6 - Mouse data packet structure

3 Figure 5 and 6 Taken from professor Stephan Edwards PS2 Lecture notes found at
http://www1.cs.columbia.edu/~sedwards/classes/2009/4840/ps2-keyboard.pdf

Page 11 of 11

6) Milestones:

1. Component interface and control:

by this milestone, the device drivers for all systems components should be written
and tested. The drivers should abstract the following:

Car control: This driver should provide call to control the forward/reverse
movement in addition to left and right steering control
Proximity sensor: The driver will initialize the proximity sensor and
collect data from its registers.
Mouse: the mouse driver will obtain the change in the X and Y axis and
contrast the readings with a timer to produce speed readings in addition to
total displacement.

2. write software: software must be written to control the car movement along a
 path. this includes speed and direction control. In addition, sensory information

must be processed to avoid obstacles. Finally, the software should be tested for
reactiveness to insure the systems meet all deadlines, failure to do so may result in
stale proximity readings which may cause the car to crash into obstacles.

3. project completion, the car can navigate through an obstacle course, our goal is to
do so with speed.

