
Pivoting Object Tracking System
[CSEE 4840 Project Design - March 2009]

Damian Ancukiewicz

Applied Physics and Applied Mathematics
Department

da2260@columbia.edu

Arjun Roy

Computer Science Department
ar2409@columbia.edu

Jinglin Shen

Electrical Engineering Department
js3478@columbia.edu

Baolin Shao

Computer Science Department
bs2530@columbia.edu

Abstract

In this paper, we describe our system in detail. We first
give an overview of our system, including the system’s high
level architecture and a description of, in general, how our
system will work. We then thoroughly describe each compo-
nent by providing every component’s block and timing dia-
gram. In addition, we analyze timing constrains in sections
4 and 7 to show that our system can display and recognize
objects in real time.

1. Introduction

This project aims to implement an object recognition
system, where a camera tracks the position of an object.
Additionally, the camera is mounted on an iRobot Create
two-wheeled robot and is able to command the robot to
rotate left and right in order to keep the object it is tracking
in its field of view.

2. System Overview

In Figure 1, we give an overview of all components in our
system, which are all hooked up to the Avalon bus.

In our system, a video camera is connected to the Al-
tera DE2 and sends NTSC analog signals to the board. An
Analog Devices ADV7181 converts analog signals to digital
signals in YUV format. The converter has an I2C interface,
which allows for the output format and other parameters to
be configured. A block and timing diagram of our I2C con-
troller is given in Figure 2. The ADV7181 Decoder Con-
troller converts each pixel from YUV to 16-bit RGB and
sends it to a buffer in the SDRAM using the DMA (direct
memory access) controller. The Nios II then performs pro-
cessing on the buffer in SDRAM in order to find the object
in question and to mark up the image. Additionally, the Nios
II uses a serial interface to command the iRobot Create to
turn in the appropriate direction if necessary. Subsequently,
the buffer in SDRAM is sent to the VGA controller, which

in turn transfers the buffer to SRAM. This buffer in SRAM
is used to display the marked-up image on a VGA screen.

3. DMA

With the use of DMA, transfers from the ADV7181 de-
coder and SDRAM and between the SDRAM and VGA con-
troller can be done without passing through the Nios II. The
decoder to SDRAM copy needs to start at the beginning of
the video frame and it needs to copy each byte sent by the
decoder. The SDRAM to VGA copy needs to be done during
the fairly narrow interval when no video is being drawn on
the VGA screen.

The DMA controller allows for flow control. With flow
control, the slave device (which in this case is the ADV7181
or VGA controller) can assert a signal that it is ready for
reading and/or writing. Thus, any data transfer can occur
at the speed and timing that the slave requires. A slave
peripheral can drive the readyfordata signal high to
indicate that it is ready to begin a transfer, and it can drive
the datavailable signal high to indicate that it is ready
to be written to. With this, we can let the decoder alert the
DMA controller when a new video frame has begun so that
the SDRAM can be written to, and we can let the VGA
controller alert the when the visible part of the VGA frame
has ended so that the SDRAM can be read.

In addition to having Avalon master ports to facilitate the
data transfer, the DMA controller also has an Avalon slave
port which is used by the Nios II to initiate the transfer and
set the memory locations to be transferred and the length of
the transferred data.

4. VGA Design

The VGA controller is an Avalon peripheral that displays
a framebuffer located on the SRAM on a VGA screen. The
controller is directly connected to the SRAM, to the Avalon
bus, and to the VGA interface. It accepts the main 50 MHz

CSEE 4840 Embedded System Design, Spring 2009 1 2009/3/12



Figure 1. System High Level Design (Block Diagram)

system clock for its logic, which it then scales to 25 MHz
for use as the VGA pixel clock. We plan on driving the in-
terface at a resolution of 640× 480 at 60 frames per sec-
ond. Whenever the VGA controller needs to draw a frame,
it accesses the SRAM to get the color of each pixel. When-
ever the Nios II finishes processing a frame of video located
on the SDRAM, it initiates a copy from the SDRAM to the
VGA controller over the Avalon bus; the VGA controller di-
rectly relays the data on to the SRAM. This copy is facili-
tated by the DMA controller as mentioned in the previous
section.

Use of the SRAM presents several limitations on the
possible resolution of the framebuffer. Since each pixel will
be stored in 16 bits, a 640× 480 buffer would take up 614
kB, which is more than the 512 kB size of the SRAM on
the Altera DE2. Thus, the size of the buffer will need to be
320×240 or smaller, with each pixel in the buffer mapping
to four physical pixels on the VGA screen.

Additionally, because the SRAM cannot be written to
and read from concurrently, the write to SRAM needs to
occur during the period in which the VGA controller is not
drawing any active pixels. At a resolution of 640 ×480, the
VGA interface allows for 45 horizontal lines during which
the vertical sync, front porch and back porch occur and no
lines are drawn. Additionally, within each line, there are
160 pixel clock cycles in which the horizontal sync, front
porch and back porch occur and no pixels are drawn. With
a 320× 240 buffer, this does not present enough time to
do the transfer during the vertical sync/porch interval. The
vertical resolution needs to be truncated in order to allow
for more transfer time. A resolution of 320× 230 should

be sufficiently small. A total number of (45 + 480−460)×
800 = 52000 VGA pixel clocks is available for the transfer.
Since the system clock is twice as fast as the VGA clock,
there are 104000 system clocks available. Since the SRAM
interface is 16 bits wide, the framebuffer can be transferred
at a rate of one pixel per system cycle. Thus, the transfer will
require only 320×230 = 73600 system clocks, which leaves
a comfortable margin of error.

In order to coordinate timing and ensure that the transfer
occurs only when the VGA controller has finished reading
pixels from the framebuffer, flow control will be used on
the Avalon interface to the VGA controller. Once the VGA
controller finishes drawing, the controller will assert the
readyfordata signal to the Avalon bus, which will alert
the DMA controller to begin transferring at the appropriate
time.

5. ADV7181 Decoder Design

In Figure 3 and Figure 4, we describe the design and
timing diagram of the ADV7181 Decoder Controller re-
spectively. The controller takes the inputs data[7:0],
TD_HS, TD_VS and Field from the ADV7181 video de-
coder. Since NTSC is an interlaced format, the ADV7181
outputs one field of alternating lines of a frame, followed by
another field of alternating lines. Since we need to decrease
the resolution to ensure there is enough time for frame trans-
mission between SDRAM and SRAM, we only use one field
of the input video data. The data is output in single bytes on
a 27 MHz clock, with two bytes representing each pixel. The
bytes sent are in YUV color space, with luma and alternating

CSEE 4840 Embedded System Design, Spring 2009 2 2009/3/12



Figure 2. I2C Block and Timing Diagram

chroma components. Thus, one pixel is Y/Pr, while the next
is Y/Pb.

There are 720 active pixels in each line and 242 active
lines in each field. Three signals from the ADV7181 are
used to align with the data coming from each frame. Before
reading the data for a frame, decoder controller waits for
the VS signal to be asserted in order to align itself with the
beginning of the video frame. The Field signal allows us
to know which of the two interlaced fields is being read.
Additionally, the TD_HS signal marks the beginning of each
line of video. The ADV7181’s I2C interface allows for the
timing of these signals to be offset as desired.

The data then goes through the 4:2:2 to 4:4:4 module and
the YUV to RGB module. The RGB data coming out is then
decimated in order to provide a 320x230 image: the first and
last 40 pixels in each line are ignored, and then only every
other pixel is sent. Similarly, the first and last six lines are
ignored. The decimated data is then store in a FIFO buffer
and waits to be transferred to the SDRAM. The FIFO buffer
asserts the dataavailable signal to indicate whether it
is empty or not to the DMA. Since each component we
mentioned above is a combinatorial logic block which does
not have strict timing constraints for the data transmission,
and there is available source code to refer to, we do not
include all the detailed design of each component here.

6. iRobot Create and Keyboard

The platform that we will use as the camera mount is
the iRobot Create, a simple robot that is capable of moving
in a 2-dimensional plane using differential drive. We shall
only use a subset of the robot’s capabilities. Specifically, we
will use the ability of the robot to rotate in place to easily
enable our system to pivot the camera about the vertical axis,
allowing to track objects.

Commanding the robot is done using a standard RS-232
serial interface. The robot provides a set of operation codes
to give basic commands, such as rotating in a given direction
at a provided speed until it has rotated a certain specified
angle. Since a serial controller peripheral is already readily
available for the Nios II processor, we do not need to design
it ourselves and use it essentially as a black box device. The
opcodes themselves are simply byte values, transmitted in a
certain order defined by an interface published by the robot
manufacturers.

Two cases exist in which the robot moves. We can manu-
ally, through the use of an attached PS/2 keyboard, rotate the
robot to a given position to manually orient the camera. To
use the PS/2 keyboard, we will reuse the peripheral given to
us in Lab 2 as a black box.

The second case in which the robot moves is when our
image processing software, in order to track an object, in-

CSEE 4840 Embedded System Design, Spring 2009 3 2009/3/12



Figure 3. ADV7181 Decoder Controller Block Diagram

structs the robot to turn an angle that will bring the target to
the center of the screen.

7. Nios II Software

So far, we have a system that takes in analog video input
from a camera, converting it to a format suitable for display
on a VGA controller while being able to control the camera
mount. In addition to the base hardware, we plan on adding
a software layer controlling the state of the system based on
environmental inputs and user commands.

Specifically, the user will command an initial orientation
for the camera mount by pivoting the robot. The system will
then be tasked with tracking an object satisfying a certain
criterion. Currently, we aim to track an object by its color;
a possible algorithm would be to find the centroid for all
pixels close to a given color, and count the number of pixels
that match this criterion. If the number of pixels is above a
threshold, we have found an object centered at the centroid
calculated earlier, and we can command our robot to rotate
until the object is in the center of the camera’s field of view.

The robot would continue to autonomously track the ob-
ject until interrupted by the user, who could specify search-
ing for an object of another color or to stop searching alto-
gether. We have decided not to decide all the features and
algorithms used in our software at present. However, since
the software layer is flexible, added features can be added

as development progresses depending on time and desired
performance characteristics.

All software would run on the general purpose Nios
II processor, communicating with the SDRAM memory
through the Avalon bus. Software would be responsible
for image processing, responding to user input and sending
commands to the robot platform.

Additionally, the software will command the DMA con-
troller to initiate copies from the decoder controller to
SDRAM and from SDRAM to the VGA controller. The
software does not need to take precise hardware timing
into account, as the VGA and decoder controllers will as-
sert the dataavailable and readyfordata signals as
needed. Nevertheless, based on our hardware design, there
are a two main timing restrictions on the software used. In
order to pull a frame from the ADV7181, the system needs
to wait for the start of a frame of video before beginning
the transfer. Since each NTSC field takes 1/60 sec, an entire
frame takes 1/30 sec. Additionally, in order for the buffer in
SDRAM be copied to the video controller, the system needs
to wait for the interval in which no pixels are drawn, which
only occurs with a 1/60 sec period. If the system is to have a
frame rate of 15 fps, it can decode one frame and then pro-
cess and send it to SRAM before the next frame is finished
sending to the ADV7181, so that it can then pull the frame
after that. In this scheme, 1/15 sec − 1/60 sec (for VGA) −

CSEE 4840 Embedded System Design, Spring 2009 4 2009/3/12



Figure 4. ADV7181 Decoder Controller Timing Diagram

1/60 sec (for acquiring one field from the camera) = 1/30 sec
is avialable for processing. At a resolution of 320×230 and
a system clock of 50 MHz, this allows for 22 clock cycles to
be spent on each pixel.

8. Milestones

Milestone 1(March 30)
The first milestone will be to have the necessary compo-

nents to get data from the video camera to SDRAM and to
send this data to the VGA controller, not necessarily in real
time.

Milestone 2 (April 13)
By this milestone, we plan on implementing real-time

video and on allowing a user to move the robot left and right
with a keyboard.

Milestone 3 (April 29)
In this milestone, we will implement the computer vision

algorithm and tune it in order to obtain a satisfactory frame
rate. Additionally, we will allow the software to steer the
robot as needed to follow an object.

CSEE 4840 Embedded System Design, Spring 2009 5 2009/3/12


	Introduction
	System Overview
	DMA
	VGA Design
	ADV7181 Decoder Design
	iRobot Create and Keyboard
	Nios II Software
	Milestones

