Homosapien Modeling Language (HML)

Final Report

COMS W4115: Programming Languages and Translators
Professor Stephen A. Edwards
Computer Science Department
Summer 2008 Columbia University
Dated: 2008-08-10

Derek Ng
dn2150@columbia.edu
Columbia Video Network

Contents
[aY oo [V ot 4o o IPTTTT R URRSRRORRRRRN

Main 1aNGUAEE FEATUIESeieie ettt e et e e st e e e e s btaeeeeabaeeesestaeeessteeesanseeeesansaneesnes
UL o T | O OSSPSR
Language REfErenCe ManUAlcoocuiiii ittt et e e e e e e et e e e st e e e eeabae e e eabeeeeensraeeenasenas

LEXICAl CONVENTIONS. .. .tiiitieetieeiieestee et e ettt e ste e sttt e rteeestteesbee sttt e s abeessteesabaessaeesabeesataesnsaeesasaesasaesnseesnssans

(670] 0010 0T=T 01 X3P PTO PO OPPTTOPPPPPPPTO
Y] ok | - Lo] £ OO PPPPPPPPPPPP
o 1= o a1 =T U
(NS A Yo e [

(1N L0180 o= N

L@ L= q o = 13] [0 o PP PUPUPPPPPPN
AN Vo B D o T3 o T o 1SR
ArTtRMETIC EXPIrESSIONS .vviiiiiiiicctieiee e e e e e e e e e tte e e e e s s e s aaaraeeeeee e s nsaareeeeessansnssenneeeesennnnsnns
U] oL = Tt o =) q o =] (o] U UUPRRNE
VT T o] Tor= Lo] g =D o] X3 T T o ISR
DAV (o] =N o =] (o] I
VT [WT Lo I =Nt o T3] o L3 PSP

EXPONENTIAl EXPIrESSIONS .uvvvieiiiiiiiciiieiee e e e ettt e e e e e st e e e e e e e st e e e e e e s seesanbtaaeeeeesannsstnneeeseessnssssnneeeseanas

(0] 07T =] o Tl o =T ol =Yo [T o Vol YRS 7

(o] £ o] o I PPN 8
o T =Totf o - T 1RSSR 8
Yol o 1j A=Yt {0 I DTy P o USSP 9
B =T ALY = = o USSRt 9

TEST CaS@ 1 — A0TITION .eeutiiiieiiece ettt sh e s st st 9
TSt Cas@ 2 — SUDTIACTION .. .eeiiiiieeee ettt e b e st s s st st eeeemeeenrees 9
Test Case 3 — MUILIPIICATION ..eeei et e e e etr e e e e bt e e e e ebaee e santaeeesbteeesensaneesnes 9
TEST CASE 4 — AIVISION ..eeuiiitieiieeiece ettt sb e bt st st st ettt et e et e b e b e e b e reens 10
TEST CASE 5 = MOTUIUS ..ottt sttt st st sttt e et e e b e e b e e beenneene 10
Test Case 6 — eXPONENTIATION ...iiiiiiii e 10
TesSt Case 7 — COMMENTS ..o.uviiiiiiiiiiiiti ettt s e s ba e e s sba e e e saba e e s s aaaee e 10
Test Case 8 — MUILIPIE OPEIAtIONS....cccuiii it e e s e e et e e e e atr e e e s abeeeesanaeeean 10
Test Case 9 — MUILIPIE [INES Of COUE.....uuiiiiiiiiiiie e e e e e st a e e e saaeee s 11
LESSON LEAINEA ...ttt ettt et sh e sht e st st sae e et e et e et e e bt e bt e bt e bt e areeeree eeneenreen 11
(0o o [N 113 4o =SS UR PR 11
LS =T 11 £ TP PUUPRORRNt 12

Yo 10 o=l olo Lo (=N 12

Introduction

Background

For my course project, | attempted to design my own programming language, the Homosapien Modeling
Language (HML). | chose to tackle a language that would help programmers model our environment, by
first allowing them the ability to define entities (i.e. humans) and then external forces that could affect
these entities.

Goal

By allowing programmers to define individual people and how they are affected by the world around
them, they might be able to realize the impact on larger societies. For example, the impact of a failing
economy might force people to become less happy and this feeling might influence others they interact
with. If written correctly, then HML should provide a data repository for analysts to analysts to
extrapolate trends.

Main language features

HML is in a very infantile state. While it posses the skeleton to perform limited mathematical operations
with primitive coding, it demonstrates that the language can recognize source code, interpret it, and act
upon it. With more advanced developer support, the language could be extended to meet its visionary
goals.

Tutorial

For Windows based environments, one must first compile the HML code with Java and ANTLR via the

command:

>dir
\project\src
08/10/2008 09:16 PM <DIR>
08/10/2008 09:16 PM <DIR>
08/10/2008 08:59 PM 2,721 hml_grammar.g
08/10/2008 09:16 PM 786 Main.java
2 File(s) 3,507 bytes

>java antlr.Tool hml_grammar.g
ANTLR Parser Generator Version 2.7.7 (20060930) 1989-2005

The ANTLR tool generates Java code based on my HML specifications.

>dir

\project\src

08/10/2008 09:16 PM <DIR>
08/10/2008 09:16 PM <DIR>

08/10/2008 09:16 PM 16,447 HmlLexer.java
08/10/2008 09:16 PM 2,778 HmlLexer.smap
08/10/2008 09:16 PM 11,962 HmlParser.java
08/10/2008 09:16 PM 2,493 HmlParser.smap
08/10/2008 09:16 PM 510 HmlParserTokenTypes.java
08/10/2008 09:16 PM 320 HmlParserTokenTypes.txt
08/10/2008 09:16 PM 4,054 HmlITreeWalker.java
08/10/2008 09:16 PM 1,202 HmITreeWalker.smap
08/10/2008 08:59 PM 2,721 hml_grammar.g
08/10/2008 09:16 PM 786 Main.java

10 File(s) 43,273 bytes

At this point, one must compile the Java code.

>javac *.java

Note: HmlLexer.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

>dir

\project\src

08/10/2008 09:16 PM <DIR>
08/10/2008 09:16 PM <DIR>

08/10/2008 09:16 PM 8,580 HmlLexer.class
08/10/2008 09:16 PM 16,447 HmlLexer.java
08/10/2008 09:16 PM 2,778 HmlLexer.smap
08/10/2008 09:16 PM 6,629 HmlParser.class
08/10/2008 09:16 PM 11,962 HmlParser.java
08/10/2008 09:16 PM 2,493 HmlParser.smap
08/10/2008 09:16 PM 773 HmlParserTokenTypes.class
08/10/2008 09:16 PM 510 HmlParserTokenTypes.java
08/10/2008 09:16 PM 320 HmlParserTokenTypes.txt
08/10/2008 09:16 PM 2,691 HmITreeWalker.class
08/10/2008 09:16 PM 4,054 HmITreeWalker.java
08/10/2008 09:16 PM 1,202 HmITreeWalker.smap
08/10/2008 08:59 PM 2,721 hml_grammar.g
08/10/2008 09:16 PM 1,388 Main.class

08/10/2008 09:16 PM 786 Main.java

15 File(s) 63,334 bytes

The warnings are a result of using the string “or” and “and” in the parser. They are nothing to worry
about. At this point, to run any HML code, one just types “java Main < source_code.txt”.

Language Reference Manual

Lexical Conventions

Comments

Comments are preceded and followed by a control sequence. Comments are started with a forward,
double slash “//” and are ended with a backward double slash “\\”. An example comment would be as
follows:

// THIS IS A COMMENT \\

Separators

Tokens are separated by blanks, tabs, and newlines.

Identifiers

An identifier in HML is a consecutive pattern of letters (a to z and/or A to Z).

Keywords

The logic operators “or” and “and” are the only reserved words in this language.

Numbers

Numbers are consecutive pattern of digits (0 to 9). Numbers are restricted to integers and may be
positive or negative.

Other tokens

HML has a set of built in operators to manipulate variables.
O Y A
Types

Due to the restricted set of supported operations, HML is restricted to manipulating integers. But due to
the nature of some of the mathematical operations, the default resulting data type is a double.

Expressions

Or expressions

The “or” operation in the term “A or B” performs the logical OR operation between A and B. At this
time, the lexer recognizes this term but the OR operation has not been programmed.

And expressions

The “and” operation in the term “A and B” performs the logical AND operation between A and B. At this
time, the lexer recognizes this term but the AND operation has not been programmed.

Arithmetic expressions

The “+” operation in the term “A + B” adds the integer A with the integer B and returns the sum as a
double.

Subtraction expressions

The “— “operation in the term “A — B” subtracts the integer value of B from integer A and returns the
difference as a double.

Multiplication expressions

The “* “operation in the term “A * B” multiples the integer value A with the integer B and returns the
product as a double.

Division expressions

The “/ “operation in the term “A / B” divides the integer value B from the integer value A and returns
the resultant as a double. At this time, the compiler confuses this operation with the comment
delineators.

Modulo expressions

The “%"“operation in the term “A % B” performs the modulus operation on integer A with the integer
modulo B and returns the resultant as a double.

Exponential expressions

The “Moperation in the term “A ~ B” raises the integer A to the integer B power and returns the
resultant as a double.

Operator precedence

HML uses the operator precedence denoted in the table. Operators in the upper rows take higher
priority than operators in the lower rows.

Higher Priority | or | and

+| -

*1/1%
Lower Priority A

Expression

HML requires all expressions to be enclosed with parenthesizes and then end with a semicolon. For
example, the following is a valid expression “(A + B);” while “A + B;” is not due to the missing
parenthesizes. Based on external guidance and personal experimentation, the semicolon helps to
distinguish between sequential expressions. Right now, the parenthesizes are included to define the
boundaries of a single expression. It was planned to support parenthesizes to allow more complex,
nested expressions where the parenthesizes would allow the programmer to manipulate the traditional
operator precedence.

Project Plan

As a 1 man team, | was responsible for all aspects of the assignment from documentation to coding to
testing. | submitted the original proposal, Language Reference Manual, and this final report while
attempting to fold in feedback from Professor Edwards. For development, | researched ANTLR and
wrote the lexer, parser, and AST walker. Base on my abilities and the roles expressed in lecture, | believe
| would have been most effective doing documentation and/or testing.

Almost all of the semester was spent researching the role of each component in the compiler by reading
numerous online Frequently Asked Questions (FAQs), holding electronic exchanges with other ANTLR
developers, and repetitive trial and error coding.

The original plan was to research until the midterm, transition to writing out the compiler until the final,
and then spending the last week documenting my findings. With the difficulty of the coursework itself
and personal difficulties with learning the language, | ended up spending all my time until the final
learning and trying to write ANTLR code with the last week spent documenting.

Version control was rather simple since | was the only person allowed to modify the code. Therefore |
uploaded my code to my gmail e-mail account for offline storage at the end of the day when | modified
the code.

Architecture Design

ATNLR source
code

Java HRM compiler Java Executed
Compiler code Compiler program

Parser

HML Source
Code

The above diagram represents the workflow my HML language. | generate the ANTLR code which gets
passed to the Java compiler which builds my HML compiler in Java source code. The HML compiler
source code then runs through the Java compiler with HML source code as an argument to run a HML
program.

Currently there is a bug in the HML ANTLR code where the lexer will tokenize all of the source code, the
parser will analyze all the tokens, but when will only evaluate the first line of the source code when
passing through the tree walker.

Testing Plan

Multiple HML codes were generated to test individual features of the compiler. In each case, the AST
was generated and displayed to screen. The first line returned from the compiler is the parse treem.

Test Case 1 - addition

>java Main < 01_add.txt
(((+22))null
Value: 3.0

Test Case 2 - subtraction

>java Main < 02_sub.txt
(((-1202)) null
Value: 8.0

Test Case 3 - multiplication

>java Main < 03_mult.txt
(((*3004000)) null

Value: 1200000.0

Test Case 4 - division

>java Main < 04_div.txt
Exception: line 1:7: expecting "\n', found '<EOF>'

As mentioned earlier, the current division operation confuses the division operator with the comment

delineator.

Test Case 5 - modulus

>java Main < 05_mod.txt
(((%94))null
Value: 1.0

Test Case 6 - exponentiation

>java Main < 06_exp.txt
(((~1345))null
Value: 1.3410681671324994E50

Test Case 7 - comments

>java Main < 07_comments.txt

Ignoring comment: //THIS IS A COMMENT\\
(((+34))null

Value: 7.0

Test Case 8 - multiple operations
>java Main < 08_combo.txt
(((-(+12)(%(*3("45))6)))null
Value: 3.0

The AST in displayed to visualize how it is generated.

-~

<5 The AST

REX)

m
¢ =1-
P+
AE
[2
%
¢ =

e

[3
L

4
[5

Test Case 9 - multiple lines of code

>java Main < 09_combo.txt
(((-(+22)(%(*3(~45))6)))(((-(+12)(%(*3("45))6)))null

Value: 3.0

As mentioned earlier, the compiler will tokenize and parse the whole source file, but only evaluates the

first line. The correct response would return 2 “Value: 3.0”.

Lesson Learned

This exercise has taught me many things:

1.

The biggest roadblock for programming HML was the difficulty | faced with learning ANTLR syntax. |
personally require face to face interaction to learn foreign syntax. Since | am a remote student, |
attempted this semester to rely exclusively on electronic exchanges by reaching out to other
developers on the Internet to understand ANTLR. With software development being so fast paced,
most developers | contacted had used ANTLR 2.0 “a while ago” and were a bit grainy on providing
me advice. | was able to develop my own primitive lexer, parser, and AST walker which does show |
was able to learn the basics of ANTLR.

My second biggest roadblock was that | had underestimated the dependence on Java in this class.
Coming from a C background, | had been always able to see the parallels between C and Java to
accomplish the assignment, but | feel my lack of experience with Java played more of a hindrance in
this assignment than in others.

As a consequence of the first two difficulties, | believe one of the most obvious lessons | learned was
that | hoped for more than | was capable of doing. Although minimal for some, | believe customizing
my language to read in numbers, strings, “simple” mathematic operations, and comments were big
accomplishments for me. It shows that | was able to walk through all the stages of a compiler.

Code listing

\project\src

08/10/2008 09:16 PM <DIR>

08/10/2008 09:16 PM <DIR>

08/10/2008 08:59 PM 2,721 hml_grammar.g
08/10/2008 09:16 PM 786 Main.java

2 File(s) 3,507 bytes

Credits

ANTLR is a difficult language for me to learn and without physical interaction with other classmates to
ask for guidance, | had to rely exclusively on web based support. | would like to thank the following for
taking the time to write their support pages.

e Daniel Ostermeier and Jason Sankey (of alittlemadness.com) gave me much insight with their
ANTLR By Example webpage.

e Ashley Mills (of The University of Birmingham) for her clear ANTLR tutorial.

e Most importantly, Scott Stanchfield (of javadude.com) for writing up An ANTLR 2.0 Tutorial and
responding to my e-mail questions.

Source code

hml_grammar.g

//**//

// Parser //

//**//

class HmlParser extends Parser;

options {

k=2;

buildAST = true;
}

imaginaryTokenDefinitions :
SIGN_MINUS
SIGN_PLUS

program : (statement)* EOF;

statement: log_expr SEMI!;

log_expr : expr ("or"” | "and"” expr)*;

expr :LPAREN” sumExpr RPAREN!;

sumExpr : prodExpr ((PLUS” | MINUS?) prodExpr)* ;
prodExpr : powExpr ((MUL” | DIVA|MOD”) powExpr)*
powExpr : signExpr (POWA signExpr)? ;

~.

signExpr : (

m:MINUS” {#m.setType(SIGN_MINUS);}
| p:PLUSA {#p.setType(SIGN_PLUS);}
)? atom ;
atom :INTLIT;

//**//

// Lexer //

//**//

class HmlLexer extends Lexer;

options {
k=2;
charVocabulary ='\3'..\377';
testLiterals = false;

}

protected ALPHA : ('a'..'z'|'A"..'Z");
protected DIGIT : ('0'..'9") ;

INTLIT : (DIGIT)+;
STRING : (ALPHA)+;
COMMENT
A
(/="

(
options {greedy = false;}:
(
("\r' '\n") =>"\r' \n' { newline(); }
| '\r' { newline(); }
| '\n' { newline(); }
[~("\n" ["\r")
)
)*
"\\\\"
| (*"\n"))* \n' { newline(); }
)
{ System.out.printIn("lgnoring comment: "+getText()); SsetType(Token.SKIP); }

’

WS

(!
|\
| ("\r\n" // DOS/Windows
| '\r' //Macintosh
| \n' // Unix
)
{ newline(); }

)
{ SsetType(Token.SKIP); }

MOD 1'%
POW DN
SEMI %'
LPAREN :'(' ;
RPAREN :')';

//**//

// Tree Parser //

//**//

{import java.lang.Math;}
class HmITreeWalker extends TreeParser;

expr returns [double r]
{ double a,b; r=0;}
: #(PLUS a=expr b=expr) {r=a+b;}
| #(MINUS a=expr b=expr) {r=a-b;}
| #{MUL a=expr b=expr) {r=a*b;}
| #(DIV a=expr b=expr) {r=a/b; }
| #(MOD a=expr b=expr) {r=a%b; }
| #(POW a=expr b=expr) { r=Math.pow(a,b); }
| #(LPAREN a=expr) {r=a;}
| #(SIGN_MINUS a=expr) {r=-1%*a;}
| #(SIGN_PLUS a=expr) {if(a<0)r=0-a; else r=a; }
| iZINTLIT { r=(double)Integer.parselnt(i.getText()); }

7

