
COMS W4115 Programming Languages and 
Translators 

 
Sim2D Project Proposal 

 
David Suess 

dcs2136@columbia.edu 
 

June 4, 2008 
 

Introduction 
Sim2D is a language designed for simulation of the movement of objects on a 2 
dimensional map.  A programmer may define objects and their behavior.  The 
interpreter will present the simulation on a 2 dimensional map for observation of 
the interaction of the objects.  Possible applications of this language would be to 
simulate the traffic of air, land and sea vehicles, or the interactions of animals in 
an environment.  The language will be simplified and interpreted for quick 
development and debugging. 
 
 

Design 
Simulations generally consist of a loop in which operations are performed.  
Therefore, to simplify the language, the loop for this language will be implied.  A 
user will construct stationary landmarks and mobile rover objects as desired.  For 
stationary objects, a user must define a position and any number of user 
customizable fields.  For mobile objects, a user must define an origin, 
destination, and speed.  The simulation will automatically move the mobile 
objects toward their destination.  A user can then construct rules to govern 
changes to the movement of the objects.  Any number of user customizable 
fields can be defined for a rover or landmark for use in custom behavior of the 
objects.  A 2 dimensional map will be rendered utilizing java swing.  The objects 
will be represented with different color dots.  Several buttons will be provided to 
control the simulation speed and to load and reload programs.   
 
 

Language Description 
The language will look familiar to a C programmer, but it is simplified for what is 
needed for a 2D simulation.  There are no provisions for user defined loops, or 
pointers.  Function definition is limited to the capability of the rule keyword.  The 
only basic data types are integer and boolean.  The rover and landmark objects 
are predefined types that have built in variables that are required for the 
simulation such as x and y coordinates.  A program will generally consist of one 
or more create rover and create landmark statements followed by one or more 
create rule statements to define custom behavior.  create statements are 



interpreted immediately and only once unless they exist within a rule.  rule 
statements are executed at every iteration of the simulation loop.   
  
 

Keywords 
 create  Create a landmark, rover or rule 

destroy Destroy a landmark or rover 
reset  Reset a rover to it’s initial state 

 rover  A movable object 
 origin  A rover field defining the start location of a movable object 
 destination A rover field defining the end location of a movable object 
 speed  A rover field defining the speed of a movable object 
 landmark An immovable object 

x  The x coordinate of the position of an object 
y  The y coordinate of the position of an object 
visible  A Boolean field indicating that the object is displayed 
custom Prefix for creating user defined fields 
rule  A procedure that is run every iteration of the loop 
distance_to A function that returns the distance to another object 
bearing_to A function that returns the relative bearing to another object 

 if  Conditional for comparison of objects or their fields 
 else  Conditional for comparison of objects or their fields 
 and  Logical operator for conditional expressions 
 or  Logical operator for conditional expressions 
 true  Value for Boolean types 
 false  Value for Boolean types 
 

Operators 
 . Dereference fields of a landmark or rover 

 




=

=

!
 Rover or landmark object comparison 

 
















=

>=

<=

>

<

=

!

 Integer comparison 

 // Indicates that the rest of the line is comments 
  
 
 

Testing 
The interpreter will have a debug option that will inhibit the graphical display and 
instead output the x and y position of all objects at each time step.  Comparison 



of these coordinates from different runs of the program will certify deterministic 
results.  Various basic benchmark programs will be written to test all language 
features.  A script will be written to run all benchmarks and diff the results against 
expected results. 
 
 

Example Code For Air Traffic Control Simulation 
  
 // This program will simulate 4 aircraft on approach to an airport. 
 // The airport will only allow one aircraft within it’s airspace. 
 // Once an aircraft has reached the airport, it is deleted and another 
 // aircraft may land. 

create landmark KPHL { 
x 250; 
y 250; 
visible true; 
custom landing_aircraft none; 
  

 } 
create landmark westentry { 

x 0; 
y 250; 
visible false; 

 } 
create landmark eastentry { 

x 500; 
y 250; 
visible false; 

 } 
create landmark northentry { 

x 250; 
y 500; 
visible false; 

 } 
create landmark southentry { 

x 250; 
y 0; 
visible false; 

 } 
 
create rover united421 { 
 origin westentry; 
 destination KPHL; 
 speed 1; 
} 
create rover american331 { 



 origin eastentry; 
 destination KPHL; 
 speed 1; 
} 
create rover southwest65 { 
 origin northentry; 
 destination KPHL; 
 speed 2; 
} 
create rover american12 { 
 destination southentry; 
 destination KPHL; 
 speed 1; 
} 
 

 
// air traffic control rules for the KPHL airport 
create rule KPHL { 
 // rover here refers to any rover 
 if (rover.destination = KPHL) and (rover.distance_to(KPHL) = 100) { 
  // check if aircraft just landed 
  if (KPHL.landing_aircraft != none) { 
   if (KPHL.landing_aircraft.distance_to(KPHL) = 0) 
    KPHL.landing_aircraft = none; 
   } 
  } 

if (KPHL.landing_aircraft != rover)  
and (KPHL.landing_aircraft != none) { 

   rover.speed 0; // simulate a circling aircraft 
  } else { 
   KPHL.landing_aircraft rover;   
  } 
 } 
} 
 
// rule for all rovers 
// remove aircraft from simulation when they reach their destination 

 create rule rover { 
  if (rover.distance_to(rover.destination) = 0) { 
   destroy rover; 
  } 
 } 
  
 
 
 



Example Code For Dog and Cat Chase Simulation 
 
// This program will simulate a dog chasing a cat.  The dog will make a 
// bee line for the cat.  The cat will run in the opposite direction when the 
// dog enters a certain distance. 
create landmark dogstart { 

x 50; 
y 50; 
visible false; 

 } 
create landmark catstart { 

x 150; 
y 150; 
visible false; 

 } 
 
create rover dog { 
 origin dogstart; 
 destination cat; 
 speed 4; 
} 
create rover cat { 
 origin catstart; 
 destination none; 
 speed 3; 
} 
 
create rule cat { 
 if (cat.distance_to(dog) < 20) { 
  // cat will run from dog in opposite direction 
  cat.destination(cat.bearing_to(dog) + 180, 20); 
 } 
} 
 
create rule dog { 
 if (dog.distance_to(cat) = 0) { 
  destroy cat; 
 } 
} 
 


