

SLAG
Structured Language Applied to Gaming

Language Reference Manual

COMS W4115: Programming Languages and Translators
Professor Stephen A. Edwards
Computer Science Department

Spring 2008 Columbia University

Edward Arnold-Berkovits
ea2124@columbia.edu

A. Introduction
This language reference manual outlines the Slag programming language. Regular
expression notation is used to describe the language. This manual will use the following
notation within the regular expressions:
() – the enclosed terminals and nonterminals are a group
'a' – the symbol 'a' is a terminal
a? – the symbol 'a' is optional
a* – the symbol 'a' will occur, zero, one, or more times
a+ – the symbol 'a' will occur, one or more times
a | b – a choice between the symbols 'a' and 'b'

B. Lexical Conventions
A program consists of one SLAG specification stored in a file. Programs are in the
ASCII character set.
B1. Tokens
The language contains five classes of tokens: identifiers, keywords, constants, string
literals, and operators. Blank (white) space, any type of tab, and comments are ignored
by the parser.

B2. White Space
A semicolon denotes the end of a statement. Spaces, horizontal tabs, and carriage
return characters are whitespace. Comments are ignored by the lexer. Slag
occasionally requires whitespace to separate adjacent tokens that would otherwise be a
single token. For example, identifiers and keywords must have separating whitespace.
The newline character at the end of a file is optional.

B3. Comments
Single line comments start with // and end at a carriage return (the only line terminator
available) or at the end of file. /* denotes a multi-line comment.

B4. Identifiers
An identifier is a sequence of letters or digits, the first of which much be a letter. Letters
are considered any letter of the alphabet (upper and lower case) as well as '_'. Upper
and lower case letters are different. It is conventional to begin with a lower-case
character. Two identifiers are the same if they have the same ASCII character for every
letter and digit.
Identifier : letter (letter | digit)*
B4.1 Primitive Data Types
The primitive data types for identifiers are strings, numbers, and boolean values
(true/false). Slag does not require type declarations.

B5. Keywords
Slag reserves the following identifiers as keywords; all keywords are lower case and
use only letters.

if elseif else while
uses true false
movement attack defense damage health
mv av dv dmg
character battle attack
display exit compare
The dot operator, “.”, is reserved for use with <entity>.<value> or
<structure>.<substructure>
Braces are reserved to delineate structures.

B6. String Literals
A string literal, or string constant, is a sequence of characters surrounded by double
quotes, like “ ... “. The addition operator (+) concatenates strings. String literals may not
contain double quotes or span multiple lines.

B7. Separators
The following characters are separators:
{ } , () . ;
A period is not used at a concatenation operator, but as the separator between an entity
name and a value.

B8. Constants
Constants are a sequence of digits representing an integer. If an arithmetic expression
between two integers evaluates to a real, the output will be automatically cast as a real.
Number : digit+ (. digit+)?
Slag does not allow or use real or decimal numbers for programming purposes. There is
internal use of decimals, but they are rounded up in all final calculations. An example
would be a battlefield rule such that damage is halved at the same time that an ability
declares that damage is halved. Starting with a damage value of 3 means halving to
1.5, then to .75, then rounded up to the nearest integer of 1.

B9. Type casting
Addition of a String with any primitive non-String implicitly type casts the non-String to a
String. The display(expression) function implicitly type casts any non-String argument
as a String.

B10. Scope
Static scoping rules in Slag are as follows:
1. Identifiers are valid from where they are initialized and are no longer valid after the
end of the block within which they were made.
2. Identifiers accessible where a new block starts are valid inside that block.
3. A file that does not contain any {}'s is considered one block for scoping purposes.

C. Expressions
The precedence of expression operators is identical to the order in which they are
documented below. Within each subsection, the operators have the same precedence.
Each subsection is left associative unless otherwise specified. The order of evaluation
of expressions is left to right. Expressions are the building blocks of statements and
programs in the Slag Language.

C1. Primary Expressions
factor:
| (expression)
| left-value
| number
| boolean
| string

C2. Arithmetic Expressions
Arithmetic expressions take the primary expressions as their operands. While the
productions of the expressions appear to create right associative rules, when
implemented in ANTLRv2, the language becomes left-associative.
C2.1 Unary Expressions
unary-expression:
| - unary
| ! unary
A unary expression is an operation with at most one operand ('-' or '!'). The prefix
notation binary operators '-' and '!' represent negative and not.
C2.2 Multiplicative Expressions
mult-expression:
| unary (* unary)*
| unary (/ unary)*
The binary operators '*' and '/' represent multiplication and division.
C2.3 Additive Expressions
add-expression:
| mult-expression (+ mult-expression)*
| mult-expression (- mult-expression)*
The binary operators '+' and '-' indicate addition and subtraction.
C2.4 Comparison Expressions
comp-expression:
| add-expression (> add-expression)*
| add-expression (< add-expression)*
| add-expression (>= add-expression)*
| add-expression (<= add-expression)*
equal-expression:
| comp-expression (== comp-expression)*
| comp-expression (!= comp-expression)*

Comparison expressions can intuitively compare primary expressions. Using the Kleene
close an expression can evaluate to any combination of comparisons and mathematical
expressions or to a simple terminal such as a number of string.

C3. Assignment Expressions
To assign an argument to a value, a declaration must be made as detailed below:
assignment:
| left-value = right-value
Primitives are assigned by value. Variables cannot be re-assigned or an error will be
generated.
C3.1 Left-Value Expressions
left-value:
| identifier | array | member
member:
| identifier (. identifier)+
A left-value expression describes all valid syntax that may appear on the left hand side
of an assignment. This is used for declaring/accessing identifiers and characteristics of
identifiers.
C3.2 Right-Value Expressions
right-value:
| new identifier
| expression
A right-value expression describes all valid syntax that may appear on the right hand
size of an assignment. This is used for declaring and accessing identifiers and
expressions.
D. Slag Program
D1. Programs
Slag programs are a sequence of one or more statements.
program:
| statement +
Certain types of statements may contain blocks of code made up of more statements
which will be formatted as follows:
block:
| { statement * }

D2. Statements
Statements are executed in sequence. Statements can fall into several groups.
statement:
| function
| selection-statement
| iteration-statement
| foreach-statement
| looping-statement
| character-statement
| battle-statement

| attack-statement
| compare-statement
| display-statement
| exit-statement
D2.1 Functions
There are no user defined functions.
D2.2 Selection Statements
Selection statements must be formatted as follows.
selection-statement:
| if (expression)
block
(elseif (expression)
block)*
(else
block)?
In the if statement, the expression is evaluated and if it evaluates to true the block on
the following line is executed. With the optional elseif, the second block is executed if
the expression evaluates to false. That continues until the else statement, which
executes if there are no matches. There is no elseif or else ambiguity because of the
rule that { }'s must surround a block.
D2.3 Iteration Statements
Iteration statements iterate over a range of values.
iteration-statement:
| for (assignment ; expression ; assignment)
block
The arguments within the for statement are required for the loop to compile correctly. In
the for statement, the first assignment is evaluated once, and specifies the initialization
for the loop.
foreach-statement:
| foreach identifier in expression
block
D2.4 Looping Statements
while-statement:
| while expression
block
D2.5 Character Statements
character-statement:
| character character-name character-common-name point-value
core-value-list
ability-list

core-value-list:
| (core-value : integer-list)+

ability-list:
| (ability-area ability-name ability-common-name, core-value +/- integer)*

Core values and abilities are only declared within the context of a character-statement.
character Spiderman "Spider-man" 89 {
 health: 8; // For error-checking declarations that follow. Error if not equal to lists’ lengths.
 mv : 8, 8, 8, 7, 7, 7, 6, 6;
 av : 10, 10, 9, 9, 8, 7, 7, 6;
 dv : 17, 17, 16, 16, 15, 15, 15, 14;
 dmg : 3, 3, 2, 2, 2, 2, 2, 2, 1;
 attack webslingers "Webslingers" av+1, dmg-1;
 attack incap “Incapacitate” av-1, dmg+1;
 defense spisense “Spider Sense” dv+2;
 };

D2.6 Battle Statements
battle-statement:
| battle battle-name character-name, character-name
D2.7 Attack Statements
attack-statement:
display-statement attack-statement
Used in the context of a display statement. Attack is a reserved keyword that contains
the results of the most recent attack as a String. This includes damage done, and
whether a character is knocked out.
D2.8 Compare Statements
compare-statement:
| compare (expression to expression)
Compare statements utilize the attack-to-defense comparison method. Slag uses a
random dice roll of 2 d6 added together, with an equal chance of [1-6] on each die. The
use of compare will cause a characters health pointer to be updated.
D2.9 Display Statements
The display statement prints data to standard output. No other form of output is
supported.
display-statement:
| display (expression)
If the statement is not passed a string, the terminal of the expression will be cast to a
String.
D2.10 Exit Statement
exit-statement:
| exit
This causes the program to exit.

E. Code Sample

display (“You are Spider-man. You need to save the city from the rampage of Sandman.\n”);
display (“You can attack using the keyword ‘attack’ or request character status using
‘health’.\n”);
display (“Use the form ‘attack using *ability*’ where ability is an ability the character is using.\n”);
display (“Type ‘exit’ to end the battle simulation.\n”;)
display health;

prompter = “What do you do? (attack, health, exit) >”;
display (prompter);
// characters Spiderman and Sandman already set up using character statements
entity1 = spiderman;
entity2 = sandman;

while (read input) { // the primary program loop. Accept repeated input
 if (<input>.<first word> = “attack”) { // Input is 1,2 or 3 words
 if (attack uses webslingers) {

entity1.dmg = entity1.dmg-1;
compare (entity1.av +1 to entity2.dv);

} elseif (attack uses incap) {
 compare (entity1.av to entity2.dv);
} else {
 compare (entity1.av to entity2.dv);
}
display attack;

 } elseif (<first word of input> = “health”) {
 display health;

} elseif (<first word of input> = “exit”) {
 exit;
 } else {
 display (”You cannot perform that action. Please use attack, health or exit.”);
 }
 display health;
 currDefenseValue = entity1.dv;
 while (entity1.dv > currDefenseValue – 3) {
 display (entity2 + “ is attacking you!”);
 compare (entity2.av to entity1.dv); // a counter-attack
 display health;
 }
 display (prompter);
}

