
Moses Vaughan - mjv2123@columbia.edu
Binh Vo - bdv2112@columbia.edu

Ian Vo - idv2101@columbia.edu
Chun Yai Wang - cw2244@columbia.edu

Why SHIL?
 SHIL is a language used primarily for developing

HTML based automated bots.

 Provides the developer with tools to represent web
interactions.

 With these tools users can write applications that
automate a variety of site interactions.

 Manipulating look & feel of a given site.

 Ability to write bots/spammers.

 DataMining.

Perspectives
 User
 SHIL can be used to implement command line user

interfaces.
 Useful for writing shell scripts that make use of website

functionality .

 Server
 SHIL can be used to simulate user interaction by with

automating server interaction . Useful for many
applications ranging from creating spiders to website
test scripts.

Tutorial – The Basics I
 Comments: The usual /* and */ are used for all comments.

 Assignment: The arrow points the way. ‘<-’
 a <- 4;

 Comparison: Single Equals ‘=‘
 “asdf” = “asdf”

 Functions: Use the “function” keyword using the template.
 function functName(<type> <var>, <type> <var>) ->

<return type> {<body>}

 Ex/ function add(integer a, integer b) -> integer{

return a + b;}

 Function Call:
 result <- func_name(arg1, arg2);

Keywords
integer real boolean

function map array

If while foreach

break end fun

use return TRUE

FALSE maybe string

Operators
Lexeme Usage

<- assignment

+ - / * math

" string**

; statement termination

. struct reference

[] array reference

() Logical grouping

& | ! = < > >= Boolean Operators

Data Types
 SHIL uses the usual suspects.

 Integer

 Boolean

 Map

 Array

 String

 Real – Acts as a floating point number

“Hello World!” in SHIL
 Control Flow resembles that of a scripting language.

 No main().

 Hello World needs only one line of actual code!

Selection
 Selection in SHIL is accomplished by the use of:

 If statements || If then else

 If <conditional> then<expression>

 If <conditional> then<expression>else <expression>
 /* Testing: If-Else Statement and execution afterwards*/

 function main () -> integer {

if (FALSE) then

print("True");

else print("False");

print("After");

}

main();

Data Structures
 Arrays

 Declaration: <type>[] <varName>;

integer[] arr; /* No need for numerical sizing */

 Assignment: <varName><- array{element 1,…., elementN};

arr <- array{5,10,15};

arr[1] <- 5;

 Maps
 Declaration: <type>[[<type>]] <varName>;

integer[[string]] mymap;

 Assignment: <varName><- map{key1 -> val1 ,…., keyN -> valN};

mymap <- map {"a" -> 11, "b" -> 26, "c" -> 52};

How SHIL was made
 Based structure on microC.

 Scanner

 Parser

 AST

 Interpreter

 Test Library

AST
 Needed support for multiple types.

 Represented by a specific Type “type”.

 Along with a Literal type which unions our various types

 Also program is a list of statements, due to lack of
main

Interpreter
 Variables and functions stored in separate lists (thus

separate namespaces)

 Array and Map referencing

 Declares

 Expressions now take and return Literal instead of int

 Library functions added as overloads to call pattern

 Exceptions used both to return from functions and
break from loops

 Type checking implemented here by comparing Type
to Literal

Test library
 Ocaml test library that allows us to specify functions

 Named tests

 Expected results

 Identify and localize problems to scanner or parser

 Script testing

 Specification of scripts and expected prints

 Automated comparison

 Segmented according to specific functionalities in the
interpreter

Lessons Learned
 Ocaml is a language that was well worth learning.

 Superior typing system which makes polymorphic and type
checking abilities the forefront of its implementation. The
strictness of the compiler caught many bugs before they came
to life in the code.

 Concise nature, which makes the source readable, as well as
its strong sense of pattern matching that we could exploit for
data types all over our interpreter’s structure.

 Offers new perspective on view of algorithms and analysis.

 Importance of Unit Testing for every minute component of the
language.
 Small functionality specific tests .

Lessons Learned
 Set modest goals, just do them well.

 Good base is critical to success.

 Document every step of the way.

 Ocamlnet.

 Don’t reinvent the wheel.

 Research what’s available thoroughly before you begin
coding.

 Regex is not the solution to all problems

Lessons Learned
 Become familiar with you environment before you step

into it.

 Meet early and often.

 Regular meetings.

 Importance of version control systems.

 Copy and Paste from IM doesn’t work well.

