DrulL Final Report
COMS W4115: Programming Language and Translators

Team Leader: Rob Stewart (rs2660) Thierry Bertin-Mahieux (th2332)
Benjamin Warfield (bbw2108) Waseem Ilahi (wki2001)

December 19th, 2008

Contents

l1 Language White Paper|

[1.2 Language specification|

1.3 Quick tutoriall

[1.3.1 Integers|

[1.3.5 More complex examples|

[1.3.6 Instruments and Clipg|

2_Tutoriall

2.2 The Very Basics|

P21 Sayhello]o

10

10

10

11

11

11

12

14

14

14

14

2.3 Combining Patterns| 16

[2.4 Manipulating Patterns| 17
2.5 Named mappers| 19
2.6 Assembling clips| o 20
2.7 The Big Payoft] o 20
3 Language Reference Manual| 23
(3.1 Introduction|. oo 23
3.2 lLexical Conventions| 23
321 Commentsl. 23
3.2.2 Whitespacel 23
2.3 Charactersl 24
[3.2.4 Identifiers|o o 24
3.2.5 Keywords| 24

3.3 DES| . . . 24
............................... 25
[0.0.2 pattern|o 25
B33 Deall 25
................................ 25
string] 26

B4 Statementd 26
[3.4.1 Expression Statements| Lo 26
[3.4.2 Assignment Statements| 28
[3.4.3 Selection Statements| oo 28

B.45 Return statementd oo 29
[3.4.6 Instrument definitionl. o000 29

[3.5 Blocks, namespace and scoping| 29
BSI Blockd 29
[3.5.2 Namespace| 30
[3.5.3 Scopingl 30

[3.6 Patterns and pattern operations| 30
3.6.1 Patternsl. oo o 30

§ Map| 32

3.6.3 Mapper| 33

3.7 IDS| . v e e e 34
B.7.1 Instruments o000 34
3.7.2 Clips|. 34

8 Outputs| 35
[3.8.1 Standard output| oL 35
B.82 Textfilel. 36
BR3 _MIDIHI 36
3.8.4 Lilypond file|] oo oo 36

4 Project Plan| 38
A1 Processed 38
4.2 Style Guide]o 40
M3 Timelind o oot 41

4.4 Roles and Responsibilities|

4.5 Tools and Languages|

4.6 Project Log|

B

Architectural Design|

.1 Architecture Diagram|

.2 Component Interfaces|

.3 Component Implemented Byl, ...

47

47

48

48

49

49

50

50

50

51

52

53

(B Project Log (SVN Commit Log)|

|IC Code Listings|

[C1

Language code]

|C.1.1 druliinterpreter.ml| L.

[C.1.3 drulhelpers.mll

[C.1.4 druloutputaml| oo

|C.1.5 drulprinter.ml

[C.1.6 drul_typesml| oo

|C.1.7 drulparsermly| oo

[C.2

57

57

58

93

Chapter 1

Language White Paper

1.1 Introduction

DrulL stands for “Drumming Language”. It is a programming language designed for
composing drum music. It is common these days for drum beat composers to create
drum parts using computer software (e.g. FL Studio). Creating drums parts with
these programs often involes of lot of tedious “pointing and clicking” (especially when
making longer drum parts). Drul. was designed to give the composer the ability to
automate much of this tedium. There already exist other more general-purpose mu-
sic programming languages (e.g. ChucK, SuperCollider, Nyquist, Haskore). These
languages are complicated by note pitches, durations, and audio effects. DrulL is
unconcerned with these things and focuses soley on allowing the drum composer to
define and manipulate beat patterns.

DruLl meets the needs of algorithmic drum-composers with the beat, pattern, and
clip domain-specific data-types. A pattern is essentially an object that holds binary,
discrete, time-series data. At each discrete-time step, which will henceforth refer to
as a beat, there is either a note or a rest. For the non-musically inclined, a note
represents sound produced by the striking of a drum (or similar instrument) and a
rest represents the absence of any such sound. Patterns are immutable. When a
pattern is manipulated, the target pattern remains intact and a new copy is created.
An instrument is one of a pre-defined set of sounds (e.g. drum notes) that can occupy
a single beat. A clip is a mapping of patterns to instruments. Clips are processed in
sequence as the program runs to produce output which may be audio, sheet-music
notation, or a MIDI file.

Drull is mainly an imperative programming language, however it borrows ideas
(map) from the functional paradigm. DrulL is strictly and dynamically typed. DrulL
programs do not contain any loops or user-defined functions. Rather, DrulL uses
map and mapper defined below.

A composer typically starts a DruLL program by defining some initial patterns. These
patterns can then be individually processed by built-in Drul functions to produce
new patterns. Alternately, the composer may define and use new functions called
mappers. Composers then apply their mappers to patterns, iterating over the beats
of one or more patterns at a time, building up a new pattern along the way. Once
the composer has a set of patterns with which they are happy, they define their
desired set of instruments (e.g. hi-hat, snare, bass drum, cowbell, etc.). With the
instruments defined, the composer uses the clip constuct to assign a pattern to each
instrument. Finally, the clip is output to a MIDI file, playable by many multimedia
players.

1.2 Language specification

There are 3 main data types in Drul: int, pattern, and clip.

Keywords are white space delimited. Indentation is not significant. Function argu-
ments are enclosed in parentheses and comma-separated.

Anything remaining on a line after // is a comment will be ignored by the compiler.

A map takes one or many patterns, and iterates over beats on all of them at the
same time, from the first beat to the last beat of the longest sequence.

A map returns a pattern (that can be empty). Inside the map, per each beat, a
may pattern returned which is then appended to an accumulated pattern. This
accumulated pattern is then returned by the map after the final iteration.

return rand clip mapper
if pattern instrument print
elseif ~ concat map

else true false

Scopes: There is a general scope, and one scope per map. Variables in the general
scope can be seen from within a map, but not written to. Variables defined in a map
are garbage collected at the end of the map.

1.3 Quick tutorial

In this section we give examples of what DrulL code will look like, in the form of a
tutorial.

1.3.1 Integers

Integers are part of our language.

a = 3;
b=a+ 2;
c=b *x 12;

1.3.2 Pattern

Patterns are the data type the programmer will likely spend most of their time
dealing with. For convenience, the programmer can supply a string constant made
up of 1s and 0s, which will be translated into a pattern: if the character is a 1, there
is a note on the corresponding beat; if 0, a rest.

pl = pattern("101010");

Patterns can be concatenated to form new patterns:

pcat = concat(pl, pattern("111000"), pattern("1"));

peat will be equal to 1010101110001.

There is also a shortcut to concatenate the same pattern many times:

pcat2 = concat(pl, pl, pl);
pcat3 = pattern("101010") .repeat(3);
pcat4d = pl.repeat(3);

peat2, peat3, and pcat4 are all equivalent.

10

1.3.3 Map

Of course, we will not hardcode every pattern we want to create. We use map to
create meaningful new patterns from existing ones:

p2 = map(pl)
{
if ($1.note()) { return pattern("11"); }
else { return pattern("0"); }
s

This will create the following pattern: 110110110. The goal of a map is to easily
iterate over a pattern. pl.note returns true if there is a note on the current beat,
false otherwise. If you call map on multiple patterns that are not of the same length,
the shorter patterns will be padded with NULL beats.

1.3.4 Mapper

For ease of use, you can define a mapper that contains the behavior used by map.
We create p3, which is the same as p2:

mapper myMapper (p)

{
if (p.note) { return pattern("11"); }
else { return pattern("0"); %}

p3 = map(pl) myMapper;

mapper will be very important when building a standard library for the language.

1.3.5 More complex examples

Now that we have a proper syntax, let’s get to more complicated examples. We
introduce 2 new features that can be used inside a map: prev and next. They give

11

you access to earlier and later beats in a pattern, using the syntax p.prev(n) and
p.next(n). Also, for a pattern p, p.rest() is true if and only if we did not reach the
end of this pattern.

reduction: accelerate by cutting one beat out of two

downbeats = pattern("1000100010001000");
alternate_beats = pattern("10").repeat(8);
downbeat_diminution = map(downbeats, alternate_beats)

{
if ($2.rest()) { return pattern(""); 1} // pattern of length 0
elseif ($1.note()) { return pattern("1"); }
else { return pattern("0"); }

}

output is: 10101010.

improved reduction: putting a rest (0) only if the 2 original beats were rest

// this will map "1001100110011001" to "11111111", rather than "10101010"
one_and_four = pattern("1001100110011001") ;
alternate_beats = pattern("10").repeat(8);
improved_diminution = map(one_and_four, alternate_beats)
{
if ($2.rest))
elseif ($1.note())
elseif ($1.next(1).note())
else

return pattern(""); %}
return pattern("1"); }
return pattern("1"); }
return pattern("0"); }

{
{
{
{
};

1.3.6 Instruments and Clips

Now that we have a large and varied collection of patterns, we can show how to
combine those patterns into clips.

Before we define any clips, we must tell the compiler what instruments they will use.
This can only be done once per program, and uses the instruments function:

instruments ("hihat", "bassdrum", "crash", "snare");

12

Once the instruments are defined, we can create a clip from our existing patterns,
using an associative-array notation:

clipl = clip

(
"bassdrum" <- downbeats,
"hihat" <- alternate_beats

)

The same result can be achieved by simply listing the patterns for each instrument
in the order they are defined in the instruments declaration:

clip2 = clip

(

alternate_beats,

downbeats

// remaining instruments have an empty beat-pattern
)

13

Chapter 2

Tutorial

2.1 Introduction

In this section we present some quick tutorials that explain the main features of Drul
language. We start with the basics: “Hello World” is in Section integers and
if/else are shown in and finally patterns are introduced in That being
done, we learn how to combine patterns , manipulate patterns create a
named mapper , create a clip , and finally how to bring all this together
and create a sheet of music (2.7).

2.2 The Very Basics

The drul command can take DruLi code either from the standard input or as a file
specified on the command line (drul mysource.drul). Examples in this section
should work equally well if passed in either way.

2.2.1 Say hello!

Because it is traditional, albeit almost completely irrelevant to this language, here
is our first DrulL program:

print (" hello , world!”);

14

This will print the string “hello, world!” to the standard output, on a line by itself.
Note that unlike many languages, DrulL does not require you to place a newline
character at the end of a string to have it print on a single line (conversely, it gives
you no method to print without a newline at the end).

2.2.2 Fundamentals

Variables in DrulL must have names that begin with a letter or underscore, and
contain only letters, numbers, and underscores thereafter. Variables are dynamically
typed and scoped, so to create one, you need only assign a value to it:

a = 350;
b = 300;
print(a + b);

This should print out the number “650”, again on a line by itself.

Now, with some variables defined, we can proceed quickly through the rest of the
features that you might guess are present from the above:

a = 350;

b = 300;

c =b — a;
d=a%b;
e = 60 / d;
if (e > 1) {

print (" this is what you might expect to have happen”);
} else {

print ("but this is what actually prints”);
}

Why does the second line print, and not the first? Drull’s types do not include
floating-point numbers, so all arithmetic is done using integers, and non-integral
results are truncated (as is done in C and other related languages) to their integer
parts.

15

2.2.3 One more variable type: patterns

We will now introduce the first data type that distinguishes DrulL from most other
languages: the pattern. A pattern is a sequence of true/false values, telling the
drummer (or MIDI sequencer) whether or not to play on a particular beat. They
are created using the pattern function:

" // empty pattern (length 0)
707); // pattern with only one ’rest’ in it.
Tin it .

pl = pattern
p2 = pattern
p3 = pattern
p4 = pattern

717, // pattern with only one ’note
71001001007);

A~ N N

Each time a “1” appears in the string you pass to pattern, the resulting pattern
carries the instruction to play on that beat; when a “0” appears, the pattern con-
tains a rest. You may notice that we also have explanatory comments in this code:
comments in Drul begin with “//” and continue to the end of the current line (there
are no multi-line comments).

To see the contents of a pattern you have created, you can always just print it out:

p = pattern (71001001007);
print (p);

2.3 Combining Patterns

Once you have a pattern or two, Druli gives you several ways to build new ones.
Using the concat function, you can combine them end-to-end:

catenated = concat (
pl,
pattern(”11110000”),
pattern(”00011”)

);

Notice that we have broken up the arguments to concat onto multiple lines for ease
of reading—since Drul_ is a free-form language, any amount of whitespace can appear
any place that any whitespace is allowed.

Pattern objects also have a repeat method, which produces a new pattern containing
all the beats and rests of the original, repeated however many times the method is

16

given as its argument. (In fact, you can give it an argument of 0 to return an empty
pattern, though there are less obscure ways to do that.)

p_custom = concat (
p2,
p3.repeat (2)
pd.repeat (3),
p3.repeat (2),
pd.repeat (4)

9

2.4 Manipulating Patterns

Patterns also have methods that allow you to produce new patterns that are not
simply combinations of old ones laid end to end.

Using the reverse method, you can turn a pattern back to front; using the slice
method, you can extract just the portion of it you want:

bassackwards = catenated.reverse ();

p-new = bassackwards.slice (4,10);

The arguments to slice tell Drulh which is the first beat of the pattern that you're
interested in, and how many beats (including that one) you would like. So to the
call above will produce a pattern 10 beats long, that starts with the 4th beat of
bassackwards. If you ask for more beats than the pattern has, then slice will
return a pattern that starts on the beat you specify and continues until the end of
the original pattern.

Since all of these methods return patterns, and are methods of patterns, you can
also stack your method calls into one statement:

p-new = catenated.reverse ().slice (4,10);

But the most powerful mechanism for creating new and different patterns is the map
function. This is how to take a pattern and create its complement: a pattern that
has a rest everywhere that the original has a note, and vise-versa:

17

reversed = map (p-new) {
if ($1.rest()) { return pattern(”1”); }
else { return pattern(”O”); }

}s

The map function moves from beat to beat of the pattern it is passed, setting the
variable $1 to the point to the current beat of the first (and in this case, the only)
pattern in its argument list. After each step, it stores the value that is returned, and
in the end, it concatenates all these patterns together to form the new pattern that
is created by this map.

You might be wondering, at this point, if it is legal to return a pattern that is longer
or shorter than one beat. The answer, happily, is “yes!” To produce, for example, a
pattern that has an extra rest inserted after every note, we could do this:

new_pattern = map(old_pattern) {
if ($1.note()) { return pattern(”10”); }
return $1;

}s

You may notice that we didn’t bother to create a pattern for the second case: if we
simply want to return a single-beat pattern with the same value (beat or rest) as
the current beat of one of our input patterns, we can simply return that beat, and
Drull will interpret it correctly.

Finally, we can pass more than one pattern to a mapper, and use variables $2, $3
and so forth. This mapper takes two patterns as its arguments, and produces a new
pattern that contains the portions of the first pattern that occur in parallel with
notes (not rests) in the second pattern:

old_pattern = pattern (710101100);

filtered pattern = map(old_pattern, pattern(”1110011110000”)) {
if ($2.note()) { return $1; }

}s

print (old_pattern);

In this case, the printed value will be “101100” (if no return statement is found,
map assumes that you meant to return an empty pattern). The same result could be
achieved using a series of calls to slice and concat, but this is a much more flexible
method.

18

If one of the patterns passed to map is longer than the others, map will continue until
it reaches the end of the longest pattern—the beats of the patterns that have already
ended are considered to be neither notes nor rests (and will return false if either of
those methods is called).

We’ve mentioned beats as if they were objects once or twice, and in fact they are—you
can’t create them directly, but map does it for you. You’ve seen two of the methods
you can call on beats (note and rest, but there are two more that make map even
more powerful: prev and next. Calling prev with an integer argument returns the
beat in the same pattern from that many beats ago in the pattern (and you can
probably guess how next works). These beats may be from before the beginning
or after the end of the pattern, in which case they behave just as described in the
previous paragraph: both the note and rest methods will return false.

new_pattern = map (old_pattern) {
if ($1.note() && $1.prev(1l).note()) { return $1; }
else { return pattern(””); }

}s

2.5 Named mappers

In all of the examples so far, we have simply supplied the map function with a block
of statements to run for this particular set of patterns. This block is what we refer to
as an “anonymous mapper.” In reality, of course, it is likely you would want perform
the same type of transformation on more than one pattern (or set of patterns). To
do this without annoying repetition of code, you can define a named mapper, then
use the name instead of the code block. The named mapper can also have named
parameters, which may be easier to keep track of than the shell-like variables used in
anonymous mappers. This allows us to re-write the previous example in a somewhat
more readable way:

mapper filter map (input_pattern, filter_pattern) {
if (filter_pattern.note()) { return input_pattern; }

b

filtered_pattern =
map (old_pattern, pattern(”1110011110000”)) filter_map ;

19

2.6 Assembling clips

Now that we have a bunch of patterns, the next thing to do with them is assemble
them into pieces of music, where each instrument has a (presumably) different pat-
tern to play. Before we do that, however, we have to define what instruments we
are using. This is done using the instruments function (which isn’t actually a func-
tion at all, but we’re going to ignore that for now—see section in the Language
Reference Manual if you want the grizzly details).

instruments (” hihat” ,” bassdrum” ,” crash” ,” snare”);

If you want to use the default instruments, you can simply call instruments with
no arguments, but you have to call it once (and exactly once) before you get to the
next step: using the clip function to bring all of your patterns into one place.

my_first_clip = clip(
"hihat” <— pattern(”00100010”),
"bassdrum” <— pattern (7100010007),
"crash” <— pattern (710000000),
"snare” <— pattern(”701110111")

E

Of course, this is a little verbose-if you’re specifying the patterns in the order they
appear in the instrument definition list, you can just pass the patterns you want as
arguments, instead of using the fancy syntax above:

my _first_clip = clip(

pattern (7001000107),
pattern(”10001000”),
pattern (7100000007),
pattern(”01110111")

2.7 The Big Payoff

Now that we know how to assemble patterns into a song, all that’s left is to see what
our song looks like when we bring it back to the outside world. There are three easy
ways to do this (other, of course, than a simple print call). First, you can call the
outputText method to print your song to a text file:

20

instruments (); // default instruments: hihat, snare, kick—drum and cowbell

song = clip (

pattern(”00100010”),
pattern(”011101117),
pattern (”10001000”),
pattern (”10000000”)

E

song.outputText (”my_song.txt”);

If you have the midge programﬂ installed, you can also convert it directly into a
MIDI file you can play using many music players:

tempo = 120;
song.outputMidi(”my_song.mid”, 120);

And finally, you can output to the format used by the typesetting package Lilypondﬂ
to produce beautifully typeset sheet music:

song.outputLilypond ("my_song.ly”, ”Title of the Song”);

Assuming you have Lilypond installed, this allows you to produce PDF sheet music
that looks roughly like this:

"http://wuw.undef .org.uk/code/midge/
*http://www.lilypond.org/

21

http://www.undef.org.uk/code/midge/
http://www.lilypond.org/

Title of the Song

hh_cr—3} ¢ 8 ¢ ¢ ¢ 8 ¢
d 1] P < < Q s <
T B B B " B B B
bt ¢ ¢ ¢ 8 ¢ ¢ ¢
cowbell H 2 2 2 2 2 2 2

Congratulations! You’re done with the tutorial-have fun with Drul!

22

Music engraving by LilyPond 2.10.33—www.lilypond.org

Chapter 3

Language Reference Manual

3.1 Introduction

Drull is mainly an imperative programming language, however it borrows ideas
(map and filter) from the functional paradigm. In addition to integers, Drul’s main
datatypes are pattern and clip. Instruments are defined as constants.

DrulL programs do not contain any loops or user-defined functions. All pattern and
clip creation and manipulation is done using the map construct described below.

3.2 Lexical Conventions

3.2.1 Comments

Comments in Drull start with the token “//” and continue until the end of the
current line. Drullb has no multi-line comment syntax.

3.2.2 Whitespace

Space, tab, end of line, and return are all considered the same and their only use is
to seperate tokens.

23

3.2.3 Characters

DruL uses the ASCII character set.

3.2.4 Identifiers

An identifier consists of any uppercase or lowercase character or an underscore,
followed by any sequence of uppercase or lowercase characters, underscores, and
digits (0 through 9). The maximum length of an identifier is 64 characters.

In addition, within the context of a mapper, special variables $1 through $n (where
n is the number of patterns passed to the mapper) are defined as read-only aliases

(see section for more details on this feature).

All identifiers in a given scope, be they mapper names, variables, or built-in functions,
belong to a single namespace.

3.2.5 Keywords

return rand clip mapper
if pattern instrument print
elseif concat map

else true false

3.3 Types

There are 3 basic types in DrulL: integers, patterns, and clips. In addition, ‘string’
constants may be used in DruL source code, but there is no variable type to which
they can be directly assigned. Likewise, boolean expressions exist, but cannot be
assigned to variables. Values in Drul. are strongly typed, but the type of a variable
is determined dynamically.

24

3.3.1 integer

All integers are base 10, and may optionally be preceded by a sign (+ -). Any
sequence of digits (0 through 9) is valid. Leading Os are ignored, so a sequence such
as 0000123 is interpreted as 123. Integers are mutable.

rand is a function that returns a non-negative number. It either accepts a positive
integer argument, in which case it returns a random number between 0 (inclusive)
the argument (exclusive), or no argument in which case rand returns either 0 or 1.

rand();
rand (19) ;

n
1]

3.3.2 pattern

A pattern is essentially an object that holds binary, discrete, time-series data. At
each discrete-time step, which will henceforth be referred to as a beat, there is either
a note or a rest. For the non-musically inclined, a note represents sound produced
by the striking of a drum (or similar instrument) and a rest represents the absence
of any such sound. Patterns are immutable. When a pattern is manipulated, the
target pattern remains intact and a new copy is created. The length of a patten can
be any non-negative integer.

3.3.3 Dbeat

A beat is a lightweight object that cannot be created directly by the user: it exists
only within a mapper (for more discussion of which, see section below). It gives
direct access to information about a single beat of a pattern object (including the
beats surrounding it).

3.3.4 clip

An instrument is one of a pre-defined set of sounds (e.g. drum notes) that can occupy
a single beat. A clip is a mapping of patterns to instruments. Clips are processed in
sequence as the program runs to produce output which may be plain-text or a MIDI
file. Clips are immutable.

25

3.3.5 string

A string constant begins with an ASCII double-quote character, continues with an
arbitrary sequence of ASCII characters other than \, ”, and the ASCII newline
character, and concludes with another ” character. If a \ or ” character is desired,
it can be escaped using the \ character.

3.4 Statements

In the most common case, a statement consists of a single expression followed by a
semicolon (“;”). Importantly, unlike many languages with similar syntax, Druli does
not consider a block to be equivalent to a statement. Instead, statements in Drul,
take one of the six forms below.

3.4.1 Expression Statements

The basic form of statement, as in most C-like languages, is the expression statement:
expression-statement: exrpression;

The precedence table for operators in Drul is given here:

Operators Notes Associativity
Method call left to right
- Unary minus and logical negation | right to left
x| % Standard C meanings left to right
+ — Addition/subtraction left to right
< <= > >= | Standard C meanings left to right
=== Standard C meanings left to right
&& Standard C meaning left to right
I Standard C meaning left to right

The sections that follow use the model of the C Language Reference Manual to in-
dicate the various types of expression. As in that example. the highest-precedence
forms of expression are listed first. Since much of the material below is extremely
straightforward, plain-English descriptions are supplemented by grammatical de-
scriptions only when necessary.

26

Primary Expressions A primary expression consists of a constant (integer or
string), an identifier, or a parenthesized expression.

Function, Method, and Mapper calls Arguments to functions, methods and
mappers are evaluated in applicative order, left to right within a given list. (Ar-
guments are also passed by value, not by reference.) Depending on the function or
method in question, functions and methods may return values of any type, including
boolean values (which cannot be assigned to variables); mappers, by their nature,
always return patterns.

arglist: (expression) | (expression , arglist)
method-call : identifier . identifier arglist
function-call : identifier arglist

mapper-call: map arglist mapper

mapper : identifier | block

block : { statement-list }

statement-list: statement | statement statement-list

Unary operations The unary operations in DrulL are arithmetic and logical nega-
tion (unary — and !). Since Drul is strictly typed, arithmetic negation can only be
applied to integer values, and logical negation to boolean values.

Standard arithmetic operations Expressions may use the standard binary arith-
metic operators (4, —, * and /), with their standard precedence. It is required that
both of the operands in such an expression be integer values.

Comparison operations As in most C-family languages (and as shown in the
precedence table above), relational operators have precedence over equality tests.
These operators return boolean values, which can be used in if statements but
cannot be assigned to variables.

Relational tests may be used on integer values only; equality tests can be used on
variables of any type, but in the case of patterns and clips, they will only report

27

whether the two variables being tested are aliases of the same object, not any deeper
notion of equivalence.

Logical combination operations Here again we follow the conventions of C, and
give && precedence over ||. These operators require their operands to be boolean
values, and return boolean values.

3.4.2 Assignment Statements

Assignment in DruLi is not a simple operator to be placed in the middle of an
expression. Rather, it is a separate type of statement, which may appear anywhere
another statement may appear.

assignment-statement: identifier = expression-statement

Assignment is polymorphic: the same syntax is used to assign variables to integers,
patterns and clips. Furthermore, due to Drul’s dynamic typing, a variable may be
reassigned to a different type.

3.4.3 Selection Statements

Selection statements in Druli take the following form: the string if, followed by
an expression that returns a boolean result, enclosed in parentheses, followed by
an open-brace (“{”), one or more statements, and a close-brace (“}”). This may
optionally be followed by one or more elseifs, which are also followed by parentheses
and a block of statements, and one (optional) else, which omits the test expression
but is also followed by a block of statements.

selection-statement : if (- boolean-expression)block if-tail
if-tail : €| if-middle | if-middle else { statement-list }

if-middle : € | elseif (boolean-expression) { statement-list } if-middle

28

3.4.4 Mapper Definition Statements

A mapper definition consists of the word Mapper, followed by an identifier, followed
by a parenthesized list of comma-separated identifiers, followed by a block.

mapper-definition : mapper identifier namelist block

namelist: (identifier) | (identifier , namelist)

3.4.5 Return statements

A return statement can only appear inside the statement block of a named or anony-
mous mapper:

return : return expression

If this statement is reached, the value of expression will be the output of this iteration
of the mapper block. Accordingly, this expression must evaluate to either a pattern
or a beat value.

3.4.6 Instrument definition

This is a special statement that closely resembles a function call:
instrument-definition: instruments (arglist)

The arguments to this pseudo-function must all evaluate to strings. See section [3.7.]
for a detailed discussion.

3.5 Blocks, namespace and scoping

3.5.1 Blocks

DrulL has a limited block structure: only in the context of an if /elseif /else sequence
or a Mapper Definition statement is a new block needed or allowed. In these cases,
curly braces (“{}”) are used to delimit the statement-sequence that falls within the
block, and they must contain one or more statements.

29

Mapper definitions define a new closed scope (one from within which externally
defined variables are not visible); if blocks do not define a new scope, so all variables
used within them are visible to the enclosing block, and vise-versa.

3.5.2 Namespace

DruL has one namespace shared by variables, built-in functions and mapper names.
Additionally, each type has an associated namespace for methods. Technically speak-
ing, mappers are values like any other, and their names can be re-used, but this is
strongly discouraged.

3.5.3 Scoping

Variables in DrulL are dynamically scoped. Drul. has one top level scope, and one
scope for each mapper that the program enters (named or anonymous). Mappers
may call each other (or themselves) recursively, and may be defined within other
mappers, so a hierarchy of substantial depth can (in principle) be achieved. Within
each scope, a program has read-only access to all variables and mapper names defined
in the scopes above it in this hierarchy: attempts to assign to a variable from an
outer scope will produce a new variable in the inner scope, which masks the original
variable.

3.6 Patterns and pattern operations

3.6.1 Patterns

A pattern is a sequence of beats. Each beat can be a note or a rest. To define a
pattern, DrulL uses ‘0’ for rests and ‘1’ for notes. A pattern can be created in the
following way:

pl = pattern("101010");

which represents the sequence note, rest, note, rest, note, rest. Its length is 6.

There are built-in functions and methods on patterns included in Drul.

30

Patterns can be concatenated to form new patterns. The concat function can take
any positive number of pattern arguments. Patterns are concatenated from left to
right.

pcat = concat(pl pattern("111000") pattern("1"));

pcat will be equal to 1010101110001.
The repeat method is a shortcut to concatenate the same pattern many times:
pcat2 = concat(pl, pl, pl);

pcat3 = pattern("101010") .repeat(3);
pcatd = pl.repeat(3);

Note that pcat2, pcat3, and pcat are all equivalent.

The length method gives the length of a pattern.
len = pl.length();

The value of len is 6.

The slice method gives you a subpattern from a pattern. It takes two arguments:
first is index (starting at 1) and second is length of the desired subpattern. Request-
ing a subpattern out of range will raise an error. Example:

psub = pattern("101010").slice(2, 3);

psub is “010”.

The reverse method returns the reverse of a pattern. It doesn’t take any arguments.
preverse = pattern("111000") .reverse();

preverse is “000111”.

Finally, you can have an empty pattern of length 0:

p8 = pattern("");

31

3.6.2 Map

The map construct is used to create new patterns from existing ones. map performs
an operation iteratively on a set of patterns. The beats in the patterns are iterated
over from left to right. The output of a map is a new pattern. For example:

p9 = pattern("101");
pl0 = map(p9)
{
if ($1.note()) { return pattern("11"); }
else { return pattern("0"); }
};

pl0is “11011”.

map takes a sequence of pattern arguments and followed by a mapper function. In
the above example the mapper function is defined anonymously within curly braces.

Within a mapper function, the current beat of each pattern argument is aliased to
the special mapper variables $1, $2, $3... and so on. This notation is mandatory in
anonymous mapper functions such as the example above. If you use $N while there
is fewer than N arguments, DrulL will raise an error.

DruL uses the beat methods note, rest and null to check whether the current beat
is a note, a rest, or null. $7.note returns true if there is a note on the current beat
in the first pattern argument, and false otherwise.

One can use the beat method asPattern to convert as beat to a pattern. This way,
one can then make use of functions and methods of patterns. For example:

pll = map(pattern("1111"))
{

return concat($1l.asPattern(), pattern("0"));

};
pll is “10101010”.

DruLl uses the beat methods prev and next to access the previous and following
beats of the pattern to which a given beat belongs. These methods can be passed
a single argument which specifies how far forward or back in the pattern to go. For
example:

32

pl2 = map(pattern("1101"))

{
if ($1.note() && $1.next(1).note()) { return pattern("1"); }
else { return pattern("0"); }
+;
pl2is “1000”.

next may return a NULL beat as it does when called in the last iteration of the
above example. When used with a NULL beat, both the note and rest methods
will return false.

If you call map on multiple patterns that are not of the same length, the shorter
patterns will be padded with NULL beats.

By default, an empty pattern is returned for each iteration.

Each new pattern constructed by map begins as an empty string. As the pattern
arugments are iterated over, the return values of the mapper function (which are
also patterns) are concatenated onto the end of the new pattern.

Variables defined in a mapper function are garbage collected at the end of the map.

3.6.3 Mapper

Mapper functions may also be defined with a name, to be used elsewhere in the
program.

For example, the above example could have been written in the following way:

mapper myMapper (p)
{
if (p.note() && p.next(1).note()) { return pattern("1"); }
else { return pattern("0"); }
I
p12 = map(pattern("1101")) myMapper;

Recall from section that a Mapper definition includes a name for the mapper
and a namelist of formal arguments. When a named mapper is used in a map call,

33

each pattern that is passed to the map is associated with the corresponding name
in the namelist in the mapper’s definition. Then, within the body of the mapper,
the current beat of each pattern is aliased to that name, as well as to “$n”.

A mapper function must be defined before it is used.

3.7 Clips

3.7.1 Instruments

Before we define any clips, we must tell the compiler what instruments they will
use. This can only be done once per program, and uses the instruments function.
(Technically speaking, this is not a function but a special statement type that uses
a function-like syntax. The distinction is largely academic, however.) This func-
tion can take a variable number of arguments. Each argument is the name of an
instrument to be defined. In the example below, four instruments are defined:

4 4

instruments(‘‘hihat’’, ¢ ‘bassdrum’’, ‘ ‘crash’’, ‘ ‘snare’’);

Instruments must be defined before any clips have been defined. This function can
only be called once. Also, it cannot be called from inside a mapper.

3.7.2 Clips

A clip represents a collection of patterns to be played in parallel, where each pattern
is played on a single instrument.

Once the instruments are defined, we can create a clip from our existing patterns,
using an associative-array notation:

clipl = clip

(
"bassdrum" <- downbeats,
"hihat" <- alternate_beats

)

34

The same result can be achieved by simply listing the patterns for each instrument
in the order they are defined using the instruments function:

clip2 = clip

(

alternate_beats,

downbeats

// remaining instruments have an empty beat-pattern
)

The patterns passed into clips are passed by value, not by reference.

Clips also have a small selection of output methods, discussed in the section below.

3.8 Outputs

DruL has two kinds of outputs: any data structure can be printed to standard output
for debugging purposes, and clips may be output into files as text or using some more
complex representation, such as MIDI or Lilypond (for PDF conversion).

3.8.1 Standard output

The print statement displays any type to the standard output, including strings.
For example:

print ("DrulL");
print (pattern("01"));

The representation of a string is the string itself. The representation of a pattern is
the string that would have been used to initialize the pattern. For example, if we
have a pattern

p = pattern("01").repeat(2);
print(p);

35

The output is 701017;

The print function always include a platform-appropriate line ending.

3.8.2 Text file

Using the same format as is used by print, DrulL can print a text representation of
a clip to a file using the outputText method of the clip:

myClip.outputText ("myfile.txt");

The file being written to is truncated if it exists, and created if it does not exist.

3.8.3 MIDI file

The method outputMidi works similarly, but in addition to the filename, it requires
a tempo for the MIDI file to be produced (in beats per minute—this must be a positive
integer).

myClip.outputMidi(‘ ‘myfile.mid’’,120);

The transformation from clip to MIDI may rely on external libraries like MIDGEﬂ
There is no guarantee on which of the three existing MIDI formats is used. DrulL
tries to match its instrument definition with MIDI instruments definitions using the
names. If no match can be found, Drul will use a default MIDI instrument (first
one is cow bell).

3.8.4 Lilypond file

The clip method outputLilypond operates similarly to the above, but takes a
title (to be printed at the top of the page of typeset music) as an optional second
argument:

"http://wuw.undef .org.uk/code/midge/

36

http://www.undef.org.uk/code/midge/

myClip.outputLilypond(‘ ‘myfile.ly’’, ¢‘My New Drum Loop’’);

For best results, the resulting Lilypond file will need to be typeset using an external
program (Lilypond, one presumes).

37

Chapter 4

Project Plan

4.1 Processes

Almost all planning and decision making was done as group. The team leader re-
solved only very few disagreements of less importance, on which spending the time to
come to a consensus was not warranted. As explained in more detail in section 4, we
made liberal use of paired programming and most coding was done in group sessions.
Documentation, including the Reference Manual and this report, was mostly done
individually; each team member soley responsible for specific sections. Our testing
process made use of an automated test-suite. After each change to the code base,
the regression tests were all run, making sure that the number of tests passed always
increased. This was somewhat done in the spirit of test driven development, as we
made many test cases for language features before they were implemented, and used
the test cases as a “ToDo” list. Our development process was also in the spirit of
Agile or Extreme Programming. We started with a minimal, yet functioning lan-
guage, and incrementally added features to it, all the while maintaining a working
system.

Our plan was to complete tasks in the following order, working on tasks in paralell
where possible:

1. Design DrulL

e Specify syntax

e Specify semantics

38

2. Write the LRM
3. Implement Basic Building Blocks
e AST

e Scanner

e Parser

e Test Suite Driver

o Initial test cases

e Basic Interpreter (with evaluate, execute, and built-in print for string
literals)

4. Implement Generic Language Features

e Integer arithmetic
e Boolean operations
e Assignment statments and symbol table

e Selection statements
5. Implement Core Drul. Language Features

e Pattern creation and printing

e Pattern built-in functions and methods
e Map, mappers, and beats

e Named mappers

e Beat built-in methods

e Instrument definition

e Clip creation and printing
6. Implement Advanced DrulL Language Features

e Clip text output
e Clip MIDI output
e Clip Lilypond output

e Clip built-ins concat and repeat (not implemented)
7. Implement Fit and Finish

o Interpreter command-line arguments

39

Detailed error messages

Error message line numbers

Trapped parse errors

Static semantic checks (not implemented)

We initially used our own SVN server for source and documentation management.
However, we soon moved to Google Code to make used of its issues list for keeping
track of bugs and the ToDo’s correpsonding to the above features.

4.2 Style Guide

Due to the fact that all of our team members started as novice OCaml programmers
and OCaml’s syntax is unlike any languages our team was already familiar with, we
lacked much intuition regarding good OCaml coding style. However, over the course
of our coding, the following coding practice emerged:

e Use hard tabs for indentation

e Specify pattern matched arguments and use “match with” syntax instead of
the “function” shorthand for pattern matching

e Encapsulate each “match with” clause in parentheses
e Put each match case on a new line

43 9

e Indent each match case and put a tab after the “—’ separator

e Begin results of a match case on the same line as the “;”
e Indent subsequent lines of the results of a match case

e Horizontally align similar lines of code using extra whitespace

We never reached a conensus on whether to make our OCaml identifiers CamelCase
or underscore_separated.

40

4.3 Timeline

’ Task ‘ Date(s) ‘
Specify syntax Oct 8
Specify semantics Oct 15
Write the LRM Oct 22
AST Nov 2
Scanner Nov 2
Parser Nov 3
Test Suite Driver Nov 8
Initial test cases Nov 8
Basic Interpreter Nov 12
Integer arithmetic Nov 19
Boolean operations Nov 19
Assignment statments and symbol table | Nov 19
Selection statements Nov 19
Pattern creation and printing Nov 19
Pattern built-in functions and methods | Nov 26
Map, mappers, and beats Nov 26
Named mappers Dec 03
Beat built-in methods Dec 03
Drul. GCD Dec 10
Instrument definition Dec 10
Clip creation and printing Dec 10
Clip text output Dec 15
Clip MIDI output Dec 16-17
Interpreter command-line argument Dec 16
Detailed error messages Dec 16
Error message line numbers Dec 16
Clip Lilypond output Dec 17
Trapped parse errors Dec 17
DrulL song Dec 17
Presentation slides Dec 17-18
Report Dec 18-19

41

4.4 Roles and Responsibilities

Each team member volunteered for the completion of tasks. Tasks were not divied
up amongst team members in advance. Rather, after team members finished their
tasks they simply discussed what they should (or would like to) work on next with
the rest of the team. Many tasks (especially the more difficult ones) were tackled in
pairs. We found having an extra pair of eyes examining code and documentation as
it was being written (i.e. paired programming) drastically cut down on the number
of initial bugs and the amount of refactoring done later.

Below is a general description of the major tasks completed by each team member.
Paired efforts are noted in parentheses. Note, that most work was with the group
all in one room at one common table. This allowed and individual or pair to ask for
help or advice from the rest of the team. This is done consistently and resulted with
all members of the team being at least somewhat familiar with the impementation
of almost all parts of the system.

e Rob:

As team leader, resolved minor conflicts

Proposed drumming language idea

Setup intial SVN repository

Wrote introduction for all documents

Assisted with language design

Wrote the Pattern, Map, and Mapper sections of the LRM
Coded the AST (with Ben)

Assisted with coding the parser

Coded the initial “helloworld” interpreter (with Waseem)

© ® N o WD

—_
e

Coded pattern construct (with Ben)

—_
—

. Coded Drull’s built-in functions and methods and added corresponding
test cases (with Waseem)

12. Coded instrument and clip constructs (with Theirry)
13. Performed built-ins code refactoring (with Ben)
14. Performed code cleanup

15. Refactored text output

42

16.
17.
18.
19.

Coded MIDI output

Wrote an example drum song using Drul
Edited all the presentation slides

Wrote the Project Plan section of the report

e Ben:

e SO —t
B W o = O

15.
16.
17.
18.
19.
20.

© 0 NS T WD

Decided on map/mapper idea

Assisted with writing proposal

Assisted with language design

Wrote the Types, Statments, Blocks and Scoping sections of the LRM
Coded the AST (with Rob)

Assisted with coding the parser

Coded the parse-tree dumper

Coded selecton and assignment statements

Coded pattern construct (with Rob)

Coded map and mapper (with Theirry)

. Coded GCD implementation using Drul
. Refactored built-ins (with Rob)
. Refactored interpreter into smaller files

. Refactored scanner, parser, and interpreter to inculde line numbers in

error messages with (with Thierry)

Added tests for error messages

Coded Lilypond output

Refactored output code

Fixed corner-case symbol-table bugs

Wrote parts 1 and 2 of the presentation (except for the mapper animation)

Updated the LRM for the report (with Waseem). Wrote the tutorial
section of the report (with Waseem)

e Thierry:

1.
2.
3.

Assisted with writing proposal
Assisted with language design
Wrote the Instrument, Clip, and Output sections of the LRM

43

© o N s o s

10.
11.

12.
13.
14.
15.
16.

Setup replacement Google Code repository

Coded the test-suite driver

Manualy created initial suite of test input and corresponding output files
Assisted with coding the parser

Coded map and mapper (with Ben)

Coded named mapper

Coded instruments and clip constructs (with Rob)

Refactored scanner, parser, and interpreter to include line numbers in
error messages (with Ben)

Added tests for error messages

Fixed corner-case symbol-table bugs

Wrote part 4 of the presentation

Made the mapper animation for the presentation

Wrote the testing section of the report

e Waseem:

o

NS otk W e

Assisted with writing proposal

Assisted with language design

Wrote the Example Code section of the LRM

Coded the scanner

Assisted with coding the parser

Coded the initial “helloworld” interpreter (with Rob)

Coded Drull’s built-in functions and methods and added corresponding
test cases (with Rob)

Coded text file output

. Wrote part 3 of the presentation
10.
11.
12.

Updated the LRM for the report (with Ben)
Wrote the tutorial section of the report (with Ben)
Added the Divide by zero catch inside DrulL.

44

4.5 Tools and Languages

All of our source code was written using OCaml with the exception of the special
syntaxes used by ocamllex and ocamlyacc, and the test-suite driver which was written
in Python.

4.5.1 Tools

e Lexer: We used ocamllex to compile our ocamllex code into an Ocaml lexer/-
tokenizer, which given DruL. source code, produces a token stream.

e Parser: We used ocamlyacc to compile our ocamlyacc code into an Ocaml
parser, which given a token stream, produces a DrulL abstract-syntax-tree.

e MIDI Output: MIDI (Musical Instrument Digital Interface) is a binary mu-
sic protocal and file format that contains “event messags” for an audio device
(e.g. a sound card or synthesizer). MIDI files are playable on many common
multimedia players (e.g. Quicktime). DruLi does not generate MIDI files di-
rectly. Rather it uses midge, which is yet another music composition language
that compiles to MIDI. The language is not entirely different from DrulL, how-
ever it allows for other instruments than drums and thus also has different
note pitches and durations. However, midge doesn’t not have contructs for
algorithmic compositions comparable to the power of Drull’s. In short, when
DruL’s outputMIDI method is called on a clip, the DruLs interpreter produces
midge code which is then piped to midge to produce the desired MIDI output
file.

e Lilypond: Lilypond is a typesetting lanuage. Drul. can produce Lilypond
files. These output files can then be compiled into typeset PDF’s (of sheetmu-
sic) using Lilypond. DruL does not automate this however.

4.5.2 Code Editors

No one on our used the same code editor. None of us used an IDE. Team members
used the following editors for all of their code (OCaml, latex, etc.):

e Rob: jEdit

45

¢ Ben: BBEdit
e Thierry: emacs

e Waseem: gedit

4.5.3 Documentation

All documentation was produced using LaTeX with the exception of the presentation,
which was made using Microsoft PowerPoint.

4.5.4 Version Control

We used Google Code and Subversion (SVN) for our source version control and issue
tracking.

4.6 Project Log

See the Appendix [B]

46

Chapter 5

Architectural Design

5.1 Architecture Diagram

text stdout

DruL source tokens
» sScanner parser W
AST .
» Interpreter
clip
A
OUtpUt midge source mldge
compiler

»

MIDI file

Lilypond file

text file

Figure 5.1: Arrows heads on edges show direction of data-flow.

47

v

5.2 Component Interfaces

The DruL interpreter is (as shown above) architecturally very simple.

1. The parser accepts a list of tokens from the scanner and builds a list of Drul
statements (structured according to Drul’s AST interface) to pass to the main
unit of the interpreter. These components rely heavily on OCaml’s Lexing and
Parsing libraries.

2. The interpreter is monolithic: with the exception of the output module, all of
its major sub-components are built into one set of mutually recursive functions
(in the file drul main.ml-see appendix on page . This monolith takes
the statement list produced by the parser, evaluates it step by step (performing
semantic checks on each statement only when program flow arrives at it), and
passes the resulting structures to the output library when appropriate.

3. The output library is implemented as a set of simple utility functions: each
takes a single DrulL data structure and a small amount of extra data (the exact
breakdown is unfortunately not well standardized, and varies from output type
to output type), and returns a string formatted for the appropriate output
style.

The monolithic design of the interpreter is necessitated by the single-pass approach
taken to interpretation and by the dynamic typing of DruL variables: a re-implementation
that included compilation and checking passes could also maintain cleaner separation

of concerns.

5.3 Component Implemented By

’ File ‘ Author(s) ‘
drul_scanner.mll Waseem
drul_parser.mly all
drul_ast.mli Ben and Rob
drul_interpreter.ml | all
drul_main.ml all
drul _types.ml all
drul_helpers.ml all
drul_output.ml all

48

Chapter 6

Test Suite

In the section we present the test suite we built and used for the DrulL project. We
start in Section by showing the basic idea and limits for our testing program. In
Section we give details about the implementation. Finally, we give samples tests
in Section and explain what they test.

6.1 Overview

We built two different testing functions in order to debug Drul. and help is main-
tainability: LaunchTestParser and LaunchTest. There usage is very similar.

LaunchTestParser’s goal is to make sure every meaningful DrulL code passes
throught the scanner and parser without errors. We do not make sure that mal-
formed DruL code is intercepted. The program passes a set of Drul. code samples
to the interpreter, and report whether a message error was produced. This sort of
testing was very useful at the beginning of the project, but was later replaced by the
more general LaunchTest.

LaunchTest takes a set of DrulL code samples, pass them to the interpreter, and
compares the output with some predefined output. Therefore, we can test both cases
that fail (by catching the error message) or that correctly pass (by printing to the
standard output).

49

6.2 Implementation

We implemented the two above testing programs in Python. This scripting language
allows for rapid development and has an excellent packages for handling files. A
test file has to have a certain extension (.drultest) and so does the desired output
(.drultestout). The core of the testing programs, aside from finding the test files and
passing them to the interpreter, is a simple “diff” function. This “diff” tells us if
every line of two files are exactly the same or not. Everything is recorded in a LOG,
whose name encodes the date and time of the test.

6.3 Sample tests

We present some typical tests for both the parser and the interpreter. In the second
case, we also give the desired output.

6.3.1 Tests for Drull Parser

/TestSuite/ParserTests/logical ORAND.drultest

a = 1;

b = 2;

(false || true && false);

(true && false || true);

(a || b&& 3 || false && true);

(true || false) && ((false && true || true) || true);

/TestSuite/ParserTests/print.drultest

print (”717);

print (7allo”);

print (”yol!37484732229371—-232—/. _(x& %$#Q”);
print (pattern(””));

print (pattern (70101110017));
a = pattern(”111107);

print (a);

b = 3;

print(b);

¢ = clip(a);

print (c);

50

6.3.2 Tests for DruL

/TestSuite/Tests/patternl2.drultest
pll = map(pattern(”11117))

{
;)

else { return pattern(”0”); }

}s

if ($1.note() && $1.next(1).note() && $1.next (2).note()

print (pll); // should return 1100

/TestSuite/Tests/patternl2.drultestout
1100

/TestSuite/Tests/clip2.drultest

instruments ();
print (
clip (

)

pattern (710107)

TestSuite/Tests/clip2.drultestout

[
hh_oc: 1010

sd_ac:
bd:
cowbell :

/TestSuite/Tests/assignb.drultest

p = pattern(”7107);

mapper pattern (p) {}
print (”bad”);

/TestSuite/Tests/assignb.drultestout

Illegal assignment attempted on line 2: can’t use keyword

o1

) { return pattern(”1”)

"pattern’

as

a mapper name

6.4 Conclusion

The tests were designed by every team member, usually following the addition of a
feature to Druls interpreter. We tried to keep the tests small and specific in order
to better spot bugs. However, we also believe that “the more the better”, thus we
cannot say that the test were wisely chosen. Fortunately, there a smart-ass inside of
everyone, and we do believe we tested most of the possible flaws.

Our test suite (programs and test files) adds up to 115 cases and about 1100 lines,
almost as much as Drul itself. However, we felt it was time well spent for two major
reasons:

e We did find bugs early in the coding process thanks to the test suite. One par-
ticular example is the precedance for member functions that we had forgotten.
e A complete test suite seems the only way to allow multiple programmers to

modify a file without breaking code written by someone else

Thus we believe that a complete test suite is an essential part of a compiler’s project
and should be started before the actual language compiler.

52

Chapter 7

Lessons Learned

7.1 Introduction

In this chapter each team member tells about some lessons he learned from the
project, and what he would do differently if we had start all over again.

7.2 Rob (team leader)

Coding standards are important, especially when using a new language that’s unlike
anything the team members have seen before. Unfortunately, this is when stanards
are least likely to be used because no one knows of any relevant standards. Our
team attemped to fit the square peg that is OCaml into the round holes that are the
C and Java coding standards. This didn’t work very well. In hindsight, we should
have spent some time reading about suggested coding conventions for OCaml and
researched how to organize a non-trivial OCaml code-base. We spent a long time
agonizing over the monolithic spaghetti code that was our intereter before we finally
got our heads straight and refactored it. However, we never reached a conensus on
the proper way to format (e.g. indent) OCaml. I still find our code very hard to
read. Also, domain specific conventions (assuming they exist) for writing a translator
would have been useful. For exmaple, it got very confusing trying to keep track which
of “int”, “Int”, and “Clnt” were an OCaml type, a DrulL type, or a DrulL. AST type.
I had to look back to our type definitions almost everytime. In retrospect, prefixes
such as “ast_int” and “drul_int” might have been less confusing.

53

7.3 Ben

I was surprised and impressed with how effective pair programming turned out to
be. Leaving aside the technical issues, having second check on ”the obvious way
to do things” prevented me from getting into several potentially painful situations,
when there was a much simpler solution available (this is especially relevant when
working with a new language, of course).

Despite the amount of work done with pair programming, we still ran into some
forms of communication trouble. In retrospect, a little more discussion up front
about standards for code format and design (and for version control use) would have
been helpful, at least in theory (it’s hard to have a coding standard for a language
that you don’t actually know). Our error messages ended up somewhat inconsistent,
and our log messages were sometimes uninformative (especially at first): better up-
front coordination could have prevented those problems.

It is tempting to say that a more careful up-front design would have been well-
advised, since it would definitely have been helpful-but since we were creating
something we didn’t really know how to create, using a language none of us was
tremendously familiar with, it is unclear that spending more time on up-front design
would actually have been productive in this case. Smaller-scale design issues, on the
other hand, would have benefitted from a bit more forethought: we ended up with
several somewhat inconsistent APIs for related helper functions, which could easily
have been avoided by a little up-front communication or earlier and more aggressive
refactoring. We did refactor often to retrofit better design onto the code we had
written (made simpler by the easy-to-run regression test suite), but more aggressive
refactoring of minor concerns would probably have sped things up toward the end,
and would certainly have left us with a more maintainable final product. The type-
checking and type-inference features of OCaml make this form of refactoring much
safer than it is in many languages, and we should have taken more advantage.

More importantly,from the moment that we had working code, we should have made
more active use of Subversion’s branching capabilities, to avoid worries about break-
ing the main source tree while working on major features. We ended up re-inventing
branching at least once, and leaving the entire tree in a non-working state for a
couple of evenings, which could readily have been avoided.

54

7.4 Thierry

One part of the code I especially worked on is the test suite, but I still was surprised
to see how important it turned out to be. In a new project, I would either build a
more powerful testing program, or spend more time to find an appropriate package
online. For instance, our current testing program does not have the ability to test
an output file instead of the standard output. It would have become a problem if
our language was designed for file operations.

Another lesson learned is the importance of helper functions designed early. At one
point, every one of us had design is own method to lookup into the environment,
and obviously we multiplied the number of bugs. For some functions, it is so obvious
that they were going to be needed that we should have spent the time, as a team,
to define them. Their documentation is also an important aspect when you work in
a team of more than two programmers.

Following that idea, we probably did not use enough the “issue tracking” on Google
code, the platform we used to host our project. Emails does not work as well...

7.5 Waseem

Most important lesson in while coding in OCaml is to modularize the code. Those
match with clauses keep getting messier and also there is a lot of code repeatition
while implementing similar functions or methods on the same language type object,
e.g., pattern, clip, etc. Therefore, it is always good to have the helper functions, that
can be used later on, in the code. This was my first group project of this level and
believe it or not, my first time using version control:); Really makes your life easier.
Of course, having those lexer and parser tools do most of the work for you is vry
helpful. OCaml in itself is a rather powerful language. Syntax tends to get 'messy’,
however, its power is well to be noted. The code tends to be compact, especially
when you factor out code that is repeated.

Working in pairs is definitely more helpful than working on one thing alone. In the
former case you less likely tend to get stuck at a point, as compared to the later
case.

95

Appendices

56

Appendix A

Number of Lines of Code

Main program and test suite.

40 drul_ast.mli
219 drul_helpers.ml
42 drul_interpreter.ml
471 drul_main.ml
87 drul_output.ml
119 drul_parser.mly
66 drul_printer.ml
106 drul_scanner.mll
59 drul_types.ml
61 Makefile
8 test.ml
5 treedump.ml
1283 total
285 26 tests (parser)
422 79 test (drul)
399 2 ’test’ functions
1106 total

o7

Appendix B

Project Log (SVN Commit Log)

r412 | waseemilahi | 2008—12—19 10:52:34 —0500 (Fri, 19 Dec 2008) | 1 line

Minor fix in the timeline

r411 | waseemilahi | 2008—12-19 10:51:22 —0500 (Fri, 19 Dec 2008) | 1 line

Time line updated a bit; don’t know whether to writer the date they were done
or the time period they were worked on

r410 | benwarfield | 2008—12—19 05:15:45 —0500 (Fri, 19 Dec 2008) | 1 line

Made log a little less too wide.

r409 | waseemilahi | 2008—12-19 05:11:04 —0500 (Fri, 19 Dec 2008) | 1 line

Removed extra rand from table of keywords

r408 | waseemilahi | 2008—12—19 05:01:25 —0500 (Fri, 19 Dec 2008) | 1 line

)

r407 | robstewart2 | 2008—12—19 04:56:25 —0500 (Fri, 19 Dec 2008) | 1 line

bunch of updates to report

r406 | benwarfield | 2008—12—19 04:48:44 —0500 (Fri, 19 Dec 2008) | 1 line

Added code listings to appendices. Some are kind of wide.

o8

r405 | robstewart2 | 2008—12—19 04:39:57 —0500 (Fri, 19 Dec 2008) line
put tutoiral section back in

r404 | benwarfield | 2008—12—-19 04:38:22 —0500 (Fri, 19 Dec 2008) line
Tweaked colored—code sections.

r403 | benwarfield | 2008—12—19 04:25:29 —0500 (Fri, 19 Dec 2008) line
Stripped useless comments.

r402 | benwarfield | 2008—12—19 04:25:09 —0500 (Fri, 19 Dec 2008) line
Made the end of this file a little less... wide.

r401 | benwarfield | 2008—12—-19 04:24:29 —0500 (Fri, 19 Dec 2008) line
Test for divide by zero.

r400 | benwarfield | 2008—12—19 04:21:05 —0500 (Fri, 19 Dec 2008) line
Added isnull method to beat.

r399 | waseemilahi | 2008—12—19 04:20:31 —0500 (Fri, 19 Dec 2008) line
division by zero caught inside drul

r398 | waseemilahi | 2008—12—-19 04:01:41 —0500 (Fri, 19 Dec 2008) line
rand and reverse added in LRM

r397 | waseemilahi | 2008—12—19 03:59:10 —0500 (Fri, 19 Dec 2008) line
Lessons added

r396 | benwarfield | 2008—12—19 03:24:25 —0500 (Fri, 19 Dec 2008) line
Promoted a bunch of deserving subsections.

r395 | benwarfield | 2008—12-19 03:13:41 —0500 (Fri, 19 Dec 2008) line
Dumbed quotation marks in code sections back down.

r394 | benwarfield | 2008—12—19 03:09:55 —0500 (Fri, 19 Dec 2008) line
That should be \ref not \label...

r393 | benwarfield | 2008—12—-19 03:00:53 —0500 (Fri, 19 Dec 2008) lines

59

Changed all the verbatims to lstlistings. Also fixed the everything—is—red

problem. Two things may not be actually connected.

r392 | benwarfield | 2008—12—19 02:36:44 —0500 (Fri, 19 Dec 2008) | 2 lines
Added Tutorial section, and tweaked one footnote in the RefManual out of
general puckishness.

r391 | robstewart2 | 2008—12-19 02:35:51 —0500 (Fri, 19 Dec 2008) | 1 line
changed intro to proposal

r390 | robstewart2 | 2008—12—19 01:50:54 —0500 (Fri, 19 Dec 2008) | 1 line
added SvnLog.txt

r389 | thierrybm@hotmail.com | 2008—12—19 01:40:24 —0500 (Fri, 19 Dec 2008)
two minor typos fixed

r388 | robstewart2 | 2008—12-19 01:38:29 —0500 (Fri, 19 Dec 2008) | 1 line
added an overview of drul to intro

r387 | robstewart2 | 2008—12—19 01:22:16 —0500 (Fri, 19 Dec 2008) | 1 line
cleaned up ProjectPlan.tex

r386 | robstewart2 | 2008—12—19 00:38:45 —0500 (Fri, 19 Dec 2008) | 1 line
fixed architecture table. added project plan to report.tex

r385 | benwarfield | 2008—12—19 00:37:24 —0500 (Fri, 19 Dec 2008) | 1 line
Fixed up front page a bunch.

r384 | robstewart2 | 2008—12—-19 00:24:35 —0500 (Fri, 19 Dec 2008) | 1 line
attempting to fixed latex errors because of _ in Architecture.tex

r383 | robstewart2 | 2008—12—19 00:20:50 —0500 (Fri, 19 Dec 2008) | 1 line
added arch diagram pdf. cleaned up project plan in report

r382 | robstewart2 | 2008—12—19 00:03:37 —0500 (Fri, 19 Dec 2008) | 1 line

added an architecture diagram

60

1 line

r381 | robstewart2 | 2008—12-18 23:07:23 —0500 (Thu, 18 Dec 2008) | 1 line
mostly finished project plan

r380 | benwarfield | 2008—12—18 22:48:44 —0500 (Thu, 18 Dec 2008) | 1 line
Whoops.

r379 | benwarfield | 2008—12—18 21:35:21 —0500 (Thu, 18 Dec 2008) | 1 line

Adjustments to formatting (still unable to get

the figure onto the cover page, though).

r378 | benwarfield | 2008—12-18 21:31:35 —0500 (Thu, 18 Dec 2008) | 1 line
Minor tweak to outputMidi paragraph.

r377 | benwarfield | 2008—12—18 21:29:24 —0500 (Thu, 18 Dec 2008) | 1 line
Fixes to code in (remaining) examples.

r376 | benwarfield | 2008—12—-18 21:17:45 —0500 (Thu, 18 Dec 2008) | 1 line
Fixed a couple of examples, and updated output section.

r375 | benwarfield | 2008—12-18 20:53:05 —0500 (Thu, 18 Dec 2008) | 1 line
Typo in the first paragraph. Whoops!

r374 | benwarfield | 2008—12—18 20:49:04 —0500 (Thu, 18 Dec 2008) | 2 lines

Refmanual errata: return,
expressions and string definitions cleaned up.

instrument definition fixes;

scoping explained ,

r373 | thierrybm@hotmail.com | 2008—12—18 20:44:08 —0500 (Thu, 18 Dec 2008)
minor

r372 | thierrybm@hotmail.com | 2008—12—18 20:42:17 —0500 (Thu, 18 Dec 2008)
architectural design section started

r371 | thierrybm@hotmail.com | 2008—12—18 20:40:03 —0500 (Thu, 18 Dec 2008)
clip and instruments in RefMan seems OK

r370 | thierrybm@hotmail.com | 2008—12—18 20:31:59 —0500 (Thu, 18 Dec 2008)
test sutie chapter updated

61

line

line

line

line

r369 | thierrybm@hotmail.com | 2008—12—18 20:26:24 —0500 (Thu, 18 Dec
minor

r368 | thierrybm@hotmail.com | 2008—12—18 20:25:41 —0500 (Thu, 18 Dec
tbm lessons learned is done

r367 | thierrybm@hotmail.com | 2008—12—18 20:13:19 —0500 (Thu, 18 Dec
report has table of content

r366 | thierrybm@hotmail.com | 2008—12—18 20:08:43 —0500 (Thu, 18 Dec
general layout of lessons learned chapter

r365 | thierrybm@hotmail.com | 2008—12—18 20:05:17 —0500 (Thu, 18 Dec

test suite section kinda done... need approval by someone else

r364 | robstewart2 | 2008—12—18 19:49:17 —0500 (Thu, 18 Dec 2008)

added empty Project Plan

r363 | robstewart2 | 2008—12—18 19:48:28 —0500 (Thu, 18 Dec 2008)

changed intro section to chapter

r362 | benwarfield | 2008—12—18 19:47:56 —0500 (Thu, 18 Dec 2008)

Use ”report” format, which includes chapters; use chapters.

r361 | robstewart2 | 2008—12—18 19:45:27 —0500 (Thu, 18 Dec 2008)

added intro to report

r360 | benwarfield | 2008—12—18 19:43:48 —0500 (Thu, 18 Dec 2008)

Fixed cover page.

r359 | thierrybm@hotmail.com | 2008—12—18 19:43:44 —0500 (Thu, 18 Dec
getting longer

r358 | thierrybm@hotmail.com | 2008—12—18 19:30:58 —0500 (Thu, 18 Dec
using colors

r357 | thierrybm@hotmail.com | 2008—12—18 19:20:36 —0500 (Thu, 18 Dec

62

line

line

line

line

line

1 line

1 line

1 line

test suite added

r356 | thierrybm@hotmail.com | 2008—12—18 19:19:21 —0500 (Thu, 18 Dec 2008)
beginning of the report

r355 | robstewart2 | 2008—12—18 16:31:48 —0500 (Thu, 18 Dec 2008) | 1 line
cleaned up presentation

r354 | robstewart2 | 2008—12-18 15:55:37 —0500 (Thu, 18 Dec 2008) | 1 line
added thierry ’s slides to parts 1-2

r353 | robstewart2 | 2008—12-18 15:49:33 —0500 (Thu, 18 Dec 2008) | 1 line
added waseems slides to parts 1-2

r352 | thierrybm@hotmail.com | 2008—12—18 15:48:32 —0500 (Thu, 18 Dec 2008)
lines of code added

r351 | thierrybm@hotmail.com | 2008—12—18 15:31:54 —0500 (Thu, 18 Dec 2008)
updated list of reserved keywords

r350 | thierrybm@hotmail.com | 2008—12—18 15:29:51 —0500 (Thu, 18 Dec 2008)
we catch bad mapper naming

r349 | thierrybm@hotmail.com | 2008—12—18 15:29:43 —0500 (Thu, 18 Dec 2008)
we catch bad mapper naming

r348 | thierrybm@hotmail.com | 2008—12—18 15:23:08 —0500 (Thu, 18 Dec 2008)
instr def in mappers solved

r347 | thierrybm@hotmail.com | 2008—12—18 15:13:24 —0500 (Thu, 18 Dec 2008)
can’t assing instruments inside mappers

r346 | thierrybm@hotmail.com | 2008—12—18 14:53:29 —0500 (Thu, 18 Dec 2008)
important test for weird assignments of mapper that should fail

r345 | benwarfield | 2008—12—18 14:25:10 —0500 (Thu, 18 Dec 2008) | 1 line

63

1 line

1 line

1 line

1 line

1 line

1 line

1 line

1 line

Changed keyword check message (and keyword check).

r344 | benwarfield | 2008—12—18 14:23:01 —0500 (Thu, 18 Dec 2008) | 1 line

Changed keyword check message (and keyword check).

r343 | benwarfield | 2008—12—-18 13:49:48 —0500 (Thu, 18 Dec 2008) | 1 line

Trapped an un—trapped internal error (mapper/variable name collision).

r342 | waseemilahi | 2008—12—18 10:15:55 —0500 (Thu, 18 Dec 2008) | 1 line

part3.ppt update

r341 | waseemilahi | 2008—12—-18 09:46:22 —0500 (Thu, 18 Dec 2008) | 1 line

yeah! another update:)

r340 | waseemilahi | 2008—12-18 09:38:20 —0500 (Thu, 18 Dec 2008) | 1 line

part3.ppt update

r339 | waseemilahi | 2008—12—18 09:04:39 —0500 (Thu, 18 Dec 2008) | 1 line

presentation update

r338 | waseemilahi | 2008—12—-18 08:49:29 —0500 (Thu, 18 Dec 2008) | 1 line

slides for part three (in progress)

r337 | benwarfield | 2008—12-18 03:19:27 —0500 (Thu, 18 Dec 2008) | 1 line

Added a very overlong draft of slides for the first 4 minutes or so.

r336 | benwarfield | 2008—12—18 02:05:38 —0500 (Thu, 18 Dec 2008) | 1 line

Added typesetting to example song, and added example of typesetting to presentation.

r335 | benwarfield | 2008—12—18 02:05:11 —0500 (Thu, 18 Dec 2008) | 1 line

Updated errata.

r334 | benwarfield | 2008—12-18 01:39:58 —0500 (Thu, 18 Dec 2008) | 1 line

Moved all non—trivial string—production into drul_output.ml

r333 | benwarfield | 2008—12—18 01:31:13 —0500 (Thu, 18 Dec 2008) | 1 line

Updated svn:ignore on Parser.

64

r332 | benwarfield | 2008—12—18 01:30:50 —0500 (Thu, 18 Dec 2008)

Made LilyPond output happen.

1 line

r331 | benwarfield | 2008—12—18 01:30:04 —0500 (Thu, 18 Dec 2008)

Removed slightly spurious (misplaced) comment.

1 line

r330 | benwarfield | 2008—12—18 01:10:45 —0500 (Thu, 18 Dec 2008)

Refactored midge output, and improved argument—checking on both output methods.

1 line

r329 | benwarfield | 2008—12—18 00:34:52 —0500 (Thu, 18 Dec 2008)

Refactored clip printing/text output.

1 line

r328 | benwarfield | 2008—12—17 23:36:15 —0500 (Wed, 17 Dec 2008)

Upgraded an error message slightly.

1 line

r327 | thierrybm@hotmail.com | 2008—12—17 23:02:34 —0500 (Wed, 17 Dec 2008) |

text improving

r326 | waseemilahi | 2008—12—-17 22:53:37 —0500 (Wed, 17 Dec 2008)

message changed from interpret to drul

1 line

r325 | thierrybm@hotmail.com | 2008—12—17 22:52:31 —0500 (Wed, 17

text improving

Dec 2008) |

r324 | thierrybm@hotmail.com | 2008—12—17 22:46:37 —0500 (Wed, 17 Dec 2008) |

text for part 4 that goes along with the slides

r323 | thierrybm@hotmail.com | 2008—12—17 22:44:45 —0500 (Wed, 17 Dec 2008) |

slides for the part 4, very simple, text from the outline put in 2 slides...

r322 | waseemilahi | 2008—12—17 22:33:33 —0500 (Wed, 17 Dec 2008)

changed interpret to drul in test suite

1 line

r321 | benwarfield | 2008—12—-17 22:32:53 —0500 (Wed, 17 Dec 2008)

Added line —mumbers to parse errors.

1 line

65

line

line

line

line

r320 | waseemilahi | 2008—12—-17 22:23:40 —0500 (Wed, 17 Dec 2008) | 1 line

Makefile updated, now makes drul instead of interpret

r319 | waseemilahi | 2008—-12—-17 22:19:51 —0500 (Wed, 17 Dec 2008) | 1 line

test for reverse method

r318 | waseemilahi | 2008—12—17 22:13:10 —0500 (Wed, 17 Dec 2008) | 1 line

pattern.reverse () added (is it suppose to be a method or a function:) i totally forgot

r317 | benwarfield | 2008—12—17 19:24:05 —0500 (Wed, 17 Dec 2008) | 1 line

Outline for presentation added, in msft word format (for my sins).

r316 | robstewart2 | 2008—12—17 19:19:28 —0500 (Wed, 17 Dec 2008) | 1 line

added song.drul to Examples/ and cleaned up gcd.drul

r315 | thierrybm@hotmail.com | 2008—12—17 19:15:58 —0500 (Wed, 17 Dec 2008) | 1 line

better presentation of $

r314 | thierrybm@hotmail.com | 2008—12—17 19:15:43 —0500 (Wed, 17 Dec 2008) | 1 line

better presentation of $

r313 | thierrybm@hotmail.com | 2008—12—17 19:07:52 —0500 (Wed, 17 Dec 2008) | 1 line

presentation in ppt

r312 | thierrybm@hotmail.com | 2008—12—17 19:05:45 —0500 (Wed, 17 Dec 2008) | 1 line

values of added

r311 | thierrybm@hotmail.com | 2008—12—17 19:00:54 —0500 (Wed, 17 Dec 2008) | 1 line

now has curr prev and next written

r310 | thierrybm@hotmail.com | 2008—12—-17 18:52:27 —0500 (Wed, 17 Dec 2008) | 1 line

litlle presentation of the mapper iterator , in openoffice presentation

r309 | thierrybm@hotmail.com | 2008—12—17 18:43:03 —0500 (Wed, 17 Dec 2008) | 1 line

folder for the presentation with Edwards

r308 | benwarfield | 2008—12—-17 18:19:12 —0500 (Wed, 17 Dec 2008) | 1 line

66

It would help if I checked these in, too...

r307 | benwarfield | 2008—12—17 18:18:43 —0500 (Wed, 17 Dec 2008) | 1 line

One final bugfix in illegal —return (and tweaked the message).

r306 | robstewart2 | 2008—12—17 18:14:55 —0500 (Wed, 17 Dec 2008) | 1 line

added a test for beat.asPattern()

r305 | benwarfield | 2008—12—17 18:12:36 —0500 (Wed, 17 Dec 2008) | 1 line

Fixed exception handling in one_mapper_step.

r304 | robstewart2 | 2008—12—17 18:04:38 —0500 (Wed, 17 Dec 2008) | 1 line

added beat.asPattern ()

r303 | thierrybm@hotmail.com | 2008—12—17 17:33:50 —0500 (Wed, 17 Dec 2008) | 1 line

checks the return of .prev (1)

r302 | thierrybm@hotmail.com | 2008—12—17 17:32:56 —0500 (Wed, 17 Dec 2008) | 1 line
checks the return of .next(1)

r301 | benwarfield | 2008—12—-17 17:26:47 —0500 (Wed, 17 Dec 2008) | 1 line

Added return—this—beat capability to mappers.

r300 | benwarfield | 2008—12—-17 16:50:12 —0500 (Wed, 17 Dec 2008) | 1 line

Forbade assignment of mappers.

r299 | thierrybm@hotmail.com | 2008—12—17 16:43:20 —0500 (Wed, 17 Dec 2008) | 1 line
test updated with new default instruments

r298 | thierrybm@hotmail.com | 2008—12—17 16:31:37 —0500 (Wed, 17 Dec 2008) | 1 line
new default instruments

r297 | thierrybm@hotmail.com | 2008—12—-17 16:29:49 —0500 (Wed, 17 Dec 2008) | 1 line
new output is clip.outputText

r296 | robstewart2 | 2008—12—17 15:53:20 —0500 (Wed, 17 Dec 2008) | 1 line

67

fixed the conflict with waseems commented out code

r295 | thierrybm@hotmail.com | 2008—-12—17 15:28:44 —0500 (Wed, 17 Dec

test on assigning to unknown instruments when creating a clip

2008)

r294 | thierrybm@hotmail.com | 2008—12—17 15:26:38 —0500 (Wed, 17 Dec

2008)

1 line

1 line

better error when creating a clip and assigning something to an unknwon instrument

r293 | thierrybm@hotmail.com | 2008—12—17 15:20:46 —0500 (Wed, 17 Dec

better comments before some functions

2008)

r292 | thierrybm@hotmail.com | 2008—12—17 15:15:56 —0500 (Wed, 17 Dec

better comments before some functions

2008)

r291 | thierrybm@hotmail.com | 2008—12—17 15:05:13 —0500 (Wed, 17 Dec

better error messages

2008)

r290 | thierrybm@hotmail.com | 2008—12—17 14:57:36 —0500 (Wed, 17 Dec

better error messages

2008)

r289 | thierrybm@hotmail.com | 2008—12—17 14:46:46 —0500 (Wed, 17 Dec

tests on bad assignment with line numbers

2008)

r288 | thierrybm@hotmail.com | 2008—12—17 14:38:12 —0500 (Wed, 17 Dec

better error messages with line numbers

2008)

r287 | thierrybm@hotmail.com | 2008—12—17 14:32:21 —0500 (Wed, 17 Dec

better line numbering, in get_key_from_env and other functions

2008)

r286 | robstewart2 | 2008—12—17 14:25:43 —0500 (Wed, 17 Dec 2008) | 1

cleaned up code formatting in all files and cleaned up file output

line

r285 | benwarfield | 2008—12—-17 02:17:42 —0500 (Wed, 17 Dec 2008) | 1

Made error messages look like they were written by a human being, and

line

updated related tests.

r284 | benwarfield | 2008—12—16 22:10:18 —0500 (Tue, 16 Dec 2008) | 1

Made interpreter take a command—line argument as a filename for input

68

line

if one

1 line

1 line

1 line

1 line

1 line

1 line

1 line

is provided.

r283 | benwarfield | 2008—12—16 18:59:44 —0500 (Tue, 16 Dec 2008) | 1 line

Added line numbers to output—related exceptions.

r282 | benwarfield | 2008—12—16 18:48:04 —0500 (Tue, 16 Dec 2008) | 1 line

Removed spurious comments.

r281 | benwarfield | 2008—12—16 18:37:22 —0500 (Tue, 16 Dec 2008) | 1 line

Got line numbers passed down to ”clip” and to mapper—related helpers.

r280 | benwarfield | 2008—12—16 18:33:23 —0500 (Tue, 16 Dec 2008) | 1 line

Fixes to fixes on exception—raising.

r279 | thierrybm@hotmail.com | 2008—12—16 18:32:40 —0500 (Tue, 16 Dec 2008)
make_clip now takes a line number

r278 | thierrybm@hotmail.com | 2008—12—16 18:19:37 —0500 (Tue, 16 Dec 2008)
errors fixed

r277 | thierrybm@hotmail.com | 2008—12—16 18:12:59 —0500 (Tue, 16 Dec 2008)
failures should not have line number or —1, others errors do

r276 | benwarfield | 2008—12—16 18:12:46 —0500 (Tue, 16 Dec 2008) | 1 line

Added line numbers to a lot of exceptions.

r275 | thierrybm@hotmail.com | 2008—12—16 18:10:36 —0500 (Tue, 16 Dec 2008)
failures should now have line number or —1

r274 | thierrybm@hotmail.com | 2008—12—16 18:02:32 —0500 (Tue, 16 Dec 2008)
some errors updated with line number

r273 | thierrybm@hotmail.com | 2008—12—16 18:00:17 —0500 (Tue, 16 Dec 2008)
some errors updated with line number

r272 | thierrybm@hotmail.com | 2008—12—16 17:54:42 —0500 (Tue, 16 Dec 2008)

exceptions takes also an int

69

line

line

line

line

line

line

line

r271 | benwarfield | 2008—12—16 17:48:59 —0500 (Tue, 16 Dec 2008) | 2 lines
Made all uses of expr into tagged_expr. Things somehow

still all work.

r270 | benwarfield | 2008—12—-16 17:28:46 —0500 (Tue, 16 Dec 2008) | 1 line
Reduced indentation a bit in output function.

r269 | benwarfield | 2008—12-16 17:25:17 —0500 (Tue, 16 Dec 2008) | 1 line
Added line —number tagging to scanner and parser and AST.

r268 | waseemilahi | 2008—12—16 16:33:50 —0500 (Tue, 16 Dec 2008) | 1 line
Corrected the file permission problem for output to file

r267 | thierrybm@hotmail.com | 2008—12—16 16:32:08 —0500 (Tue, 16 Dec 2008)

in parser, tokens take at least one int, the line number, this upload

but we’re fixing it

BREAKS EVERYTHING

r266 | benwarfield | 2008—12—16 15:40:38 —0500 (Tue, 16 Dec 2008) | 1 line
Corrected header of drul_types.ml

r265 | benwarfield | 2008—12—16 15:36:07 —0500 (Tue, 16 Dec 2008) | 1 line
Minor cleanup in interpreter.

r264 | benwarfield | 2008—12-16 15:23:05 —0500 (Tue, 16 Dec 2008) | 1 line
Rearranged code into multiple files , for ease of maintenance.

r263 | waseemilahi | 2008—12—15 10:36:20 —0500 (Mon, 15 Dec 2008) | 2 lines
Comments Added at places.

r262 | thierrybm@hotmail.com | 2008—12—14 22:23:44 —0500 (Sun, 14 Dec 2008)
better error when assigning a clip without defining instruments

r261 | thierrybm@hotmail.com | 2008—12—14 21:52:55 —0500 (Sun, 14 Dec 2008)
clip assignment solved

r260 | thierrybm@hotmail.com | 2008—12—14 21:51:25 —0500 (Sun, 14 Dec 2008)

70

1 line

1 line

1 line

1 line

partly solve the problem of assignments, but we can still assign to clip...

r259 | thierrybm@hotmail.com | 2008—-12—14 21:19:56 —0500 (Sun, 14 Dec 2008) | 1 line

assign to pattern, fails for the moment

r258 | thierrybm@hotmail.com | 2008—12—14 20:36:45 —0500 (Sun, 14 Dec 2008) | 1 line

makes sure we can’t assign anything to true or false

r257 | thierrybm@hotmail.com | 2008—12—14 20:34:27 —0500 (Sun, 14 Dec 2008) | 1 line

test assignment to ’rand’, fails for the moment

r256 | thierrybm@hotmail.com | 2008—12—14 20:32:23 —0500 (Sun, 14 Dec 2008) | 1 line

test updated, no problem with instruments, can’t assign it

r255 | thierrybm@hotmail.com | 2008—12—14 20:28:04 —0500 (Sun, 14 Dec 2008) | 1 line

instruments assignment test, fails for the moment

r254 | thierrybm@hotmail.com | 2008—12—14 20:25:22 —0500 (Sun, 14 Dec 2008) | 1 line

clip assignment test, fails for the moment

r253 | waseemilahi | 2008—12—-14 12:02:42 —0500 (Sun, 14 Dec 2008) | 1 line

Removed .txt check. File name can be anything the user wants it to be, as far as
we are concerned.

r252 | waseemilahi | 2008—12—-14 11:33:44 —0500 (Sun, 14 Dec 2008) | 1 line

Just added file name check. I think as far as Linux is concerned we do not need
file name checks. But it looks better for a text file to have .txt extension.

r251 | waseemilahi | 2008—12-10 21:45:13 —0500 (Wed, 10 Dec 2008) | 1 line

output. txtfile functions now output clips to the files , just like print
does on the stdout. (I will look into the issue of outputting clips in mapper.)

1 line

r250 | waseemilahi | 2008—12—10 21:31:45 —0500 (Wed, 10 Dec 2008)

output. txtfile_x*%x functions do what print does except it doesn’t output clips yet.
The two extensions are append and truncate to choose what the user wants to do with
the already existing file.

r249 | waseemilahi | 2008—12—10 19:08:43 —0500 (Wed, 10 Dec 2008) | 1 line

71

output test updated

r248 | waseemilahi | 2008—12—10 19:06:22 —0500 (Wed, 10 Dec 2008) | 1 line

output.txt_truncate and output,txtfile_apend do as their names suggest.

r247 | waseemilahi | 2008—12—10 18:07:40 —0500 (Wed, 10 Dec 2008) | 1 line

I think output.txtfile () needs to give a valid filename along with the string.

r246 | waseemilahi | 2008—12—-10 17:56:44 —0500 (Wed, 10 Dec 2008) | 1 line

output. txtfile () outputs a string to the file with extension .txt, if the
file already exists, it truncates it and if it doesn’t then it creates it.

r245 | waseemilahi | 2008—12—10 17:33:11 —0500 (Wed, 10 Dec 2008) | 1 line

Need to flush the out_channel and close it.

r244 | waseemilahi | 2008—12—10 16:53:15 —0500 (Wed, 10 Dec 2008) | 1 line

The check for file extension added (I don’t know if we need it for Linux, but
windoes cares about extensions). output.txtfile (..) should only care about .txt files.

r243 | benwarfield | 2008—12—10 16:47:09 —0500 (Wed, 10 Dec 2008) | 1 line

Made clips exist, and print.

r242 | benwarfield | 2008—12—10 16:46:20 —0500 (Wed, 10 Dec 2008) | 1 line

Commented out useless extra prints.

r241 | waseemilahi | 2008—12—10 16:18:20 —0500 (Wed, 10 Dec 2008) | 1 line

Added a new token OUTPUT. Changed ast, scanner and parser to accomodate for
output. txtfile format. Haven’t yet finished with the output function yet.
For now it only creates/opens a file to write to it.

r240 | benwarfield | 2008—12—10 15:42:49 —0500 (Wed, 10 Dec 2008) | 1 line

Squashed shift —reduce issues with left —arrow.

r239 | thierrybm@hotmail.com | 2008—12—10 15:37:43 —0500 (Wed, 10 Dec 2008) | 1 line

we can create empty clips of given size

r238 | benwarfield | 2008—12—10 15:32:00 —0500 (Wed, 10 Dec 2008) | 1 line

Refactored method calls to use eval_arg_list (and fixed a typo).

72

r237 | benwarfield | 2008—12—-10 15:25:25 —0500 (Wed, 10 Dec 2008) | 1

Refactored function calls to use eval_arg_list.

line

r236 | robstewart2 | 2008—12—10 15:13:27 —0500 (Wed, 10 Dec 2008) | 1

added InstrAssign expressions back in

line

r235 | thierrybm@hotmail.com | 2008—12—10 14:53:26 —0500 (Wed, 10 Dec

minor

2008) | 1 line

r234 | robstewart2 | 2008—12—10 14:51:49 —0500 (Wed, 10 Dec 2008) | 1

added note to RefManual ERRATA about instruments

line

r233 | thierrybm@hotmail.com | 2008—12—10 14:50:42 —0500 (Wed, 10 Dec

now intruments () call the default instruments

2008) | 1 line

r232 | robstewart2 | 2008—12—10 14:27:06 —0500 (Wed, 10 Dec 2008) | 1

changed InstrAssign to InstrDef

line

r231 | thierrybm@hotmail.com | 2008—12—10 13:50:17 —0500 (Wed, 10 Dec

added Ben’s gcd example to the test suite

2008) | 1 line

r230 | thierrybm@hotmail.com | 2008—12—09 17:45:34 —0500 (Tue, 09 Dec

minor, comments added

2008) | 1 line

r229 | thierrybm@hotmail.com | 2008—12—-09 17:41:02 —0500 (Tue, 09 Dec

minor modif to instrument_pos functions, better exception catching

2008) | 1 line

r228 | thierrybm@hotmail.com | 2008—12—09 17:38:37 —0500 (Tue, 09 Dec

function get_instrument_pos works, damn you ocaml syntax that made us

2008) | 1 line

lose an hour on

r227 | thierrybm@hotmail.com | 2008—12—09 12:29:56 —0500 (Tue, 09 Dec

major change for instruments, now an assignment to handle env, passes

2008) | 1 line

basics tests

r226 | thierrybm@hotmail.com | 2008—12—09 11:48:06 —0500 (Tue, 09 Dec

3 basic tests for instruments

2008) | 1 line

73

this

r225 | benwarfield | 2008—12-08 18:55:56 —0500 (Mon, 08 Dec 2008) | 1 line

Created examples directory , with working GCD in it.

r224 | robstewart2 | 2008—12—-08 18:38:24 —0500 (Mon, 08 Dec 2008) | 1 line

instrument definition is done. clip is in progress and commented out

r223 | thierrybm@hotmail.com | 2008—12—04 11:49:35 —0500 (Thu, 04 Dec 2008) | 1 line

more info on the type of whitespace encountered in debug mode

r222 | robstewart2 | 2008—12—03 17:47:39 —0500 (Wed, 03 Dec 2008) | 1 line

fixed pattern7.drultest

r221 | thierrybm@hotmail.com | 2008—12—-03 17:46:02 —0500 (Wed, 03 Dec 2008) | 1 line

one test fixed

r220 | robstewart2 | 2008—12-03 17:44:28 —0500 (Wed, 03 Dec 2008) | 1 line

fixed pattern9.drultestout

r219 | thierrybm@hotmail.com | 2008—12—03 17:42:06 —0500 (Wed, 03 Dec 2008) | 1 line

removed useless comment

r218 | thierrybm@hotmail.com | 2008—12—03 17:40:07 —0500 (Wed, 03 Dec 2008) | 1 line

one test fixed

r217 | thierrybm@hotmail.com | 2008—12—03 17:39:14 —0500 (Wed, 03 Dec 2008) | 1 line

small assert added about mapper names

r216 | benwarfield | 2008—12-03 17:31:42 —0500 (Wed, 03 Dec 2008) | 1 line

Updated precedence of method calls.

r215 | thierrybm@hotmail.com | 2008—12—03 17:24:19 —0500 (Wed, 03 Dec 2008) | 1 line

one test fixed

r214 | thierrybm@hotmail.com | 2008—12—03 17:19:16 —0500 (Wed, 03 Dec 2008) | 1 line

one test fixed

r213 | benwarfield | 2008—12-03 17:12:12 —0500 (Wed, 03 Dec 2008) | 1 line

74

Changed printing output of beats, and updated tests accordingly.

r212 | thierrybm@hotmail.com | 2008—12—-03 17:07:18 —0500 (Wed, 03 Dec 2008)
merged with Ben update

r211 | benwarfield | 2008—12—03 17:07:05 —0500 (Wed, 03 Dec 2008) line
Patched svn:ignore on RefManual.

r210 | robstewart2 | 2008—12—-03 17:05:34 —0500 (Wed, 03 Dec 2008) line
forgot to add the rand tests

r209 | robstewart2 | 2008—12—03 17:04:44 —0500 (Wed, 03 Dec 2008) line
added the rand function and tests for it

r208 | benwarfield | 2008—12—03 17:03:07 —0500 (Wed, 03 Dec 2008) line
Added svn:ignore property to Proposal directory.

r207 | benwarfield | 2008—12—-03 16:57:29 —0500 (Wed, 03 Dec 2008) line
Beat methods (note,rest ,prev,next) and simple tests.

r206 | thierrybm@hotmail.com | 2008—12—-03 16:54:08 —0500 (Wed, 03 Dec 2008)
named mapper works with dollar signs, but not with other aliases 'p’
r205 | benwarfield | 2008—12—03 16:23:45 —0500 (Wed, 03 Dec 2008) line
Printing for Beats (with tests).

r204 | robstewart2 | 2008—12-03 16:01:04 —0500 (Wed, 03 Dec 2008) line
added test cases for the slice function

r203 | benwarfield | 2008—12—03 15:59:42 —0500 (Wed, 03 Dec 2008) line

Allow access to Beat objects inside map blocks.

r202 | thierrybm@hotmail.com | 2008—12—03 15:44:55 —0500 (Wed, 03 Dec 2008)

checks if we try to assign Beat or PatternAlias,

r201 | thierrybm@hotmail.com | 2008—12—-03 15:23:49 —0500 (Wed, 03 Dec 2008)

75

1 line

1 line

1 line

and say something stupid about it

1 line

<L removed

r200 | benwarfield | 2008—12—03 15:19:23 —0500 (Wed, 03 Dec 2008) | 1 line
Quashed warning in test.ml.

r199 | thierrybm@hotmail.com | 2008—12—03 15:16:52 —0500 (Wed, 03 Dec 2008)
r198 | waseemilahi | 2008—11-30 21:58:20 —0500 (Sun, 30 Nov 2008) | 1 line
Slice method updated.

r197 | waseemilahi | 2008—11—-27 00:17:40 —0500 (Thu, 27 Nov 2008) | 1 line
Some Tests editted for errors

r196 | waseemilahi | 2008—11-26 23:56:56 —0500 (Wed, 26 Nov 2008) | 1 line
Not Much

r195 | waseemilahi | 2008—11-26 23:51:50 —0500 (Wed, 26 Nov 2008) | 1 line
Spelling Corrections in the Header Comments

r194 | thierrybm@hotmail.com | 2008—-11-26 19:27:27 —0500 (Wed, 26 Nov 2008) |
more comments

r193 | thierrybm@hotmail.com | 2008—11-26 19:16:50 —0500 (Wed, 26 Nov 2008)
comments

r192 | thierrybm@hotmail.com | 2008—11-26 18:39:08 —0500 (Wed, 26 Nov 2008)
specific exception created for illegal assignment

r191 | thierrybm@hotmail.com | 2008—11-26 18:35:55 —0500 (Wed, 26 Nov 2008)
check at runtime for assignment of string and boolean

r190 | thierrybm@hotmail.com | 2008—11-26 18:25:27 —0500 (Wed, 26 Nov 2008)
concat tests

r189 | thierrybm@hotmail.com | 2008—11—26 18:24:41 —0500 (Wed, 26 Nov 2008) |

concat tests

76

1 line

line

line

line

line

line

line

r188 | benwarfield | 2008—11-26 15:33:49 —0500 (Wed, 26 Nov 2008) | 1 line
Dynamic scoping, and minor modifications to make beats work.

r187 | thierrybm@hotmail.com | 2008—11-26 15:14:20 —0500 (Wed, 26 Nov 2008)
one comment added

r186 | benwarfield | 2008—11-26 15:13:02 —0500 (Wed, 26 Nov 2008) | 1 line
Made ”return” work, and tested it.

r185 | benwarfield | 2008—11-26 15:12:10 —0500 (Wed, 26 Nov 2008) | 1 line
Noted scope stuff.

r184 | thierrybm@hotmail.com | 2008—11-26 14:46:18 —0500 (Wed, 26 Nov 2008)
some commenting added

r183 | thierrybm@hotmail.com | 2008—11-26 14:43:36 —0500 (Wed, 26 Nov 2008)
some commenting added

r182 | benwarfield | 2008—11-26 14:37:08 —0500 (Wed, 26 Nov 2008) | 1 line
Whitespace and comment changes.

r181 | thierrybm@hotmail.com | 2008—11—26 14:00:32 —0500 (Wed, 26 Nov 2008)
more tests fixed

r180 | thierrybm@hotmail.com | 2008—11-26 13:57:58 —0500 (Wed, 26 Nov 2008)
syntax of some tests updated, solved most of parser errors

r179 | thierrybm@hotmail.com | 2008—11-26 13:53:28 —0500 (Wed, 26 Nov 2008)
one test corrected

r178 | benwarfield | 2008—11—-26 03:15:22 —0500 (Wed, 26 Nov 2008) | 1 line
One simple test for map expression.

rl77 | benwarfield | 2008—11-26 02:59:02 —0500 (Wed, 26 Nov 2008) | 3 lines

1 line

1 line

1 line

1 line

1 line

1 line

Finished fixes relating to map scope entry, including finally figuring out how to
create the symbol table type we wanted in the first place. Integrated changes back

7

into main interpreter codebase and deleted branch file.

rl76 | robstewart2 | 2008—11-24 18:20:19 —0500 (Mon, 24 Nov 2008) | 1 line

added concat and slice to the intepreter

r175 | thierrybm@hotmail.com | 2008—11-24 18:01:05 —0500 (Mon, 24 Nov 2008) | 1 line

Ben, this is for you, I cannot fix the eval_arg_list, I’ve created two dummy
functions, still doesnt compile.... but we’re almost there

r174 | thierrybm@hotmail.com | 2008—-11-24 17:46:49 —0500 (Mon, 24 Nov 2008) | 1 line

map may be solved, see function eval_arg_list, but still does not compile

r173 | benwarfield | 2008—11-24 17:23:54 —0500 (Mon, 24 Nov 2008) | 1 line

BROKEN but Thierry will fix it—further work toward mapCall expression evaluation.

r1l72 | waseemilahi | 2008—11-20 22:10:55 —0500 (Thu, 20 Nov 2008) | 1 line

Repeat with argument value < 1 now raises exception for invalid argument

r171 | waseemilahi | 2008—11—20 22:00:09 —0500 (Thu, 20 Nov 2008) | 1 line

pattern() is now accepted. Its a pattern of nothing

r170 | waseemilahi | 2008—11-20 21:37:49 —0500 (Thu, 20 Nov 2008) | 1 line

Length member method done

r169 | waseemilahi | 2008—11-20 20:31:43 —0500 (Thu, 20 Nov 2008) | 1 line

repeat member method finished

r168 | benwarfield | 2008—11—20 19:17:32 —0500 (Thu, 20 Nov 2008) | 2 lines

Helper functions for initializing new symbol table when entering
new mapper scope.

r1l67 | robstewart2 | 2008—11-20 18:39:59 —0500 (Thu, 20 Nov 2008) | 1 line

added repeat method handling to interpreter

r166 | thierrybm@hotmail.com | 2008—11—20 18:18:26 —0500 (Thu, 20 Nov 2008) | 1 line

method call now is left associative

r165 | benwarfield | 2008—11-20 18:00:40 —0500 (Thu, 20 Nov 2008) | 1 line

78

Upgraded patterns,

and added mapper creation.

r164 | thierrybm@hotmail.com | 2008—11-20 17:57:34 —0500 (Thu, 20 Nov

solved shiftreduce conflict on mcall by adding right additivity

2008) | 1 line

r163

more

| thierrybm@hotmail.com

future tests

| 2008—11—-20 17:29:53 —0500 (Thu, 20 Nov

2008) | 1 line

rl62

more

| thierrybm@hotmail .com

future tests

| 2008—11—20 17:26:52 —0500 (Thu, 20 Nov

2008) | 1 line

rl6l

more

| thierrybm@hotmail.com

future tests

| 2008—11—20 17:17:29 —0500 (Thu, 20 Nov

2008) | 1 line

r160

more

| thierrybm@hotmail.com

future tests

| 2008—11—-20 17:09:52 —0500 (Thu, 20 Nov

2008) | 1 line

rl59

more

| thierrybm@hotmail.com

future tests

| 2008—11—-20 17:03:08 —0500 (Thu, 20 Nov

2008) | 1 line

r158

Broke function calls out

| benwarfield | 2008—11—20 17:03:06 —0500 (Thu, 20 Nov 2008) | 1

into their own function ,

and added a trap for

line

invalid ones.

r157

more

| thierrybm@hotmail.com | 2008—11-20 16:56:45 —0500 (Thu, 20 Nov 2008) | 1 line

future tests

rl56

more

| thierrybm@hotmail.com

future tests

| 2008—11—20 16:50:52 —0500 (Thu, 20 Nov

2008) | 1 line

r155

| waseemilahi | 2008—11—20 16:38:57 —0500 (Thu, 20 Nov 2008) | 1

Added Basic Patterns

line

rls54

| thierrybm@hotmail .com

removeing useless file

| 2008—11—20 14:16:29 —0500 (Thu, 20 Nov

2008) | 1 line

rls53

| thierrybm@hotmail.com

| 2008—11—20 14:15:53 —0500 (Thu, 20 Nov

79

2008) | 1 line

minor changes

r152 | benwarfield | 2008—11—20 00:00:55 —0500 (Thu, 20 Nov 2008) | 1 line
Fixed string—escape bug—test now passes!

r151 | waseemilahi | 2008—11-19 22:44:07 —0500 (Wed, 19 Nov 2008) | 1 line
r150 | benwarfield | 2008—11-19 18:45:28 —0500 (Wed, 19 Nov 2008) | 1 line
Variable assignment!!!

r149 | benwarfield | 2008—11—19 18:09:48 —0500 (Wed, 19 Nov 2008) | 1 line

Added if/elseif/else to interpreter.

r148 | thierrybm@hotmail.com | 2008—11-19 18:02:58 —0500 (Wed, 19 Nov 2008)

all tests pass, pretty good parser

r147 | thierrybm@hotmail.com | 2008—11—-19 17:43:22 —0500 (Wed, 19 Nov 2008)

parser kicks axx

r146 | benwarfield | 2008—11—19 17:42:36 —0500

(Wed,

19 Nov 2008) | 1 line

Interpreter now supports all binary and unary operations (tests included).

r145 | thierrybm@hotmail.com | 2008—11-19 17:34:39 —0500 (Wed, 19 Nov 2008)

small updates

r144 | thierrybm@hotmail.com | 2008—11-19 17:23:31 —0500 (Wed, 19 Nov 2008)

update test

r143 | thierrybm@hotmail.com | 2008—11—19 17:21:08 —0500 (Wed, 19 Nov 2008)

update test

r142 | thierrybm@hotmail.com | 2008—11-19 17:19:09 —0500 (Wed, 19 Nov 2008)

one more test

r141 | robstewart2 | 2008—11-19 17:08:20 —0500

the interpreter can evaluate int arithmetic and print

(Wed,

80

19 Nov 2008) | 1 line

it

line

line

line

line

line

line

r140 | thierrybm@hotmail.com | 2008—11-19 17:07:37 —0500 (Wed, 19 Nov 2008)

better random

r139 | thierrybm@hotmail.com | 2008—11-19 17:04:00 —0500 (Wed, 19 Nov 2008)

one more test

r138 | thierrybm@hotmail.com | 2008—11-19 16:54:08 —0500 (Wed, 19 Nov 2008)

better parser, everything except if else ... seems to work

r137 | thierrybm@hotmail.com | 2008—11-19 16:35:29 —0500 (Wed, 19 Nov 2008)

added stupid stuff :)

r136 | benwarfield | 2008—11—19 16:20:08 —0500 (Wed, 19 Nov 2008) | 1 line

Added environment to execution routines as (stringmap, parent) pair.

r135 | thierrybm@hotmail.com | 2008—11-19 16:18:55 —0500 (Wed, 19 Nov 2008)

a.b() and a.b(a) cases are parsed

r134 | thierrybm@hotmail.com | 2008—11—19 16:14:46 —0500 (Wed, 19 Nov 2008)

a.b case is parsed, now need to work or decide on a.b()

r133 | thierrybm@hotmail.com | 2008—11—19 15:46:08 —0500 (Wed, 19 Nov 2008)

better working LaunchTests, handle stdout and stderr, stderr assumed always

r132 | thierrybm@hotmail.com | 2008—11-19 15:38:55 —0500 (Wed, 19 Nov 2008)

makefile now creates interpreter by default

r131 | benwarfield | 2008—11-19 15:32:37 —0500 (Wed, 19 Nov 2008) | 2 lines

Added printing of numbers and booleans, added those to the printing test,
added a failing test for \\ and \”, and updated svn:ignore to ignore logs.

r130 | thierrybm@hotmail.com | 2008—11-19 15:21:14 —0500 (Wed, 19 Nov 2008)

more real tests like hello world

r129 | benwarfield | 2008—11—19 15:15:31 —0500 (Wed, 19 Nov 2008) | 1 line

Turned off scanner debugging.

81

line

line

line

line

line

line

1 line

at the end

1 line

1 line

r128 | thierrybm@hotmail.com | 2008—11-19 15:11:20 —0500 (Wed, 19 Nov 2008)
Launching test updated to reach program interpret

r127 | thierrybm@hotmail.com | 2008—11-19 14:06:22 —0500 (Wed, 19 Nov 2008)
new parser tests

r126 | thierrybm@hotmail.com | 2008—11-19 14:02:41 —0500 (Wed, 19 Nov 2008)
new parser tests

r125 | thierrybm@hotmail.com | 2008—11—-19 13:58:41 —0500 (Wed, 19 Nov 2008)
new parser tests

r124 | thierrybm@hotmail.com | 2008—11-19 13:23:29 —0500 (Wed, 19 Nov 2008)
new parser tests

r123 | thierrybm@hotmail.com | 2008—11-19 13:18:20 —0500 (Wed, 19 Nov 2008)
new parser tests, correct the previous wrong extensions

r122 | thierrybm@hotmail.com | 2008—11—-19 13:16:13 —0500 (Wed, 19 Nov 2008)
new parser tests

r121 | thierrybm@hotmail.com | 2008—11—19 13:11:36 —0500 (Wed, 19 Nov 2008)
new parser tests

r120 | robstewart2 | 2008—11-12 18:44:55 —0500 (Wed, 12 Nov 2008) | 1 line
interpreter works for printing

r119 | robstewart2 | 2008—11-12 18:23:51 —0500 (Wed, 12 Nov 2008) | 1 line
interpreter still doesn’t work...

r118 | robstewart2 | 2008—11—12 18:22:07 —0500 (Wed, 12 Nov 2008) | 1 line
interpreter still doesn’t work...

r117 | benwarfield | 2008—11-12 17:47:19 —0500 (Wed, 12 Nov 2008) | 1 line

Added tests from parser development side (three pass, one fails).

82

line

line

line

line

line

line

line

line

r116 | benwarfield | 2008—11—-12 17:38:52 —0500 (Wed, 12 Nov 2008) | 1 line
Escape for paths with spaces (actually by Thierry, but on my computer).
r115 | thierrybm@hotmail.com | 2008—11-12 17:38:46 —0500 (Wed, 12 Nov 2008)
new drul test

r114 | thierrybm@hotmail.com | 2008—11-12 17:30:56 —0500 (Wed, 12 Nov 2008)
new drul test

r113 | thierrybm@hotmail.com | 2008—11-12 17:26:36 —0500 (Wed, 12 Nov 2008)
new drul test

r112 | thierrybm@hotmail.com | 2008—11—12 17:23:47 —0500 (Wed, 12 Nov 2008)
test if testing program can be found

r111l | thierrybm@hotmail.com | 2008—11-12 17:20:16 —0500 (Wed, 12 Nov 2008)
program to test parser

r110 | benwarfield | 2008—11-12 17:19:27 —0500 (Wed, 12 Nov 2008) | 1 line
Added support for end of file during a comment.

r109 | thierrybm@hotmail.com | 2008—11-12 17:18:36 —0500 (Wed, 12 Nov 2008)
yeah! finding bugs

r108 | benwarfield | 2008—11—12 17:15:44 —0500 (Wed, 12 Nov 2008) | 1 line
Updated svn:ignore property to make status output less annoying.

r107 | benwarfield | 2008—11-12 17:14:22 —0500 (Wed, 12 Nov 2008) | 1 line

Detabbed parser, and added if/elseif/else

support to parser and printer.

r106 | thierrybm@hotmail.com | 2008—11—12

debugging parser testing

17:13:07 —0500 (Wed,

12 Nov 2008)

r105 | thierrybm@hotmail.com | 2008—11—-12 17:05:10 —0500 (Wed, 12 Nov 2008)
tester for parser seems to work
r104 | thierrybm@hotmail.com | 2008—11—12 16:37:20 —0500 (Wed, 12 Nov 2008)

83

1 line

1 line

1 line

1 line

1 line

1 line

1 line

1 line

1 line

remove useless file

r103 | thierrybm@hotmail.com | 2008—11-12 16:37:08 —0500 (Wed, 12 Nov 2008)

r102 | thierrybm@hotmail.com | 2008—11-12 16:27:08 —0500 (Wed, 12 Nov 2008)

to test the parser, use with ./testing

r101 | robstewart2 | 2008—11—-11 16:04:29 —0500 (Tue, 11 Nov 2008) | 1 line

added the interpreter. mnot done. haven’t even compiled it

r100 | benwarfield | 2008—11—11 15:56:46 —0500 (Tue, 11 Nov 2008) | 2 lines

Fixed a bug resulting from change from left—recursion to right—recursion in
expr_list rule.

r99 | benwarfield | 2008—11—-11 15:41:24 —0500 (Tue, 11 Nov 2008) | 1 line

Added ugly—printer for very simple syntax trees.

r98 | thierrybm@hotmail.com | 2008—11-11 14:52:27 —0500 (Tue, 11 Nov 2008)

test suite ready

r97 | thierrybm@hotmail.com | 2008—11—11 14:29:18 —0500 (Tue, 11 Nov 2008)

better testing function

r96 | benwarfield | 2008—11—11 14:22:34 —0500 (Tue, 11 Nov 2008) | 1 line

Added eol—style property to a couple files.

r95 | benwarfield | 2008—11—11 14:09:41 —0500 (Tue, 11 Nov 2008) | 2 lines

1 line

1 line

1 line

1 line

Resolved expr_list problem by making it comma—separated , and added errata file

to RefManual folder to note such changes.

r94 | benwarfield | 2008—11—11 13:50:52 —0500 (Tue, 11 Nov 2008) | 1 line

Made escaping a backslash in a string constant work.

r93 | waseemilahi | 2008—11-10 22:28:55 —0500 (Mon, 10 Nov 2008) | 1 line

Example code from refmanual used for debuging

84

r92 | benwarfield | 2008—11—-10 16:22:45 —0500 (Mon, 10 Nov 2008) | 3 lines

Added "map” expressions to parser, and modified AST slightly to reflect the
fact that we do not have the parameter information for a mapper available in
the parser.

r91 | benwarfield | 2008—11-10 15:32:49 —0500 (Mon, 10 Nov 2008) | 1 line

Made ”block” reverse its statement list , so if/else/mapper need not do it.

r90 | benwarfield | 2008—11—10 15:24:36 —0500 (Mon, 10 Nov 2008) | 2 lines

Added support for "else”, and discovered several shift—-reduce conflicts in
the grammar as currently specified.

r89 | benwarfield | 2008—11-10 14:09:37 —0500 (Mon, 10 Nov 2008) | 3 lines

Added a level of indirection for statement lists (woohoo!), and added
assignment and mapper definition statements, as well as if—block, to
statement definition. No handling of ”else” token yet.

r88 | benwarfield | 2008—11-08 23:35:18 —0500 (Sat, 08 Nov 2008) | 4 lines

Added testing program to actually parse input and see if it contains valid
Drull code. Many modifications to scanner to make this fly , plus adding
string and boolean constants to the AST and the parser, and making the base
case for the parser (empty program) work.

r87 | thierrybm@hotmail.com | 2008—11-08 19:52:14 —0500 (Sat, 08 Nov 2008) | 1 line

adding folders for test suite

r8 | benwarfield | 2008—11—-08 18:33:29 —0500 (Sat, 08 Nov 2008) | 1 line

Squished warning in scanner.

r85 | benwarfield | 2008—11-08 18:31:21 —0500 (Sat, 08 Nov 2008) | 1 line

Reapplied accidentally backed—out bugfixes.

r84 | robstewart2 | 2008—11-08 18:26:51 —0500 (Sat, 08 Nov 2008) | 1 line

kept my changes, not bens

r83 | benwarfield | 2008—11—-08 18:18:58 —0500 (Sat, 08 Nov 2008) | 2 lines

Added Makefile with appropriate dependencies to build everything as far as it
is so far possible to build it.

85

r82 | benwarfield | 2008—11-08 18:18:30 —0500 (Sat, 08 Nov 2008) | 1 line

Added import of Parser module, and fixed identifier —too—long error message.

r81 | benwarfield | 2008—11-08 18:00:11 —0500 (Sat, 08 Nov 2008) | 2 lines

Moved AST and Scanner to Parser directory , and fixed a couple of bugs in the
Parser, which now compiles all the way to an object file.

r80 | benwarfield | 2008—11-08 17:28:29 —0500 (Sat, 08 Nov 2008) | 2 lines

Fixed syntax error and added support for statements and for calling functions
of one parameter. Like ”print”. Hypothetically speaking.

r79 | benwarfield | 2008—11—-08 17:12:29 —0500 (Sat, 08 Nov 2008) | 1 line

Operator precedence and simple expressions added to parser.

r78 | benwarfield | 2008—11-08 16:35:23 —0500 (Sat, 08 Nov 2008) | 1 line

Removed blank lines and detabbed.

r77 | benwarfield | 2008—11-08 16:31:02 —0500 (Sat, 08 Nov 2008) | 1 line

Fixed line—ending issues on parser/scanner.

r76 | benwarfield | 2008—11-08 16:28:47 —0500 (Sat, 08 Nov 2008) | 1 line

Fixed problem with circular dependency in definitions of stmt/expr/mapper.

r75 | benwarfield | 2008—11-05 22:09:25 —0500 (Wed, 05 Nov 2008) | 1 line

Fixed a couple more minor issues, but not the big one.

r74 | benwarfield | 2008—11-05 22:08:04 —0500 (Wed, 05 Nov 2008) | 1 line

Fixed some, but not all, of the circularity problems in our AST definition .

r73 | benwarfield | 2008—11—-05 22:00:42 —0500 (Wed, 05 Nov 2008) | 1 line

Line—endings , tab expansion, and name consistency (arithOp/intOp).

r72 | waseemilahi | 2008—11-05 21:32:11 —0500 (Wed, 05 Nov 2008) | 1 line

Minor change towards getting practical scanner for Drul

r71 | benwarfield | 2008—11—-05 18:11:40 —0500 (Wed, 05 Nov 2008) | 1 line

Improvements to AST.

86

r70 | waseemilahi | 2008—11-03 18:14:48 —0500 (Mon, 03 Nov 2008) | 1 line
dummy parser introduced. need tokens to work in the scanner.
r69 | waseemilahi | 2008—11-03 18:11:58 —0500 (Mon, 03 Nov 2008) | 1 line
dummy parser introduced. need tokens to work in the scanner.
r68 | waseemilahi | 2008—11-03 09:37:00 —0500 (Mon, 03 Nov 2008) | 1 line

identifier is

less than equal to 64 in length. Also

eof termination added.

r67 | waseemilahi | 2008—11-02 22:37:06 —0500 (Sun, 02 Nov 2008) | 1 line
some changes done to scanner. Still working on the basics.

r66 | waseemilahi | 2008—10—24 11:07:19 —0400 (Fri, 24 Oct 2008) | 1 line
null removed in scanner

r65 | benwarfield | 2008—10—22 17:50:47 —0400 (Wed, 22 Oct 2008) | 1 line
Trivial usage change.

r64 | thierrybm@hotmail.com | 2008—10—22 17:50:33 —0400 (Wed, 22 Oct 2008)
date fixed

r63 | thierrybm@hotmail.com | 2008—10—22 17:48:03 —0400 (Wed, 22 Oct 2008)
more on output.txtfile

r62 | thierrybm@hotmail.com | 2008—10—22 17:34:08 —0400 (Wed, 22 Oct 2008)
one textit removed

r61 | thierrybm@hotmail.com | 2008—10—22 17:32:44 —0400 (Wed, 22 Oct 2008)
empty pattern returned

r60 | benwarfield | 2008—10—22 17:29:53 —0400 (Wed, 22 Oct 2008) | 1 line
Reformatted example code.

r59 | thierrybm@hotmail.com | 2008—10—22 17:24:52 —0400 (Wed, 22 Oct 2008)
typo in date fixed

87

line

line

line

line

line

r58 | thierrybm@hotmail.com | 2008—10—22 17:24:32 —0400 (Wed, 22 Oct 2008)

date fixed

r57 | benwarfield | 2008—10-22 17:14:08 —0400 (Wed, 22 Oct 2008) | 1 line

Tweaked comment definition .

r56 | thierrybm@hotmail.com | 2008—10—-22 17:13:59 —0400 (Wed, 22 Oct 2008)

just to be sure

r55 | benwarfield | 2008—10—22 17:08:34 —0400 (Wed, 22 Oct 2008) | 1 line

Parenthesized example print statements, and removed newline characters.

r54 | thierrybm@hotmail.com | 2008—10—22 17:07:04 —0400 (Wed, 22 Oct 2008)

one line added to the print subsection

r53 | thierrybm@hotmail.com | 2008—10-22 16:58:37 —0400 (Wed, 22 Oct 2008)

() added

r52 | thierrybm@hotmail.com | 2008—10—22 16:54:27 —0400 (Wed, 22 Oct 2008)

better output

r51 | benwarfield | 2008—10—22 16:49:51 —0400 (Wed, 22 Oct 2008) | 2 lines

Added $vars to Identifiers section, and changed reference from Mapper
section to Map section (since that section is more relevant).

r50 | thierrybm@hotmail.com | 2008—10—22 16:48:42 —0400 (Wed, 22 Oct 2008)

null and more on $

r49 | thierrybm@hotmail.com | 2008—10—22 16:44:18 —0400 (Wed, 22 Oct 2008)

null and more on $

r48 | thierrybm@hotmail.com | 2008—10—-22 16:34:16 —0400 (Wed, 22 Oct 2008)

better indentation

r47 | thierrybm@hotmail.com | 2008—10—22 16:33:35 —0400 (Wed, 22 Oct 2008)

slice added

88

line

line

line

line

line

line

line

line

line

r46 | benwarfield | 2008—10—22 16:25:53 —0400 (Wed, 22 Oct 2008) | 1 line

Added ”beat” concept, and removed terminal semicolon from mapper definition.

r45 | benwarfield | 2008—10-22 15:49:45 —0400 (Wed, 22 Oct 2008) | 1 line

Resolved a bunch of declare/define confusion.

r44 | benwarfield | 2008—10—22 15:13:25 —0400 (Wed, 22 Oct 2008) | 1 line

Checking in various changes on behalf of Rob (whitespace and edits, largely).

r43 | thierrybm@hotmail.com | 2008—10—22 13:50:08 —0400 (Wed, 22 Oct 2008) | 1

$ added in the example

r42 | thierrybm@hotmail.com | 2008—-10—22 13:34:14 —0400 (Wed, 22 Oct 2008) | 1

small typos and $ sign in anonymous mappers

r41 | waseemilahi | 2008—10—22 09:25:03 —0400 (Wed, 22 Oct 2008) | 1 line

Made a folder for AST.

r40 | waseemilahi | 2008—10—22 09:14:40 —0400 (Wed, 22 Oct 2008) | 1 line

I did add semicolons at the end of each mapper definition. They are
statements and statements end with a semicolon.

r39 | waseemilahi | 2008—10—22 08:55:37 —0400 (Wed, 22 Oct 2008) | 1 line

Semicolons added at the end,of where anonymous mapper is used, because those
are definitely assignment statements.

r38 | benwarfield | 2008—10—22 01:45:50 —0400 (Wed, 22 Oct 2008) | 1 line

Typographic cleanup, and minor textual revision, for beginning of example code.

r37 | benwarfield | 2008—10—22 01:43:14 —0400 (Wed, 22 Oct 2008) | 1 line

Spruced up expression/statement section.

r36 | waseemilahi | 2008—10—21 21:27:07 —0400 (Tue, 21 Oct 2008) | 1 line

Example Code Added. Some of the explanation in example section moved to the
appropriate earlier sections

r35 | thierrybm@hotmail.com | 2008—10—-20 17:50:00 —0400 (Mon, 20 Oct 2008) | 1

89

line

line

line

namepsace per type

r34 | thierrybm@hotmail.com | 2008—10—20 17:45:54 —0400 (Mon, 20 Oct 2008)
grrrrr

r33 | benwarfield | 2008—10—20 17:34:29 —0400 (Mon, 20 Oct 2008) | 1 line
Spruced up expressions and statements a bit (boolean values).

r32 | thierrybm@hotmail.com | 2008—10—20 17:24:29 —0400 (Mon, 20 Oct 2008)
r31 | thierrybm@hotmail.com | 2008—10—-20 16:44:47 —0400 (Mon, 20 Oct 2008)
new block scope section

r30 | thierrybm@hotmail.com | 2008—10—20 16:25:17 —0400 (Mon, 20 Oct 2008)
r29 | benwarfield | 2008—10—20 14:09:17 —0400 (Mon, 20 Oct 2008) | 1 line
Closed scope for mappers, single namespace for identifiers.

r28 | thierrybm@hotmail.com | 2008—10—20 13:26:34 —0400 (Mon, 20 Oct 2008)
minor changes section 2.6

r27 | thierrybm@hotmail.com | 2008—10—20 13:23:30 —0400 (Mon, 20 Oct 2008)
minor changes section 2.6

r26 | thierrybm@hotmail.com | 2008—10—20 13:13:49 —0400 (Mon, 20 Oct 2008)
r25 | thierrybm@hotmail.com | 2008—10—20 12:57:01 —0400 (Mon, 20 Oct 2008)
r24 | robstewart2 | 2008—10—20 12:48:17 —0400 (Mon, 20 Oct 2008) | 1 line
r23 | benwarfield | 2008—10—20 02:30:20 —0400 (Mon, 20 Oct 2008) | 1 line

Rather rough draft of statement/expression/block section.

90

line

line

line

line

line

line

line

line

r22 | thierrybm@hotmail.com | 2008—10—19 18:05:25 —0400 (Sun, 19 Oct 2008)
improved map and mapper

r21 | thierrybm@hotmail.com | 2008—10—19 17:44:15 —0400 (Sun, 19 Oct 2008)
pattern section improved

r20 | benwarfield | 2008—10—15 17:35:03 —0400 (Wed, 15 Oct 2008) | 1 line
Set svn:eol—style=native

rl9 | benwarfield | 2008—10—-15 17:34:34 —0400 (Wed, 15 Oct 2008) | 1 line
Changes made during meeting (with whitespace issues ironed out).

rl18 | thierrybm@hotmail.com | 2008—10—15 17:21:40 —0400 (Wed, 15 Oct 2008)
intro and examples added from proposal

rl7 | thierrybm@hotmail.com | 2008—10—15 16:44:45 —0400 (Wed, 15 Oct 2008)
intro and examples added from proposal

rl6 | waseemilahi | 2008—10—15 10:29:38 —0400 (Wed, 15 Oct 2008) | 1 line
Minor addition to the manual.(Few typos corrected)

rl5 | waseemilahi | 2008—10—15 09:40:40 —0400 (Wed, 15 Oct 2008) | 4 lines
Some Basic functionality added.

I am using test code inside lex to check for certain

conditions. After we have the parser it will look

quite different .

rl4 | waseemilahi | 2008—10—15 09:20:22 —0400 (Wed, 15 Oct 2008) | 1 line
r13 | benwarfield | 2008—10—13 17:05:47 —0400 (Mon, 13 Oct 2008) | 1 line
Scratch version of AST, by Ben and Rob.

r12 | thierrybm@hotmail.com | 2008—10—13 15:31:32 —0400 (Mon, 13 Oct 2008)
minor

rll | thierrybm@hotmail.com | 2008—10—12 15:42:47 —0400 (Sun, 12 Oct 2008)

91

1 line

1 line

1 line

1 line

1 line

1 line

some basics stuff added

r10 | thierrybm@hotmail.com | 2008—10—11 14:35:50 —0400 (Sat, 11 Oct 2008) | 1 line

outputs

r9 | thierrybm@hotmail.com | 2008—10—11 14:20:10 —0400 (Sat, 11 Oct 2008) | 1 line

most of the sections are there

r8 | thierrybm@hotmail.com | 2008—10—11 13:54:22 —0400 (Sat, 11 Oct 2008) | 1 line

beginning of the draft

r7 | thierrybm@hotmail.com | 2008—10—11 13:36:20 —0400 (Sat, 11 Oct 2008) | 1 line

r6 | waseemilahi | 2008—10-09 20:39:20 —0400 (Thu, 09 Oct 2008) | 2 lines

Directory for scanner added to the project.
Scanner doesn’t contain anything useful yet.

r5 | waseemilahi | 2008—10—09 19:56:57 —0400 (Thu, 09 Oct 2008) | 1 line

The transfer of all the files from old repository to the current one.

r4 | waseemilahi | 2008—10—09 19:53:34 —0400 (Thu, 09 Oct 2008) | 1 line

r3 | waseemilahi | 2008—10—09 19:51:39 —0400 (Thu, 09 Oct 2008) | 1 line

r2 | waseemilahi | 2008—10—09 19:47:55 —0400 (Thu, 09 Oct 2008) | 1 line

rl | (no author) | 2008—10—08 15:23:21 —0400 (Wed, 08 Oct 2008) | 1 line

Initial directory structure.

92

Appendix C

Code Listings

C.1 Language code

C.1.1 drul_interpreter.ml

(*

Kok ok koK koK ok oK KK KK KK KK KK KK KK KK KK KK KK KK oK K KK KK K K oK K KK K K K K K K KK K K K K oK K KK KK K K K K K K KOk
* Drul, — Drumming Language

*

x Creation of R. Stewart, T. Bertin—Mahieuz, W. Ilahi and B. Warfield
* rs2660 tb2332 wki2001 bbw2108

*

x for the class COMS W/115: Programming Language and Translators

*

x file: drul_interpreter.ml

*

* INTERPRETER

*

x This file contains the interpreter for DruL. It receives an AST

x and interprets the code.

* This code is written in OCaml.

*

Kok ok oK o oK K ok oK K K oK K K oK K K oK K K oK K K oK K KK K KK K K K K KKK KKK KK K KK K KK R KK KK K KK R KK R KK R KR KK R R K K
*)

open Drul_ast

open Drul_main

open Drul_types

let run p env = match p with
Content (statements) —> Random.self_init (); ignore(execlist statements env)

let _ =

93

let unscoped_env = {symbols = NameMap.empty; parent = None} in
let arglen = Array.length Sys.argv in
let input_stream = if 1 < arglen then open_in Sys.argv.(l) else stdin
let lexbuf = Lexing.from_channel input_stream in
let programAst = Drul_parser.program Drul_scanner.token lexbuf in
try run programAst unscoped_-env
with Type_error (msg, line) —

Printf.fprintf stderr ”Type error on line %d: %s\n” line msg
| Invalid_function (msg,line) —>

Printf.fprintf stderr ”Invalid function call on line %d: %s\n”
| PatternParse_error (msg,line) —>

Printf.fprintf stderr ”Invalid pattern string on line %d: %s\n”
| Invalid_argument (msg, line) —>

in

line msg

line msg

Printf. fprintf stderr ”Incorrect function arguments on line %d: %s\n” line msg
| Undefined_identifier (msg,line) —>

Printf.fprintf stderr ”Reading undefined

| Illegal_assignment (msg,line) —>
Printf. fprintf stderr ”Illegal assignment attempted on line %d: %s\n” line msg

| In

struments_redefined (msg, line) —>

identifier

"%s’ attempted on line %d.\n” msg line

Printf.fprintf stderr ”Instrument redefinition attempted on line %d: %s\n” line msg

| Illegal_division (msg,line) —>
Printf.fprintf stderr ”Division by zero attempted on line %d: %s\n”
| Failure (msg) —>

C.1
(*

line msg

Printf.fprintf stderr ”Untrapped internal error! (error message: %s)\n” msg

.2 drul_main.ml

3k 3k 3k sk k k sk

*

fo

*
*
*
*
*
*
*
*
*
*

This file

Drul — Drumming Language

Creation of R. Stewart, T. Bertin—Mahieux,

rs2660 tb2332

W. Ilahi
wki2001

and B. Warfield
bbw2108

r the class COMS W4115: Programming Language and Translators

le: drul-main.ml

MAIN

This code is written in OCaml.

*

contains the main driver functions for the Drul interpreter.

3k 3k ok sk ok sk ok ok ok sk ok koo sk ok Sk ok ok ok Sk ok ok sk Sk skok ok ok skok sk ok skok sk ok sk ok sk ok sk ok 3k sk ok sk sk sk ok ok Sk sk ok skosk skok ok ok skok sk kook sk ok ok ok ok ok ok ok

*)

open
open
open
open

Drul_ast
Drul_types
Drul_helpers
Drul_output

(x default instruments x*)

let

default_instr = [?hh_c¢”; ”"sd_ac”; 7bd”;

”cowbell”]

94

let keyword_map =
List . fold_left
(fun m k —> NameMap.add k true m)
NameMap . empty
[?clip”;”rand” ;”mapper” ;” concat” ;” pattern” ;”return”;” instruments”;
”?slice”;” print” ;”output” ;”map”;” if” ;7 else”;” elseif”;”true”;” false”]

(* exception used to handle return statement, similar to MicroC from FEdwards x*)
exception Return_value of drul_env

(*

inside a map, do one step!

return is saved as "return” in the env

current index is saved as ”$current” in the env
*)

let rec one_mapper_step maxiters current st_list env current_pattern =

if (maxiters = current) then Pattern(current_pattern)
else
let retval = Pattern ([]) in
let env = add_-key_-to_env env ”return” retval in
let env = add_key_to_env env ”$current” (Int(current)) in
let block_line = (match (List.hd st_list) with
Expr(e) —> e.lineno
| Return(e) —> e.lineno
| Assign(_,_,lineno) —> lineno
| MapDef(-,_,-,lineno) —> lineno
| IfBlock (e, -, -) —> e.lineno
| InstrDef(_,lineno) —> lineno
| EmptyStat (lineno) —> lineno
) in
let newenv = execlist_returning st_list env in
let new_st = newenv.symbols in
let return = NameMap. find ”return” new_st in

let current_pattern =
(
match return with
Pattern(bools) —> current_pattern @ bools
| Beat (alias_bools ,idx) —>
if ((idx >= 0) && (idx < (Array.length alias_bools)))
then current_pattern @ [alias_bools.(idx)]
else current_pattern
| _ —> (raise (Illegal_assignment
(”attempt to return an illegal value from this mapper” ,block_line)
)
)
in
let current = current + 1 in
one_mapper_step maxiters current st_list newenv current_pattern

(*
run a mamed mapper,
find the mapper in the enwv,
and cast it to a anonymous mapper
*)
and run_named_mapper mapname arglList env lineno =
let savedmapper = get_key_from_env env mapname lineno in

95

match savedmapper with
Mapper (mapname2, a_list ,stat_list) —>
(* check if we receive the good number of patterns x)

if List.length a_list != List.length argList then raise
(Invalid_argument (”wrong number of inputs for named mapper”, lineno))
else if String.compare mapname mapname2 != 0 then raise

(Failure ”in run_named_mapper, should not happen (intern mapper name problem)”)
else run_mapper stat_list argList env a_list
(x if given mame is not bound to a mapper, Type_error x)
| - —> raise
(Type-error (”we were expecting a mapper, name associated with something else”, lineno))

(*
main function of a map, takes a list of statement (body of the mapper)
evaluate the arg_list, which should be a list of patterns
launches the iteration (one_mapper_step)

*)

and run_mapper statement_list arg_-list env a_list =

let arg_list_evaled = eval_arg_list arg_list env in
let map_env = get_map_env env arg_list_evaled a_list in
let max_iters = find_longest_list arg_list_evaled in

one_mapper_step max_iters 0 statement_list map_env []

(* evaluate an ezxpr_list when we know that they ’'re all patterns x*)
and eval_arg_list arg_list env = match arg_list with
[=1

| headExp:: tail —>

let headVal = evaluate headExp env
in headVal :: (eval_arg_list tail env)

(* evaluate expressions, mo modifications to the environment! x)
and evaluate e env = match e.real_expr with
FunCall (fname, fargs) —> function_call fname fargs env e.lineno
| MethodCall (objectExpr , mname, margs) —> method_call objectExpr mname margs env
| CStr (x) — Str (x)
| CBool(x) —> Bool(x)
| CInt (x) —> Int (x)
| Var(name) —> let fetched = get_key_from_env env name e.lineno in (
match fetched with
PatternAlias(alias) —> beat_of_alias env alias e.lineno
| other —> other

)

| UnaryMinus (xE) —> let xV = evaluate xE env in

match xV with
Int (x) —> Int(—x)
| - —> raise (Type_error ("you can’t negate that, dorkface”, e.lineno))

)

| UnaryNot (xE) —> let xV = evaluate xE env in

match xV with
Bool(x) —> Bool(not x)

96

(*

| - —> raise (Type_error ("you can’t contradict that”, e.lineno))
)
ArithBinop (aExp, operator, bExp) —>
let aVal = evaluate aExp env in
let bVal = evaluate bExp env in

match (aVal, operator, bVal) with
(Int(a), Add, Int(b)) —> Int(a + b)
| (Int(a), Sub, Int(b)) —> Int(a — b)
| (Int(a), Mult, Int(b)) —> Int(a * b)
| (Int(a), Div, Int(b)) —> if(b != 0) then Int(a / b) else raise

(Illegal_division (”Divisor evaluates to 07, e.lineno))
| (Int(a), Mod, Int(b)) —> Int(a mod b)
| _ —> raise (Type_error (”cannot do arithmetic on non—integers”, e.lineno))

)

LogicBinop (aExp, operator, bExp) —>

let aVal = evaluate aExp env in

let bVal = evaluate bExp env in

(
match (aVal, operator, bVal) with

(Bool(x), And, Bool(y)) —> Bool(x && y)

| (Bool(x), Or, Bool(y)) —> Bool(x || y)
| _ —> raise (Type_error (”cannot do logical operations except on booleans”, e.lineno))

)

Comparison (aExp, operator, bExp) —>

let aVal = evaluate aExp env in

let bVal = evaluate bExp env in

(

match (aVal, operator, bVal) with

(Int(a), LessThan, Int(b)) —> Bool(a < b)
| (Int(a), GreaterThan, Int(b)) —> Bool(a > b)
| (Int(a), LessEq, Int (b)) —> Bool(a <= b)
| (Int(a), GreaterEq, Int (b)) —> Bool(a >= b)
| (Int(a), EqualTo, Int (b)) —> Bool(a = b)
| (Int(a), NotEqual, Int (b)) —> Bool(a != b)
| _ —> raise (Type.error cannot do that comparison operation”, e.lineno))

)
MapCall (someMapper , argList) —>
(
match someMapper with
AnonyMap (stList) —> run_mapper stList argList env []
| NamedMap (mapname) —> run_named_mapper mapname argList env e.lineno

)

InstrAssign (instName, patExpr) —> let patVal = evaluate patExpr env in

(

match patVal with
Pattern(p) —> InstrumentAssignment (instName, p)
| -

function calls, anything looking like a() or a(something)
the major ’'match’ is done on a

97

—> raise (Invalid_argument (”Only patterns can be assigned to instruments”, e.lineno))

and function_call fname fargs env lineno =

let fargvals = eval_arg_list fargs env in
match (fname, fargvals) with

(”pattern”, []) —> Pattern ([])
| (”pattern”, [v]) —>

(

match v with
Str(x) —>
(
let charlist = Str.split (Str.regexp 77) x
in let revlist =
List . fold_left

fun bl str —>

(

match str with
70” —> false

| 717 —> true
| - —> raise (PatternParse_error
(”Patterns definitions must be a string of 0’s and 1’s”, lineno))
) :: bl
[] charlist

in Pattern(List.rev revlist)

)

| _ —> raise (Type_error (”Pattern definitions take a string argument” ,6lineno))

)
| (”print”, []) —> print_endline ””; Void
| ("print”, [v]) —>
(
match v with
Str(x) —> print_endline x; Void
Int (y) —> print_endline(string_of_int y); Void
Bool(z) —> print_endline (if z then "TRUE” else ”"FALSE”); Void

Beat(-,-) —> print_endline(string_of_beat v); Void
Clip(ar) —> print_endline(string_of_clip ar env); Void
| - —> print_endline (?”Dunno how to print this yet.”); Void

|
|
| Pattern(p) —> let pstr = string_of_pattern p in print_endline pstr;Void
|

)

| (”concat”, concat_args) —> let catenated = concat_pattern_list concat_args lineno in Pattern(catenated)
| ("rand”, []) —> Int(Random.int 2)
| ("rand”, [argVal]) —>

(

match argVal with
Int (bound) —> if bound > 0 then Int(Random.int bound)
else raise

(Invalid_argument (”’rand’ expects a positive integer argument”, lineno))

| _ —> raise (Invalid_argument (”’rand’ expects an integer argument”, lineno))
| ("rand”, _) —> raise

(Invalid_argument (”’rand’ expects a single, optional, positive, integer argument”, lineno))
| (7clip”, argList) —> make_clip argList env lineno
| (other, _) —> (% TODO: currently also catches invalid argument—counts,

which should probably be intercepted further up the line %)
let msg = ”Function name ’” ° other = ”’ is not a valid function.” in

raise (Invalid_function (msg, lineno))

98

(*

Method Calls,

the major

*)

and method_call objectExpr mname margs env
let objectVal = evaluate objectExpr env in
let argVals = eval_arg_list margs env in
let lineno objectExpr.lineno in
match (objectVal, mname, argVals) with

(Pattern(x), ”repeat”, margs) —>

anything looking like a.b() or a.b(something)
"match’ is wuswually done on both a and b

match margs with
[argVal] —>

match argVal with

Int (y) — if (y < 0) then raise

(Invalid_-argument (”Repeat can only accept non—negative integers”, lineno))
else if (y = 0) then Pattern ([])
else let rec repeatPattern p n = if n = 1 then p else p @ repeatPattern p (n—1)
in Pattern(repeatPattern x y)
| - —> raise
(Invalid_function (”Method repeat expects an integer argument”, lineno))
)
| _ —> raise (Invalid_-function (”Method repeat expects a single argument”, lineno))
| (Pattern(x), ”length”, margs) —>
match margs with
[] —> Int(List.length x)
| - —> raise (Invalid_function (”Method length expects no arguments”, lineno))

| (Pattern(x), ”"reverse” ,argVal) —>
(
match argVal with
[] —> Pattern(List.rev x)
| _

—> raise
| (Pattern(x), ”slice”, [startVal; lenVal]) —>
match (startVal,

(Int(s),

lenVal) with

Int (1)) —> if s < 1 ||

then raise

else if 1 < 0 then raise
(Invalid_argument

else let rec subList inList i
(
match inList with
(] -]
| head::tail —> if i<
else if i =
else if i >
else

99

(”the length must be non—negative”,
minPos maxPos =

(Invalid_function (”Method reverse expects no arguments” lineno))

(s > List.length x && List.length x > 0)
(Invalid-argument (”the start position

is out of bounds”, lineno))

lineno))

minPos then subList tail
maxPos then [head]
maxPos then []

head (subList tail

(i4+1) minPos maxPos

(i4+1) minPos maxPos)

in Pattern(subList x 1 s (s+1-1))

| (-, -) —> raise
(Invalid_argument (”slice must be given integer values for start position and length”, lineno))
)
(Beat(a,i), ”isnull”, []) —> let beatval = state_of_beat objectVal in

match beatval with
Some (-) —> Bool(false)
| None —> Bool(true)
)
(Beat(a,i), ”"note”, []) —> let beatval = state_of_beat objectVal in
(
match beatval with
Some(yesno) —> Bool(yesno)
| None —> Bool(false)
)
(Beat(a,i), ”"rest”, []) —> let beatval = state_of_beat objectVal in
(
match beatval with
Some(yesno) —> Bool(not yesno)
| None —> Bool(false)
)
(Beat(a,i), ”"prev”, [offsetVal]) —>
(
match offsetVal with
Int (offsetInt) —> let newidx = i — offsetInt in Beat(a,newidx)
| - —> raise
(Invalid_function (”Beat method ’prev

> requires an integer argument”, lineno))

)
(Beat(a,i), ”"next”, [offsetVal]) —>
(
match offsetVal with
Int (offsetInt) —> let newidx = i + offsetInt in Beat(a,newidx)
| - —> raise
(Invalid_function (”Beat method ’next’ requires an integer argument”, lineno))
)
(Beat(a,i), ”asPattern”, []) —> let beatval = state_of_beat objectVal in
(
match beatval with
Some(yesno) —> Pattern ([y
| None —> Pattern ([]

esno|)
)
(Clip(ar), ”outputText”, args) —>

match args with

[Str(fileName)] —>
if (String.length fileName) < 1
then raise (

Invalid_argument (”Output filename is empty”, lineno)
)
else

let formatted_clip = string_of_clip ar env in

let out = open_out fileName in

output_string out formatted_clip;
close_out out;
Void

100

| - —> raise (Invalid_function (”clip method ’outputText’ requires a filename”,
)
| (Clip(ar), ”outputMidi”, args) —>
(
match args with
[Str(fileName); Int(tempo)] —>
if (String.length fileName) < 1

then raise (Invalid_argument (”Output filename empty”, lineno))
else if tempo < 1
then raise (Invalid_argument (”Tempo must be positive”, lineno))
else
let out = Unix.open_process_out (”midge —q —o ” fileName) in
output_string out (midge_of_clip ar env tempo);
let output_status = (Unix.close_process_out out) in (match output_status

Unix .WEXITED(_-) —> ignore ();
| - —> raise (Failure ”"midge process terminated abnormally”)
)i
Void
| - —> raise
(Invalid_function (”clip method ’outputMidi’ requires a filename and

| (Clip (ar), ”outputLilypond”, args) —>

let fileName = (match args with Str(f)::. —> f
| - — raise
(Invalid_function (”clip method ’outputLilypond’ requires a filename and
in
let clipname = (match args with _::[] —> ?Drul. Output” | _::[Str(n)] —> n
| - —>raise
(Invalid_function (”clip method ’outputLilypond’ requires a filename and
in
if (String.length fileName) < 1
then raise (Invalid_argument (”Output filename empty”, lineno))
else

let out = open_out fileName in
output_string out (lilypond_page_of_clip ar env clipname);
close_out out;
Void
)

| - —> raise (Invalid_function (”Undefined method function” ,lineno))

(* similar to evaluate, but handles cases like assignment, where the environment is modified
and execute s env = match s with

Expr(e) —> ignore(evaluate e env); env
| IfBlock (tExpr, iftrue, iffalse) —> let tVal = evaluate tExpr env in

match tVal with
Bool(true) —> execlist iftrue env
\ Bool(false) —>
(
match iffalse with
Some(stlist) —> execlist stlist env
| None —> env

101

lineno))

with

”
tempo” ,

title”

title”

*)

lineno))

lineno)))

lineno)))

\ - —> raise (Type_error (”test of if block must be a boolean”, tExpr.lineno))

)

Assign (varName, valExpr, lineno) —>

if (NameMap.mem varName keyword_map) then

raise (Illegal_assignment ("can’t use keyword ’” varName 7’ as a variable”, lineno))
else
let valVal = evaluate valExpr env in
(
match valVal with
Bool(x) —> raise(Illegal_assignment ("can’t assign a boolean”, lineno))
| Str(x) —> raise (Illegal_assignment (”can’t assign a string”, lineno))
| Beat (x,y) —> raise (Illegal_assignment (”can’t assigna beat”, lineno))
| PatternAlias(x) —> raise(Illegal_assignment (”"can’t assign a PatternAlias”, lineno))
| Mapper(-,-,-) —> raise (Illegal_assignment (”can’t assign a mapper” ,lineno))
|

_ —> add_key_to_env env varName valVal
(* Does in fact mask variables in outer scope! Not an error! x)

)

MapDef(mapname, formal_params, contents, lineno) —>
if (NameMap.mem mapname keyword_map)

then raise(Illegal_assignment (”can’t use keyword ’” ~ mapname ~ ”’ as a mapper name” , lineno))
else
if (NameMap.mem mapname env.symbols)
then raise (Illegal_assignment(”can’t give an in—use name to a mapper”, lineno))
else
let newMapper = Mapper (mapname, formal_params , contents) in
let newST = NameMap.add mapname newMapper env.symbols in
{symbols = newST; parent = env.parent}

Return (retExpr) —>
(
match env.parent with
None —> raise (Failure ”in execute, case Return, should not happen (None parent?)”)
\ - —> if (not (NameMap.mem ”return” env.symbols)) then raise (Failure ”still don’t”)

else
let retVal = evaluate retExpr env in
let newenv = add_key_to_env env "return” retVal in

raise (Return_value newenv)

)

InstrDef(argList, lineno) —>
(
try
ignore (get_key_from_env env ”instruments” lineno);
raise (Instruments_redefined (”don’t do that”, lineno)) (*XXX could be improved...x*)

with
Undefined_identifier (_,.) —>
(*+ make sure were mot in a map, so env.parent == None x*)
(match env.parent with Some(_.) —>
raise (Illegal_assignment (”can’t define instruments inside mappers”, lineno))
| - —
let strList = eval_arg_list argList env in

let str_to_string a =

(

match a with
Str(s) —> s
| - —> raise (Invalid_argument (”instruments takes a list of strings”, lineno))

102

) in
let stringList = List.map str_to_string strList in

(

match stringList with

[] — add_-key_to_env env ”instruments” (Instruments(default_instr)) (x

\ - —> let instVal = Instruments(stringList) in
add_key_to_env env ”instruments” instVal

)
)

| Instruments_redefined(e,i) —> raise (Instruments_redefined (e,i))

(x| Illegal_assignment(e,i) —> raise (Illegal_assignment (e,i))x)

| - —> raise (Failure ”in execute, case InstrDef, unexpected exception”)

| EmptyStat(-) —> env

and execlist slist env = List.fold_left (fun env s —> execute s env) env

(* special case used for mapper, when we ezxpect a return wvalue x*)
and execlist_returning slist env =
try List.fold_-left (fun env s —> execute s env) env slist
with
Return_value (newenv) —> newenv
| other —> raise other

C.1.3 drul_helpers.ml
(*

3k 3k ok sk ok skook ok ok skok sk ok sk ok sk ok ok ok sk sk ok ok sk sk ok ok sk skok sk ok skook sk ok sk ok Sk ok sk ok sk ok ko ok sk sk ok ok sk sk ok skosk skook ok ok skook sk ok kook sk ok ok ok ko

* Drul, — Drumming Language

*

* Creation of R. Stewart, T. Bertin—Mahieux, W. Ilahi and B. Warfield
* rs2660 tb2332 wki2001 bbw2108

*

x for the class COMS W4115: Programming Language and Translators

*

x file: drul_helpers.ml

*

* HELPERS

*

x This file contains the helper functions (anything that is not required
* to be mutually recursive with ”evaluate”) for the Drul interpreter.
x This code is written in OCaml.

*
3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk >k sk 3k 3k 3k 3k Sk skoskosk sk ok sk sk sk sk sk sk sk 3k sk 3k 3k 3k sk sk sk 3k 3k Sk sk sk sk sk sk sk sk sk 3k 3k 3k sk 3k 3k 3k 3k 3k 3k Sk kK 3k sk sk sk sk sk sk ok sk ok

*)

open Drul_ast
open Drul_types

(*

103

slist

default *)

create an empty clip of given size (an array of empty patterns)

assumes non empty list (clipLen > 0)
*)
let emptyClip clipSize =
let rec emptyPatternList len =
if len = 1 then [[]]

else (List.append [[]] (emptyPatternList (len — 1)))
in Array.of_list (emptyPatternList clipSize)

(*

turn a pattern object (list of booleans) into an array,

pairs of (array, alias) to be added to the symbol table

*)

let rec get_alias_list p_list a_list counter

let newcounter = counter 4+ 1 in
match (p-list ,a_list) with
(f10m =10

(
| (thispat::rest ,[]) —> (thispat, 7$”
(

string_of_int counter)

thispat ::rest,thisalias:: other_aliases) —>

let dollar_alias = ”8” " (string_of_int counter) in
[(thispat , dollar_alias); (thispat, thisalias)]
@ get_alias_list rest other_aliases newcounter

(*

given a NameMap and a (pattern, alias) pair,
add the appropriate information to the NameMap
(at this point, an array of the beats is the pattern)

*
)
let add_-pattern_alias symbol_-table pair =
let p_obj = fst(pair) in
let alias = snd(pair) in
let p_list =
(
match p_obj with
Pattern(pat) —> pat

| - —> raise (Failure ”in add_pattern_alias,

) in
let p_array = Array.of_list p_list in
let beat_holder = PatternAlias(p-array)

in NameMap.add alias beat_holder symbol_table

use the above functions to add the correct

before entering a "map” block

*)

let init_mapper_st p_list a_list =

and return

[] ,oops) —> raise (Failure ”not enough patterns provided to mapper”)

get_alias_list

should not happen”)

entries to a new symbol table

let alias_list = get_alias_list p-list a_list 1
in List.fold_left add_pattern_alias NameMap.empty alias_list

(* create a new symbol table with the appropriate aliases, and link

let get_map_env parent_env p_list a_list =

104

it to the parent x*)

rest

(1

newcounter

let new_symbol_table = init_mapper_st p_list a_list
in {symbols = new_symbol_table; parent = Some(parent_env)}

(x is called by find_-longest_list x)

let maxlen_helper currmax newlist =
match newlist with
Pattern(patlist) —>

let currlen = List.length patlist in
if (currlen > currmax) then currlen else currmax

)

| - —> raise (Failure ”in maxlen_helper, should not happen (not a pattern?)”)

(* find the length of the longest list x)
let find_longest_list patternlist = List.fold_-left maxlen_helper 0 patternlist

(*
Adds a given key & wvalue to env in (env, parentEnv).
Returns the modified env.

*)

let add_key_-to_env env key value =

match env with {symbols = old_st; parent = whatever} —>
let new_st = NameMap.add key value old_st
in {symbols = new_st; parent = whatever}

(x retrieve the value for a given key from the environment
or its parent.
If the wvalue ts a PatternAlias, then wuse some magic to transform
it into a Beat
*)
let rec get_key_from_env env key lineno =
if NameMap.mem key env.symbols then NameMap. find key env.symbols
else match env.parent with
Some (parent_env) —> get_key_from_env parent_env key lineno
\ None —> raise (Undefined_identifier (key, lineno))

(* takes an alias, turns it into a beat object (used in mapper) *)
and beat_of_alias env alias lineno =
let currentVar = get_key_from_env env ”$current” lineno
in match currentVar with
Int (currentVal) —> Beat(alias ,currentVal)
\ _ —> raise (Failure ”in beat_of_alias, can’t have a non—integer in $current”)

let state_of_beat beat =
match beat with
Beat (pattern_data ,idx) —>
let pattern_length = Array.length pattern_data in
if (idx < 0 or idx >= pattern_length) then None else Some(pattern_data.(idx))
| - — raise (Failure ”in state_of_beat , should not happen (not a beat?)”)

(* get an array with the mames of the current instruments in it *)
let get_instr_name_array env =
(* TODO: make this a less hackish way to avoid passing that line—number around? x)
let drullnstrList = get_key_from_env env ”instruments” 0 in
match drullnstrList with
Instruments (1) —> Array.of_list 1

105

| - —> raise (Failure ”slot for instruments does not contain instruments”)

(*
find the position of an instrument in the instruments in the env, returns —1 if doesn’t find it
*k
)
let get_instrument_pos env instrName lineno =
try
let instrListDrul = get_key_from_env env ”instruments” lineno in
match instrListDrul with
Instruments (instrList) —>
let rec find_pos strList counter =

match strList with
[] - -1
| head:: tail —> if (String.compare head instrName) = 0 then counter
else find_pos tail (counter + 1)
)
in find_pos instrList 0
\ _ —> raise (Failure ”in get_instrument_pos, weird stuff in env for instruments...”)
with
Undefined_identifier (e,i) —> raise (Failure ”in get_-instument_pos, instrument not saved in env yet”)
| Failure (e) —> raise (Failure e)
| _ —> raise (Failure ”in get_instrument_pos, wrong or new exception”)

(x concat patterns into ome x)
let rec concat_pattern_list plist lineno =
match plist with

[=1
| Pattern(x):: tail —> x @ (concat_pattern_list tail) lineno
| - —> raise (Invalid_argument (”concat only concatenates patterns”, lineno))

(*

get an empty clip (clip with the right number of empty patterns)

and fills it from a pattern list

*

)

let rec fill_in_clip_patterns empty_clip pattern_list idx lineno = match pattern_list with

[] = Clip(empty_clip) (x mnot technically empty any more *)
(x TODO: catch array out of bounds here x)
| Pattern(p):: tail —>

ignore (empty_clip.(idx) <— p);
fill_in_clip-patterns empty_clip tail (idx + 1) lineno

| InstrumentAssignment(_,_):: tail —>
raise (Invalid_-argument (”clip arguments may not mix styles”, lineno))
| - >
raise (Invalid_argument (”clip arguments must all evaluate to patterns”, lineno))

(*

similar as fill_in_clip_patterns , but deals with the InstrumentAssignments ’hihat’ <— pattern(”1”)

*

)

let rec fill_in_clip-instr_assigns empty_clip assignment_list env lineno = match assignment_list with

[] —> Clip(empty_clip) (* not technically empty any more *)
| InstrumentAssignment (instrName ,p):: tail —>
let idx = get_instrument_pos env instrName lineno in
if idx < 0

106

then raise (Invalid_argument (”unknown instrument name ’” ° instrName “”’” lineno))
else
ignore(empty_clip.(idx) <— p); fill_in_clip_instr_assigns empty.clip tail env lineno
| Pattern(-):: tail —>raise (Invalid_argument (”clip arguments may not mix styles” ,lineno))
| - —> raise (Invalid_argument (”clip arguments must all evaluate to instrument assignments”,lineno))

(x first function in order to make a clip x*)
let make_clip argVals env lineno =
try
(
let instrument_list = get_key_from_env env ”instruments” lineno in
let num_instrs =

match instrument_list with
Instruments (i) —> List.length i
| - —> raise (Failure ”in make_clip, should not happen”)
) in
let new_clip = emptyClip num_instrs in
let first_arg = List.hd argVals in

match first_arg with
Pattern(-) —> fill_in_clip_patterns new_clip argVals 0 lineno

| InstrumentAssignment (_-,_-) —>fill_in_clip_-instr_assigns new_clip argVals env lineno
| _ —> raise
(Invalid_argument (”clip arguments must be patterns or instrument assignments”, lineno))

)

with Undefined_identifier (”instruments” ;i) —> raise
(Illegal_assignment (”trying to create a clip before defining instruments”, i))

C.1.4 drul output.ml

(* helper functions for all non—trivial forms of output
* created by Ben Warfield

* (contents also authored partially by Rob Stewart—this file 4is a refactor)
x 12/17/2008

open Drul_types
open Drul_helpers

(x Oh, Printf.sprintf... we’ve only just met, and yet already I hate you with
* a grim, joyless spite that would do a COBOL programmer proud.

*)

let lilypond_staff_format =
7 \\new DrumStaff\n\t\\with{
instrumentName = \"%s\”
drumStyleTable = #percussion—style
\\override StaffSymbol #’line—count = #1
\\remove Time_signature_engraver \n\t}\n\t\\drummode { %s }\n”
(’a —> b —> ’c, unit, string) format

107

)

let lilypond_page_format = (
"\\header{\n\ttitle = \"%s\”\n}\n<<\n%s\n>>\n\\version \”2.10.33\”\n”
(’a —> b —> ’c, unit, string) format

)

let string_of_beat b =
let state = state_of_beat b in
match state with
None —> ”NULL”
| Some(b) —> if b then "NOTE” else "REST”

” » ”

(* turn a pattern into a string, using predefined strings for ”"yes” and
let folded_pattern p ifyes ifno =
List.fold_left (fun a x —> a "~ (if x then ifyes else ifno)) ””

no”)

(x get a string out of a pattern, pattern(”01017) becomes 70101” x)
let string_of_pattern p = folded_pattern p ”1” 70”7

(x get a midge—formatted string for the supplied instrument out of a pattern x*)
let string_of_instr_pattern p i = folded_pattern p (i =~ 7”7 ”) 7r 7

(x problem: getting the name in makes this less generic *)
let lilypond_staff_of_pattern iname p =
let note_string = folded_pattern p ”tri4d ” 7r4 7 in
let tmp = lilypond_staff_format in
Printf.sprintf tmp iname note_string

let lilypond_page_of_clip clip_contents env title =

let inames = get_instr_name_array env in

assert ((Array.length inames) >= (Array.length clip_contents));

let staff_strings = Array.mapi
(fun idx pat —> lilypond_staff_of_pattern inames.(idx) pat)
clip_contents in

let all_staffs = Array.fold_left (fun a b —> a "~ b) 7” staff_strings in

Printf.sprintf lilypond_-page_-format title all_staffs

let string_of_clip clip_-contents env =

let instrument_names = get_instr_name_array env in
assert ((Array.length instrument_names) >= (Array.length clip_contents));
let formatted_strings = Array.mapi

(fun idx p —> instrument_names.(idx) "”7:\t” ° string_of_pattern p)

clip_.contents in

let all_patterns = Array.fold_left
(fun a str —> a ~ "\t” " str "~ ”\n”)
7?7 formatted_strings in

?[\n” "~ all_patterns 77

108

let midge_of_clip clip_contents env tempo =
let inames = get_instr_name_array env in

assert ((Array.length inames) >= (Array.length clip_contents));

let pattern_strings = Array.mapi
(fun idx p —> if (0 < List.length p)
then (

”?\t@channel 10 ” ° inames.(idx) ~ ” { /L4/”
(string_of_instr_pattern p inames.(idx)) ~ 7 }\n”

)

else

9

)

clip_contents in
”?@head {\n”
" 7 $tempo (string_of_int tempo) "~ ”\n”
" ?8$time_sig 4/4”7 " 7\n”
~ 77}\1,177
"7 @body {\n”

”

(Array. fold_left (fun a s—>a”s) ”” pattern_strings)

©\np\n”

C.1.5 drul_printer.ml

(* Drul_printer package
Pretty—print a Drul AST
11/11/2008

*)

open Drul_ast

let string-of_intop = function
Add —> 7 Addition”
| Sub —> ” Subtraction”
Mult —>” Multiplication”
| p
| Div. —> 7 Division”
| Mod —> ”Modulus”

let string_of_compop = function
EqualTo —> ” Equality test”
| NotEqual —> ”Inequality test”
| LessThan —> ”Less than”
| GreaterThan —>” Greater than”
| LessEq —> ”Less than/equal to”
| GreaterEq —> ” Greater than/equal to”

let string_of_boolop = function

And —> ” Conjunction”
| Or —> ”Disjunction”

let rec string_of_expr = function

ClInt (x) —> ”?Constant integer ” " string_of_int (x)

| CStr(s) —> ?Constant string [” s ")
| CBool (b)—> ”Constant ” *~ if b then "TRUE’ else
| Var(id) —> ”Variable name ” " id

109

"FALSE”

UnaryMinus (neg) —> " Arithmetic negation of ” ° string_of_expr (neg)
| UnaryNot(bool) —> ”Logical negation of 7 " string_of_expr (bool)
ArithBinop (a,op,b) —>” Arithmetic operation: ” " string-of_intop (op)
© 7. left operand= "" string_-of_expr(a)
; right operand= " ~ string_of_expr(b)
| LogicBinop(a,op,b) —> string_-of_boolop (op) = 7 of 7 "~ string_-of_expr(a)
©” with 7" string_of_expr(b)
| Comparison(a,op,b) —> ”Comparison of type
© 7. left operand= 7"

”»

”»

string_of_compop (op)
string_of_expr (a)

© 7 right operand= 7 " string-of_expr (b)

| FunCall (name, arglist) —> 7 Call to function ’” name

7”7’ with these arguments: ”

" List.fold-left (fun a ex —> a ~ string_of_expr(ex) ~ 7; ”) 77 arglist
| MapCall(m, arglist) —> ” Called ’map’ on arguments: ”

(List.fold_left (fun a ex —> a "~ string_-of_expr(ex) "~ 7; ”) ”” arglist)
" ” Using Mapper=" " string_of_mapper (m)
and string_of_mapper = function

NamedMap (name) —> name
| AnonyMap(list) —> ”a statement list we can’t evaluate yet”

and string_of_statement = function
Expr(e) —> ”Simple statement: ” string_of_expr(e)
| IfBlock (exp, stlist ,None) —> ”If block. Condition: 7 ~ string_of_expr (exp)
" string_of_block "TRUE” stlist ~ ”"\t(No else)\n”
| IfBlock (exp, stlist ,Some(elses)) —>”If block. Condition: ” " string_of_expr (exp)

string_of_block ”"TRUE” stlist
string_of_block ”FALSE” elses
| _ —> ”Something not yet covered.”
and string_of_block name stlist =

?\tStatements in block ”" name” ”:\n”
List. fold_left (fun s x —> s ~ ”\t” “string_of_statement(x) "~ ”\n”) 7”7 stlist
let string_of_program = function
Content (1) —> ”Statements in this program:\n”
List.fold_left (fun s x —> s "~ string_of_statement(x) ~ ”"\n”) 77 1

C.1.6 drul_types.ml
(*

3k 3k 3k sk sk sk sk sk sk sk sk ok >k >k >k sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk >k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk >k >k >k >k 3k 3k sk sk sk sk ok ok sk sk sk sk sk sk k kR k&

* Drul, — Drumming Language

*

x Creation of R. Stewart, T. Bertin—Mahieuz, W. Ilahi and B. Warfield
* rs2660 tb2332 wki2001 bbw2108
*

x for the class COMS W4115: Programming Language and Translators

*

x file: drul_-types.ml

*

* TYPES

*

x This file contains the internal type and exception declarations
x required by the interpreter and printing/checking functions.

*

110

3k 3k sk ke sk sk sk sk sk sk sk sk sk sk sk sk

*)
open Drul_ast
module NameMap = Map.Make(String)

(* most of the exceptions x)

exception Type_error of string x int
exception Invalid_function of string * int
exception PatternParse_error of string * int
exception Invalid_argument of string =* int
exception Undefined_identifier of string = int
exception Illegal_assignment of string x int
exception Instruments_redefined of string * int
exception Illegal_division of string x int
type pattern = bool list

type pattern_alias = bool array

(x type of every object in Drul x)
type drul_-t =

Void

Int of int

Str of string
Bool of bool
Pattern of pattern

|

|

|

|

| Clip of pattern array

| Mapper of (string = string list * statement list)

| PatternAlias of pattern_alias

| Beat of pattern_alias % int

| Instruments of string list

| InstrumentAssignment of string * pattern

* symbol table for Drul:

(ymbol table f Drul
the current environment is ’symbols
the parent is another drul_enwv

7.

a map from string to drul_t,

*)

type drul_env =

symbols: drul_t NameMap.t;
parent: drul_env option

C.1.7 drul_parser.mly

7f
open Drul_ast
open Lexing

let debug str = if (true) then ignore(print_endline str) else ignore ()

let string_of_two_positions start_pos end_pos =
let start_line = start_pos.pos_.lnum in

111

let end_line = end_pos.pos_lnum in

let start_char = start_pos.pos_cnum — start_pos.pos_bol in
let end_char = end_pos.pos_.cnum — end_pos.pos_bol in
if (end_line = start_line) then
if (end_.char = start_char)
then Printf.sprintf "on line %d after character %d”
start_line start_char
else Printf.sprintf "on line %d between characters %d and %d”
start_line start_char end_char
else

Printf.sprintf ”between char %d of line %d and char
start_char start_line end_char end_line
let parse_error str =
let start_pos Parsing.symbol_start_pos ()
let end_pos Parsing.symbol_end_pos ()
prerr_endline (”Syntax error ” °
exit (2)

in
in

%}

Y%token
%token
%token
%token
%token
%token
%token
%token

<int> IF ELSE ELSEIF RETURN
<int> TRUE FALSE
<int> MAP MAPDEF LARROW CLIP

<int> INSTRUMENTS
<int * int> INTLITERAL
<string x int> STRLITERAL ID

%left LIST

%nonassoc ELSE

%left ASSIGN LARROW
%left INSTRUMENTS
%left OR

%left AND

%left NEQ EQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE MOD
Y%nonassoc UMINUS NOT
%left MCALL

%start program
Y%type<Drul_ast .program> program

string_of_two_positions

%d of line %d”

start_pos end_pos);

<int> SEMI LPAREN RPAREN LBRACE RBRACE COMMA PLUS MINUS TIMES DIVIDE
<int> ASSIGN EQ NEQ LT LEQ GT GEQ EOF MCALL AND OR NOT MOD

%%
expr:
INTLITERAL { { real_expr = CInt(fst($1)); lineno = snd($1) } }
| STRLITERAL { { real_expr = CStr(fst $1); lineno = snd($1) } }
| TRUE { { real_expr = CBool(true); lineno = $1 }}
| FALSE { { real_expr = CBool(false); lineno = $§1 }}
| 1D { { real_expr = Var(fst $1); lineno = snd($1) } }
| expr PLUS expr { { real_expr = ArithBinop($1, Add, $3); lineno
| expr MINUS expr { { real_expr = ArithBinop($1, Sub, $3); lineno
| expr TIMES expr { { real_expr = ArithBinop($1, Mult, $3); lineno

112

expr DIVIDE expr { { real_expr = ArithBinop($1l, Div, $3); lineno = $2 } }
expr MOD expr { { real_expr = ArithBinop($1, Mod, $3); lineno = $2 } }
expr EQ expr { { real_expr = Comparison($1, EqualTo, $3); lineno = $2 } }
expr NEQ expr { { real_expr = Comparison($1, NotEqual, $3); lineno = $2 } }
expr LT expr { { real_expr = Comparison($1l, LessThan, $3); lineno = $2 } }
expr GT expr { { real_expr = Comparison($1, GreaterThan, $3); lineno = $2 } }
expr LEQ expr { { real_expr = Comparison($1, LessEq, $3); lineno = $2 } }
expr GEQ expr { { real_expr = Comparison($1, GreaterEq, $3); lineno = $2 } }
expr AND expr { { real_expr = LogicBinop($1, And, $3); lineno = $2 } }

{ { real_expr = LogicBinop (%1, Or, $3); lineno = $2 } }

MINUS expr %prec UMINUS { { real_expr = UnaryMinus($2); lineno = $1 } }
NOT expr { { real_expr = UnaryNot($2); lineno = $1

ID LPAREN expr-list RPAREN { { real_expr = FunCall(fst($1), $3); lineno = snd($1) } }
ID LPAREN RPAREN { { real_expr = FunCall(fst($1), []); lineno = snd($1) } }
expr MCALL ID LPAREN RPAREN { { real_expr = MethodCall($1, fst($3), []); lineno
expr MCALL ID LPAREN expr_list RPAREN { { real_expr = MethodCall($1, fst($3), $5); lineno

LPAREN expr RPAREN { { real_expr = $2.real_expr; lineno = $1}
MAP LPAREN expr_list RPAREN block { { real_expr = MapCall(AnonyMap($5),
MAP LPAREN expr_list RPAREN ID { { real_expr = MapCall(NamedMap(fst ($5)

|
|
|
|
|
|
|
|
|
| expr OR expr
|
|
|
|
|
|
i
| STRLITERAL IARROW expr { { real_expr = InstrAssign(fst($1), $3); lineno

$3);
), $3); lineno =
$2 } }
statement :
expr SEMI { Expr($1) }

| RETURN expr SEMI { Return($2) }

| MAPDEF ID LPAREN id_list RPAREN block { MapDef((fst $2), List.rev $4, $6, snd($2)) }

| ID ASSIGN expr SEMI { Assign(fst($1), $3, snd($1)) }

| IF LPAREN expr RPAREN block iftail { IfBlock($3, $5, $6) }

| INSTRUMENTS LPAREN expr_list RPAREN SEMI { InstrDef($3, $1) }

| INSTRUMENTS LPAREN RPAREN SEMI { InstrDef([], $1) }

| SEMI { EmptyStat($1) }

block:
LBRACE st_list RBRACE { List.rev $2 }

id_list :
ID { [fst($1)] }
| id_list COMMA ID { fst($3)::%1 }

expr_list:
expr { [$1] }
| expr COMMA expr_list { $1::8$3 }

st_list:
/* staring into the abyss x/ { [] }
| st-list statement { $2::%$1 } /% build statement list backward */

program :
st_list { Content(List.rev $1) }

iftail:
ELSEIF LPAREN expr RPAREN block iftail { Some(| IfBlock($3,$5,%6)]) }
| ELSE block { Some($2) }
| /+ nothing %/ { None }

113

lineno =

C.1.8 drul_scanner.mll

{
open Drul_parser
open Lexing
let debugging = ref false
let standalone = ref false
let line_number = ref 1
let set_-debug() = debugging := true
let debug str = if (!debugging) then ignore(print_endline str) else ignore()
let escape.re = Str.regexp " \\\\\\(\\\\\\[\"\\)”
(+ \A\N\N(ANNZ/AN)” also works, almost as ugly *)
let escape_repl = 7\\1”
(* In 83.11 this is built in to Lezing, but alas, I have 8.10...%)
(* This code largely borrowed from a newgroup post by Till Varoquauz
* complaining about it not being built in:
* http://caml.inria. fr/pub/ml—archives/caml—1list /2008/03/4575¢51493931878a25de6b1712a4b24 .en. html
*
)
let new_line lexbuf =
incr line_number;
let pos = lexbuf.lex_curr_p in
lexbuf.lex_curr_p <— {
pos with
pos_lnum = pos.pos_lnum + 1;
pos_bol = pos.pos_cnum
¥
}
let digit = [’0> — "9+
let identifier — [737_7Z7 7A7_7Z7 777][’a7_7z7 7A7_7Z7 77’ 707_’97]*
rule token = parse
» { debug(” whitespace ’'b ’7); token lexbuf }
| A\t { debug(” whitespace ’'t’”); token lexbuf }
| A\’ { debug(” whitespace ’'r’”); token lexbuf }
| \n’ { debug(” whitespace 'n’”);
new_line lexbuf;
token lexbuf }
| "] { debug "COMMENI”; comment lexbuf }
| T { debug ”LPAREN”; LPAREN(!line_number) }
|) { debug "RPAREN”; RPAREN(!line_number) }
\ {° { debug "LBRACE”; LBRACE(!line_number) }
\ 3 { debug "RBRACE”; RBRACE(!line_number) }
\ 7y { debug "SEMI”; SEMI(!line_number) }
| 7 { debug "COMMA”; COMMA(!line_number) }
| 4+ { debug ”"PLUS”; PLUS (!line_number) }
| T { debug ?MINUS”; MINUS(!line_.number) }
| Tk { debug "TIMES”; TIMES(!line_number) }
\ i { debug ”"DIVIDE” ; DIVIDE(!line_number) }
\ =" { debug ”ASSIGN”; ASSIGN(!line_number) }
| =" { debug "EQ’; EQ(!line_.number) }
| v l=" { debug ”"NEQ’; NEQ(!line_number) }
| e { debug ”NOT”; NOT(!line_number) }

114

| "% { debug "MOD”; MOD(!line_number) }
\ < { debug "LT”; LT(!line_number) }
\ r<=" { debug "LEQ”; LEQ(!line_number) }
\ > { debug "GI”; GT(!line_number) }
| 7>=" { debug "GEQ’; GEQ(!line_number) }
| 7&K { debug ”AND”; AND(!line_number) }
\ 77 { debug "OR”; OR(!line_.number) }
\ > { debug ”"MCALL” ; MCALL(!line_number) }
| "true” { debug "TRUE”; TRUE(!line_number) }
\ 7 false” { debug "FALSE”; FALSE(!line_number) }
| 7 if” { debug 7IF”; IF (!line_number) }
| Velse” { debug "ELSE”; ELSE (!line_number) }
| Velseif” { debug ”ELSEIF”; ELSEIF (!line_.number) }
| ” mapper” { debug "MAPDEF” ; MAPDEF(!line_number) }
| ”map” { debug "MAP”; MAP(!line_.number) }
| "return” { debug "RETURN”; RETURN(!line_number) }
| ”instruments” { debug ”INSTRUMENTS” ; INSTRUMENTS (!line_number) }
\ r<=7 { debug "LARROW’ ; LARROW(!line_number) }
| ’$’ digit as numbers { debug(”index variable ” ° numbers); ID(numbers, !line_.number) }
\ identifier as ide {
if ((String.length ide) <= 64)
then
debug(”identifier ” ~ ide);
ID(ide ,!line_number)
)
else raise (Failure(”ID TOO LONG: ” ~ ide))
}
| digit as dig { debug (”digits 7 "~ dig); INTLITERAL(int-of_string dig, !line_.number) }
‘ 1M (((7\\7 [19 7\\7 j|) | [A{7\r7 7\n7 7\\7 1 7])* as rawstr) 19
(* TODO: accept newlines, then raise ”illegal character in string?” =)
let fixedstr = Str.global_replace escape_re escape_repl rawstr in
debug ((”string constant [” ° fixedstr =~ 7]7));
STRLITERAL(fixedstr , !line_number)
| eof { debug "EOF”; EOF(!line_number) }
| _ as char { raise (Failure(”illegal character ” "~ Char.escaped char)) }
and comment = parse
\n’ { new_line lexbuf; token lexbuf }
\ eof { debug "EOF”; EOF(!line_number) }
| - { comment lexbuf
{
if (!standalone) then
let lexbuf = Lexing.from_channel stdin in
let rec nexttoken buf = ignore(token buf);nexttoken buf

in nexttoken lexbuf
else ignore ()

115

C.1.9 test.ml

open Drul_ast

let - =
let lexbuf = Lexing.from_channel stdin in
let _ = Drul_parser.program Drul_scanner.token lexbuf in

print_endline ”Parsed program (somewhat) successfully!”
(xlet listing Printer. string_-of_program program in
print_string listing x)

C.1.10 treedump.ml

open Drul_printer

let _ =
let lexbuf = Lexing.from_channel stdin in
let program = Drul_parser.program Drul_scanner.token lexbuf in

print_endline (string-of_program program)

C.1.11 drul_ast.mli

(x AST scratch =)

type intOp = Add | Sub | Mult | Div | Mod

type compOp = EqualTo | NotEqual | LessThan | GreaterThan | LessEq
type boolOp = And | Or

type mapper =
AnonyMap of statement list
| NamedMap of string

and expr =
CInt of int

| CStr of string

| CBool of bool

| Var of string

| UnaryMinus of tagged_expr

| UnaryNot of tagged_expr
| ArithBinop of tagged_expr % intOp * tagged_expr
| LogicBinop of tagged_expr * boolOp x tagged_expr
| Comparison of tagged_expr * compOp * tagged_expr
|
|
|
|

FunCall of string * tagged_expr list
MethodCall of tagged_expr * string * tagged_expr list
MapCall of mapper *+ tagged_expr list

InstrAssign of string * tagged_expr

and statement

116

GreaterEq

Expr of tagged_expr
| Return of tagged_expr
| Assign of string * tagged_expr * int
| MapDef of string * string list * statement list % int
| IfBlock of tagged_expr * statement list * statement list option
| InstrDef of tagged_expr list * int
| EmptyStat of int

and tagged_expr = { real_expr : expr ; lineno : int }

type program = Content of statement list

C.1.12 Makefile

OC = ocamlc
CFLAGS = # none for now

OBJS = drul_scanner.cmo drul_parser.cmo drul_types.cmo \
drul_helpers.cmo drul_output.cmo drul_main.cmo
LIBS = str.cma unix.cma

all : $(OBJS) drul

testing: test.cmo $(OBJS)
$(OC) $(CFLAGS) —o testing $(LIBS) $(OBJS) test.cmo

treedump: treedump.cmo $(OBJS)
$(0C) $(CFLAGS) —o treedump $(LIBS) $(OBJS) drul_printer.cmo treedump .cmo

scantest: drul_scanner.cmo scantest.cmo
$(0OC) $(CFLAGS) —o scantest $(LIBS) $<

drul: drul_interpreter.cmo $(OBJS) drul_ast.cmi
$(0OC) $(CFLAGS) —o drul $(LIBS) $(OBJS) drul_interpreter.cmo

drul_scanner.ml : drul_scanner.mll
ocamllex $<

drul_parser.ml drul_parser. mli : drul_parser.mly
ocamlyacc $<

%.cmo : %.ml

$(0C) $(CFLAGS) —c $<

%.cmi @ %.mli
$(0C) §(CFLAGS) —c $<

.PHONY : clean
clean
rm —f drul_parser.ml drul_parser.mli drul_scanner.ml *.cmo *.cmi testing treedump drul

Generated by ocamldep x.ml *.mli

drul_helpers.cmo: drul_-types.cmo drul_ast.cmi
drul_helpers.cmx: drul_types.cmx drul_ast.cmi

117

drul_interpreter .cmo: drul_types.cmo drul_scanner.cmo drul_parser.cmi \
drul_main.cmo drul_ast.cmi

drul_interpreter .cmx: drul_types.cmx drul_scanner.cmx drul_parser.cmx \
drul_-main.cmx drul_ast.cmi

drul_main.cmo: drul_types.cmo drul_helpers.cmo drul_ast.cmi

drul_main.cmx: drul_types.cmx drul_helpers.cmx drul_ast.cmi

drul_output.cmo: drul_types.cmo drul_helpers.cmo

drul_output.cmx: drul_types.cmx drul_helpers.cmx

drul_parser.cmo: drul_ast.cmi drul_parser.cmi

drul_parser.cmx: drul_ast.cmi drul_parser.cmi

drul_printer.cmo: drul_ast.cmi

drul_printer .cmx: drul_ast.cmi

drul_scanner.cmo: drul_parser.cmi

drul_scanner .cmx: drul_parser.cmx

drul_types.cmo: drul_ast.cmi

drul_types.cmx: drul_ast.cmi

test.cmo: drul_scanner.cmo drul_parser.cmi drul_ast.cmi

test .cmx: drul_scanner.cmx drul_-parser.cmx drul_-ast.cmi

treedump.cmo: drul_scanner.cmo drul_printer.cmo drul_parser.cmi

treedump.cmx: drul_-scanner.cmx drul_printer.cmx drul_parser.cmx

drul_parser.cmi: drul_ast.cmi

C.2 Test Code

C.2.1 LaunchTests.py

#! Jusr/bin/env python
Drull team, Columbia (2008) PLT class
copyright Drull team

contact: tb2332Q@Qcolumbia.edu

name: LaunchTests.py
language: python
programer: Thierry Bertin—Mahieux

main program of the test suite, launch all tests that it can find.
7N

import os
import sys
import glob
import time
import tempfile

drulpath =7 ../”
testspath = 7./ Tests/”

118

logspath = ”./LOGS/”
mainprog ? ../ Parser/drul”

returns a list of file in current dir
to use with os.walk
def grab_tests(arg=list (),path="" ,names=""):
tests = glob.glob(os.path.join (os.path.abspath(path),’*.drultest’))
for t in tests:
arg.append(t)
return arg

make sure that all tests found have a corresponding output
if not, program exits
def make_sure_tests_have_outputs(tests):
noout = list ()
for t in tests
if not os.path.exists(t + ’out’):
print (t+’out’)
noout . append (t)
if len(noout) > O0:
print ’problem,’,len(noout),’tests have no corresponding output’
print ’we stop testing go solve it! and grab a beer’
print ’files that cause problems:’
for t in noout:
print t
sys.exit (0)

launch any command, return outputs
def command_with_output(cmd):
if not type(cmd) = unicode
cmd = unicode (cmd, "utf—8’)
#should this be a part of slashify or command_-with_output?
#if sys.platform=="darwin’
cmd = unicodedata.normalize (’NFC’, cmd)

(child_stdin , child_stdout ,child_stderr) = os.popen3(cmd.encode(’utf—-8"))
datal = child_stdout .read ()

data2 = child_stderr.read ()

child_stdout . close ()

child_stderr.close ()

return (datal,hdata2)

launch one test, given a test path, returns output lines
(output is first written to a file, than read)
def launch_one_test(tpath):
#cmd = "head —20 7 + tpath
cmd = mainprog + 7 < 7 4 tpath + 7’7
(outdata ,outerr) = command_with_output (cmd)
write to a tempfile, then read it
dumb, but easier to compare with a saved output file
tempfname = ”tempfileTODELETE. txt”
tempf = open (tempfname, 'w’)
tempf. write (outdata)

119

tempf. write (outerr)

tempf. close ()

outlines = read_file (tempfname)
os.unlink (tempfname)

return outlines

read file given a path, return lines
def read_file(p):

fIn = open(p,’'r’)

res = fIn.readlines ()

fIn . close ()

return res

compare two list of lines, returns true or false
def compare_2set_of_lines(linesl ,lines2):
if len(linesl) != len(lines2):
return False
for k in range(len(linesl)):
if linesl [k] != lines2[k]:
return False
return True

create_log_file , returns a path
if path already exists, add something at the end
def create_log_file ():

res = "LOG_tests_”
res += str(time.ctime()).replace(’ ’,’_")
res += ’.log’

res = os.path.abspath(os.path.join (logspath ,res))
if os.path.exists(res):

counter = 1
while os.path.exists(res):
counter = counter + 1

res = res[:—4] + (’ + str(counter) + ’).log’
return res

add lines to a log path, can pass in one string or list of string
def add_-to_-log(logf,lines):

open log file, creates it if needed

#if os.path.exists (logf):

flog = open(logf, w’)

#else :

flog = open(logf,’a’)

flog = open(logf,’a’)

if string

if type(lines) = type(” 7):
flog . write(lines + ’\n’)

else:

for 1 in lines:
flog . write(l + ’\n’)
close

120

flog . close ()

help menu

def die_with_usage ():
print 7 sk ok ok ok ok ok ok sk ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
print ’Welcome to Drull test suite’
print ’to launch test, type:’

)

print °’ LaunchTests.py —go’

print 7’

print ’test files should end in: .drultest’
print ’and corresponding outputs: .drultestout’

print ’Of course, test names must match, like:’

print 7 ’testpatternl.drultest’ and ’testpatternl.drultestout’”
PUTATIT 7 ook sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok oK oKk oKk ok K ok ok oKk oKk ok ok oKk ok ok ok ok ok ok ko ok ok ok Kk ko
sys.exit (0)

)

#**

MAIN
if __name__ =— ’__main__"’

launch help menu if needed
if len(sys.argv) < 2 or sys.argv[l] != "—go”:
die_with_usage ()

check if testing program ezists and can be found

if not os.path.exists (mainprog):
print ”you didn’t install the main program, make drul”
sys.exit (0)

grab all tests
tests = list ()
os.path.walk (testspath ,grab_tests ,tests)

make sure all tests have an output
make_sure_tests_have_outputs(tests)

make sure we found tests
if len(tests) =— O0:
print "dummass, there’s no tests”
sys.exit (0)
else
print ’launching’,len(tests),’ tests’
get logfile
logfile = create_log_file ()

launch every test
counter = 0
countpassed = 0

121

countfailed = 0
for t in tests:
counter = counter + 1
newout = launch_one_test (t)
goodout = read_file(t + ’out’)
isOK = compare_2set_of_lines (newout, goodout)
if isOK:
countpassed = countpassed + 1
add_to_log(logfile ,str (counter) + ') test PASSED: ’+t)
else :
countfailed += 1
add_to_log(logfile ,str (counter) + ’) test FAILED: ’+t)
add_to_log (1ogfile , 7 sk skskokskskon sk sk skoskok s ok sk skoskok s sk ok ok stk ok ok skok ok s skok okt ok skokok)
add_to_log (logfile , "*should be:x’)
add_to_log (logfile ,goodout)
add_to_log (logfile , ’*and it is:*x’)
add_to_log (logfile ,newout)
add_to_log (1ogfile , 7 sk skok oo sk sk skokoskok s ok sk okoskok o sk ok okt ok ook skoskok ok o skokokok ok skokok)

results

print ’passed’,countpassed,’tests out of’,counter

add_to_log (logfile , bttt SUMMARY: *)
add_to_log (logfile , ’passed ’+str(countpassed)+’ tests out of ’+str(counter))

C.2.2 General test files

../ TestSuite/Tests/assignl.drultest

a = 3;
p = pattern(”701”);
map (p) a;

print (”bad”);

../ TestSuite/Tests/assignl.drultestout

Type error on line 4: we were expecting a mapper, name associated with something else

../ TestSuite/Tests/assign2.drultest

p = pattern(”10”);
mapper concat (p) {}
print (?bad”);

122

../ TestSuite/Tests/assign2.drultestout

Illegal assignment attempted on line 2: can’t use keyword ’concat’ as a mapper name

../ TestSuite/Tests/assign3.drultest

p = pattern(”10”);
mapper rand (p) {}
print (?bad”);

../ TestSuite/Tests/assign3.drultestout

Illegal assignment attempted on line 2: can’t use keyword ’rand’ as a mapper name

../ TestSuite/Tests/assignd.drultest

p = pattern(”10”);
mapper slice (p) {}
print (”bad”);

../ TestSuite/Tests/assignd.drultestout

)

Illegal assignment attempted on line 2: can’t use keyword ’slice’ as a mapper name

../TestSuite/Tests/assign5.drultest

p = pattern(”10”);
mapper pattern (p) {}
print (?bad”);

../ TestSuite/Tests/assign5.drultestout

)

Illegal assignment attempted on line 2: can’t use keyword ’pattern’ as a mapper name

123

../ TestSuite/Tests/beat_asPatternl.drultest

pl = map (pattern(”11117)) { return concat($1.asPattern(), pattern(”0”)); };
print (pl);

p2 = map (pattern(”1010”), pl) { return $1.asPattern().repeat(3); };
print (p2);

../TestSuite/Tests/beat_asPatternl.drultestout

10101010
111000111000

../TestSuite/Tests/beat_note_rest.drultest

foo = pattern(”1”)
bar = pattern(”10”

map (foo,bar) {
if ($1.note()) {print(”$1 note”);}
else {print(”$1 not note”);}
if($1.rest()) {print(”$1 rest”);}
else {print(”$1 not rest”);}
if(%$2.note()) {print(”$2 note”);}
else {print(”$2 not note”);}
if(32.rest()) {print(”$2 rest”);}
else {print(”$2 not rest”);}

)i

../ TestSuite/Tests/beat_note_rest.drultestout

$1 note
$1 not rest
$2 note
$2 not rest
$1 not note
$1 not rest
$2 not note
$2 rest

../ TestSuite/Tests/beat_simple_prevnext.drultest

124

a = pattern (710107);
map (a){
print ($1.prev(1l));
print ($1.next (1));
}s

../TestSuite/Tests/beat_simple_prevnext.drultestout

NULL
REST
NOTE
NOTE
REST
REST
NOTE
NULL

../TestSuite/Tests/beat_simple_yesno.drultest

a = pattern(”101”);
map (a) {print (31);};

../ TestSuite/Tests/beat_simple_yesno.drultestout

NOTE
REST
NOTE

../ TestSuite/Tests/beat_simple_yesnomaybe.drultest

a pattern (710107);
b pattern(”001”);
map (a, b){print($§2);};

../ TestSuite/Tests/beat_simple_yesnomaybe.drultestout

REST
REST
NOTE
NULL

125

../TestSuite/Tests/clipl.drultest

a = pattern(”11117);
b = pattern(”1”);

instruments (” fred” ,” mabel”);
¢ = clip(a,b);
print (c);
d = clip(
?mabel” <— a,
7 fred” <— b
);
print (d);

../TestSuite/Tests/clipl.drultestout

[

fred: 1111
mabel: 1

]

[
fred: 1

mabel : 1111

../ TestSuite/Tests/clip2.drultest

instruments ();

print (
clip (
pattern (”1010”)
)
);

../TestSuite/Tests/clip2.drultestout

[
hh_c: 1010
sd_ac:
bd:

cowbell:

126

../ TestSuite/Tests/clip3.drultest

clip = 1;
print ("hey, I could assign something to clip , hunmmm”);

../ TestSuite/Tests/clip3.drultestout

Illegal assignment attempted on line 2: can’t use keyword ’clip’ as a variable

../ TestSuite/Tests/clip4.drultest

instruments ();
clip(”a” <— pattern(”01010”));

print (?bad ...”);

../ TestSuite/Tests/clip4.drultestout

Incorrect function arguments on line 4: unknown instrument name ’a’

../TestSuite/Tests/concatl.drultest

pl = pattern(”1”);
p2 = concat(pl);
print (p2); // should print 1

../ TestSuite/Tests/concatl.drultestout

1

../ TestSuite/Tests/concat2.drultest

pl = pattern(”
p2 = pattern(”
p3 = concat(pl , p2);

print (p3); // should print 10

17);
0”);

127

../ TestSuite/Tests/concat2.drultestout

10

../ TestSuite/Tests/concat3.drultest

pattern(”1”);

pattern(”0”);

p3 = concat(pl , pattern(””) , p2);
print (p3); // should print 10

kel
e
([]]

../ TestSuite/Tests/concat3.drultestout

10

../ TestSuite/Tests/concat4.drultest

pl = concat(pattern ());
print (pl); // should get 77

../ TestSuite/Tests/concat4.drultestout

../ TestSuite/Tests/concat5.drultest

p = concat(pattern(),pattern(”10”),concat(pattern(”0”),pattern(”17)));
print (p); // should get 1001

../ TestSuite/Tests/concat5.drultestout

1001

128

../ TestSuite/Tests/concat6.drultest

print (concat()); // should print 77

../ TestSuite/Tests/concat6.drultestout

../ TestSuite/Tests/dividebyzero.drultest

1/0;

../ TestSuite/Tests/dividebyzero.drultestout

Division by zero attempted on line 1: Divisor evaluates to 0

../TestSuite/Tests/easycomparisons.drultest

print (1 < 2
print (1 > 2
print (1 = ;
print (1 ! ;
print (1 [l 1 <= 2);
print (42 >= 0);

)
)
2
2
2

../ TestSuite/Tests/easycomparisons.drultestout

TRUE
FALSE
FALSE
TRUE
TRUE
TRUE

../ TestSuite/Tests/falseassign.drultest

false = 4;

129

../ TestSuite/Tests/falseassign.drultestout

Syntax error on line 1 between characters 0 and 5

../ TestSuite/Tests/gcd.drultest

”»

repeat (352);

pl = pattern(”1”).
17). repeat (40);

p2 = pattern(”

mapper subtract(a, b) {
if((a.note() || a.rest())
return pattern(””);

&& (b.note() || b.rest()

} elseif (a.note() || a.rest()) {

return pattern(”1”);
} else {

return pattern(70”);
}

}

mapper squishrests(a) {
if (a.note()) {
return pattern(”1”);

else {
return pattern(””);
}

}

mapper gcd(a, b) {

if (la.prev(l).note() && 'a.prev(1l).rest ()
&& !b.prev(l).note() && !b.prev(1l).rest()) {
tmp = map (pl,p2) subtract;

print (tmp.length ());

if (tmp.length() = 0) {

//print (7 length is
print (”in return
return pl;

} elseif ((map(tmp)
print ("a gt b”);
pl = tmp;

} else {
print (”b gt a”);
p2 = tmp;

}

return map(pl,p2) gecd;

}

return pattern(””);

}

p3 = map(pl,p2) ged;

print (p3.length ());

0!”7);
spot”);

squishrests).length () > 0)

130

../ TestSuite/Tests/gcd.drultestout

312

a gt b
272

a gt b
232

a gt b
192

a gt b
152

a gt b
112

a gt b
72

a gt b
32

a gt b
8

b gt a
24

a gt b
16

a gt b
8

a gt b
0

in return spot

8

../TestSuite/Tests/helloworld.drultest

print (” hello world”);

../ TestSuite/Tests/helloworld.drultestout

hello world

../TestSuite/Tests/if-elseif-else.drultest

if (true) {print(”yes”);} else {print(”’no”);}

//yes

if (false) { print(”nope”) ; } print(”got here”);
// got here

if(false) {

131

print (”death everywhere”);
} elseif (true) {

print ("got it!”);
} else {

print (”noooo!”);
}

../ TestSuite/Tests/if-elseif-else.drultestout

yes
got here
got it!

../TestSuite/Tests/instrum1l.drultest

instruments(” allo” ,”everyone”);

print (?done”); // should return done

../TestSuite/Tests/instruml.drultestout

done

../ TestSuite/Tests/instrum?2.drultest

instruments (); // should print error

print (”done”);

../TestSuite/Tests/instrum?2.drultestout

done

132

../ TestSuite/Tests/instrum3.drultest

instruments (” thierry” ,”rocks”);
a =3 *x 2;
instruments (" always!”);

print (?should fail I1117);

../ TestSuite/Tests/instrum3.drultestout

Instrument redefinition attempted on line 6: don’t do that

../TestSuite/Tests/instrum4.drultest

instruments = 4;
print (”shouldn’t be able to assign something to ’instruments’”);

../TestSuite/Tests/instrum4.drultestout

Syntax error on line 1 after character 0

../ TestSuite/Tests/instrum5.drultest

p = map (pattern(”1”)) {instruments(”a”);};
print (?bad”);

../ TestSuite/Tests/instrumb.drultestout

Illegal assignment attempted on line 1: can’t define instruments inside mappers

../ TestSuite/Tests/map_alias.drultest

mapper foo (a) { return pattern(”0”); }
bar = foo;

baz = pattern(”1117);

print (map (baz) foo);

print (map (baz) bar);

133

../TestSuite/Tests/map_alias.drultestout

Illegal assignment attempted on line 2: can’t assign a mapper

../ TestSuite/Tests/mapper_bad_returnl.drultest

mapper fred (a, b, c¢) {
if (a.note()) {
return true;
} else {
return b;
}

}

map (pattern(”101”), pattern(””), pattern(”10101”)) fred;

../ TestSuite/Tests/mapper_bad_returnl.drultestout

Illegal assignment attempted on line 2: attempt to return an illegal value from this mapper

../ TestSuite/Tests/mapper_bad_return2.drultest

mapper fred (a, b, c¢) {
i // pathology forever!
if (a.note()) {
return true;
} else {
return b;
}

}

map (pattern(”101”), pattern(””), pattern(”10101”)) fred;

../TestSuite/Tests/mapper_bad_return2.drultestout

Illegal assignment attempted on line 2: attempt to return an illegal value from this mapper

../TestSuite/Tests/mapper_empty.drultest

map(pattern(”71010”)) {print(”beat”);};
map(pattern(””), pattern(”10101”)) { print(”counting to five”);};

134

../ TestSuite/Tests/mapper_empty.drultestout

beat
beat
beat
beat
counting to five
counting to five
counting to five
counting to five
counting to five

../ TestSuite/Tests/mapper_nobeats.drultest

print (map (pattern(”0000”)) { return pattern(”10”); });

../ TestSuite/Tests/mapper_nobeats.drultestout

10101010

../TestSuite/Tests/mapper_read_outer_scope.drultest

®
I

pattern (710017);
pattern(”10”);
map (b) {print(a);};

../TestSuite/Tests/mapper_read_outer_scope.drultestout

1001
1001

../ TestSuite/Tests/mapper_return_beat.drultest

print (map (pattern(”1010”), pattern(”71101”7)) {
if($1.note()) { return $2; }

1)

135

../TestSuite/Tests/mapper_return_beat.drultestout

10

../TestSuite/Tests/outputl.drultest

instruments ();

¢ = clip(pattern(”1010001”) , pattern() , pattern(”000”));

c.outputText (” file .txt”);

print (”?done”);

../ TestSuite/Tests/outputl.drultestout

done

../ TestSuite/Tests/parse_error_l.drultest

print (a);
print (b)
print (c¢)

../ TestSuite/Tests/parse_error_l.drultestout

Syntax error on line 2 between characters 0 and 8

../ TestSuite/Tests/parse_error_2.drultest

foo bar baz // not so hot, this syntaz

../ TestSuite/Tests/parse_error_2.drultestout

Syntax error on line 1 after character 0

136

../TestSuite/Tests/parse_error_3.drultest

// this is to show that we can have initial errors xafterx
// some comments
+

= a

)

../TestSuite/Tests/parse_error_3.drultestout

Syntax error on line 1 after character 0

../TestSuite/Tests/parse_error_4.drultest

// this is to show that we can have initial errors *afterx
// some comments

foo ();

bar ();

+

= a

)

../ TestSuite/Tests/parse_error_4.drultestout

Syntax error between char 0 of line 1 and char 6 of line 4

../TestSuite/Tests/patternl.drultest

a = pattern(”101”);
print (a);

../TestSuite/Tests/patternl.drultestout

101

137

../ TestSuite/Tests/patternl0.drultest

p0 = map(pattern(”711017))
if (31.note() && $1.next(1).note()) { return pattern(””); }

elseif ($1. note()) { return pattern(”17); }
else { return pattern(”0”); }

I
print (p0); // should be 101
pl = map(map(pattern(”11017))

if ($1.note() && $1.next(1l).note()) { return pattern(””);

elseif ($1. note()) { return pattern(”1’
else { return pattern(”0”
1)
{
if (31.note()) { return pattern(”1”); }
else { return pattern(); }
I8

print (pl); // should return 11

../TestSuite/Tests/pattern10.drultestout

101
11

../ TestSuite/Tests/patternll.drultest

mapper mymapper (p)

if (p.note()) { return pattern(”11”); }
else { return pattern(”0”); }

}s

pl = pattern(”0107);

p2 = map (pl) mymapper;

print (p2) ; // should be 0110

../TestSuite/Tests/patternll.drultestout

0110

138

——

)
)

}
}

../ TestSuite/Tests/patternl12.drultest

pll = map(pattern(”11117))

if (31.note() && $1.next(1l).note() && $1.next(2).note()) { return pattern(”1”); }
else { return pattern(”0”); }

I
print (pll); // should return 1100

../TestSuite/Tests/patternl2.drultestout

1100

../ TestSuite/Tests/patternl3.drultest

pll = map(pattern(”101017))
if (31.prev(1l).note() && $1.next(1l).note()) { return pattern(”1”); }
else { return pattern(”0”); }

s

print (pll); // should return 01010

../TestSuite/Tests/patternl3.drultestout

01010

../TestSuite/Tests/patternl4.drultest

p0 = map(pattern(”1101101107))
if ($1.prev(l).note() || $1.next(1l).note()) { return pattern(”1”); }
else { return pattern(”0”); }

s

print (p0); // should return 111111111

139

../TestSuite/Tests/patternl4.drultestout

111111111

../TestSuite/Tests/patternl5.drultest

p0 = map(pattern(”001”) , pattern(”111”))
if ($1.note() && $2.note()) { return pattern(”1”); }

else { return pattern(”0”); }

} k)

print (p0); // should return 001

../TestSuite/Tests/patternl5.drultestout

001

../ TestSuite/Tests/patternl6.drultest

p0 = map(pattern(”111”) , pattern(”1111”))

if ($1.note() && $2.note()) { return pattern(”1”);
else { return pattern(70”);

};

print (p0); // should return 1110

}
}

../TestSuite/Tests/pattern16.drultestout

1110

../TestSuite/Tests/patternl7.drultest

140

p0 = map(pattern(”010101”) , pattern(”111000”) , pattern(”000001”))

if (($1.note() || $2.note()) && $3.rest()) { return pattern(”1”); }
else { return pattern(”0”); }

I

print (p0); // should return 111100

../ TestSuite/Tests/patternl7.drultestout

111100

../TestSuite/Tests/patternl18.drultest

p0 = map(pattern(”010101”) , pattern())

if ($1.n0te() || 1==1) { return pattern(”l”); }
else { return pattern(”70”); }

s

print (p0); // should return 111111

../TestSuite/Tests/pattern18.drultestout

111111

../TestSuite/Tests/patternl19.drultest

// takes every even index, starting at 0

pat = pattern(”700101110100010”); // even indexes: 0111101
helper = pattern(”10”).repeat(pat.length() / 2);
p0 = map(pat , helper)

{
if ($2.note())

141

if ($l.note()) { return pattern(”1”); }
else { return pattern(”0”); }
}

else { return pattern(””); }

s

print (p0); // should return 0111101

../TestSuite/Tests/patternl9.drultestout

0111101

../TestSuite/Tests/pattern2.drultest

pl = pattern (701017);
p2 = pl.repeat (3);
print (p2);

../ TestSuite/Tests/pattern2.drultestout

010101010101

../ TestSuite/Tests/pattern20.drultest

// copy
p0 = map(pattern(”0001110101017))
{
if ($1.note()) { return pattern(”1”); }
else { return pattern(”0”); }
I

print (p0); // should return 000111010101

../TestSuite/Tests/pattern20.drultestout

000111010101

142

../ TestSuite/Tests/pattern21.drultest

pattern = 3;
print (” just assigned something to ’'pattern’”);

../TestSuite/Tests/pattern21.drultestout

Illegal assignment attempted on line 1: can’t use keyword ’pattern’ as a variable

../ TestSuite/Tests/pattern22.drultest

a = pattern(”31”);
print (?bad”);

../TestSuite/Tests/pattern22.drultestout

Invalid pattern string on line 3: Patterns definitions must be a string of 0’s and 1’s

../ TestSuite/Tests/pattern3.drultest

pl = pattern(”001”);
p2 = pattern(”1117);
p3 = pattern(”101”);

p4 = concat(p2,p3,pl);
print (p4);

../ TestSuite/Tests/pattern3.drultestout

111101001

143

../TestSuite/Tests/patternd.drultest

pl = pattern ();
print (pl);

p2 = pattern(””);
print (p2);

print (”end”);

../ TestSuite/Tests/patternd.drultestout

end

../ TestSuite/Tests/pattern5.drultest

pl = concat(pattern(”01”) , pattern(”10”)

, pattern() , pattern(””));
print (pl);

../TestSuite/Tests/pattern5.drultestout

0110

../ TestSuite/Tests/pattern6.drultest

pl = pattern(”01110”).repeat (5);
a = pl.length ();
print (a);

../ TestSuite/Tests/pattern6.drultestout

25

144

../ TestSuite/Tests/pattern7.drultest

pl = pattern(”101”);
p2 = map (pl)
if (31.note()) { return pattern(”11”); }
else { return pattern(”0”); }
I8
print (p2);

../TestSuite/Tests/pattern7.drultestout

11011

../ TestSuite/Tests/pattern8.drultest

pl = pattern(”1110111”);
p2 = map(pl)
if (31.note()) { return pattern(””); }
else { return pattern(”1”); }
I
print (p2);

../TestSuite/Tests/pattern8.drultestout

1

../ TestSuite/Tests/pattern9.drultest

p9 = map(pattern(”711017))

if (31.note() && $1.next(1).note()) { return pattern(”1”); }
else { return pattern(”0”); }

}s
print (p9);

145

../TestSuite/Tests/pattern9.drultestout

1000

../TestSuite/Tests/pattern_reversel.drultest

pl = pattern(”010101”);
p2 = pattern(”101010”);

print (concat (p2.reverse (),pl.reverse ()));

../TestSuite/Tests/pattern_reversel.drultestout

010101101010

../ TestSuite/Tests/print.drultest

print (”? thierry”);

print (Prulzzzzz!”);
print (7 1@#$% &x*() - _)*&% " _+HHSVWUOQQ") ;
print (7//7);

print (123456);
print (true); print(false);

../ TestSuite/Tests/print.drultestout

thierry

rulzzzzz!

1@#3% " &= () -~)x&% " --HISVWUOQ.@
//

123456

TRUE

FALSE

../ TestSuite/Tests/print_stringescapes.drultest

print (”hello /\\ “hello |— NIL”);
print (?I’m really \”excited\” about this test...”);

146

../TestSuite/Tests/print_stringescapes.drultestout

hello /\ “hello |- NIL
I’'m really ”excited” about this test ...

../TestSuite/Tests/randl.drultest

r = rand();

if (0 <=1 && r<=1) { print(”It works!”); }

else { print (?”What the

../TestSuite/Tests/rand1.drultestout

It works!

../TestSuite/Tests/rand2.drultest

r = rand (4);

hell?”); }

if (0 <=1 && r <= 3) { print(”It works!”); }

else { print (?”What the

../TestSuite/Tests/rand2.drultestout

It works!

../ TestSuite/Tests/rand3.drultest

rand = 4;
print (” assigned something to ’rand’”);

../TestSuite/Tests/rand3.drultestout

Illegal assignment attempted on line 1:

hell?”); }

can’t use keyword

147

’rand’

as a variable

../ TestSuite/Tests/returnl.drultest

p = pattern(”1117);

p2 = map (p)

{

return $1.next (1);
I
print (p2);

../ TestSuite/Tests/returnl.drultestout
11

../TestSuite/Tests/return2.drultest

p = pattern(”71117);

p2 = map (p)

{

return $1.prev(1);
I
print (p2);

../TestSuite/Tests/return2.drultestout

11

../ TestSuite/Tests/slicel.drultest

p3 = pattern(”0011100”);
print (p3.slice (3, 3));

../ TestSuite/Tests/slicel.drultestout

111

148

../ TestSuite/Tests/slice2.drultest

p3 = pattern(”0011100”);
print (p3.slice (1, 3));

../ TestSuite/Tests/slice2.drultestout

001

../ TestSuite/Tests/slice3.drultest

p3 = pattern(”0011100”);
print (p3.slice (5, 3));

../ TestSuite/Tests/slice3.drultestout

100

../ TestSuite/Tests/trueassign.drultest

true = 3;

../ TestSuite/Tests/trueassign.drultestout

Syntax error on line 1 between characters 0 and 4

../TestSuite/Tests/truthtable.drultest

print (true && true);

bl
print (true && false);
print (false || true);
print (true || false);

149

../ TestSuite/Tests/truthtable.drultestout

TRUE
FALSE
TRUE
TRUE

../ TestSuite/Tests/unaryops.drultest

print (—3);
print (! true);

../TestSuite/Tests/unaryops.drultestout

-3
FALSE

../TestSuite/Tests/variable_readwrite.drultest

a = 42;
print (a);

../ TestSuite/Tests/variable_readwrite.drultestout

42

C.2.3 LaunchTestsParser.py

#! Jusr/bin/env python

999 9

DruL. team, Columbia (2008) PLT class
copyright Drull team

contact: tb2332Q@columbia.edu
name: LaunchTests.py
language: python

programer: Thierry Bertin—Mahieux

main program of the test suite, launch all tests that it can find.
7N

150

import os
import sys
import glob
import time
import tempfile

drulpath =7 ../”

testspath = ”./ParserTests/”

logspath = ”./LOGS/”

testingprog = 7 ../ Parser/testing” #actual program to test stuff

returns a list of file in current dir
to use with os.walk
def grab_tests(arg=list (),path="" ,names=""):
tests = glob.glob(os.path.join (os.path.abspath(path),’*.drultest’))
for t in tests:
arg.append(t)
return arg

launch any command, return outputs (stdin and stderr)
def command_with_output(cmd):
if not type(cmd) = unicode
cmd = unicode (cmd, *utf—87)
#should this be a part of slashify or command_with_output?
#if sys.platform=="darwin’
ecmd = unicodedata.normalize (’NFC’,cmd)

(child_stdin , child_stdout , child_stderr) = os.popen3(cmd.encode(’utf—-8"))
datal = child_stdout .read ()

data2 = child_stderr.read ()

child_stdout . close ()

child_stderr.close ()

return (datal, data2)

launch one test, given a test path, returns stdout or stderr
(output is first written to a file, than read)
def launch_one_test(tpath):

cmd = testingprog + 7 < ’7 4 tpath 4+ 7’7

(outdata ,outerr) = command_with_output (cmd)

return (outdata ,outerr)

read file given a path, return lines
def read_file(p):

fIn = open(p,’'r’)

res = fIn.readlines ()

fIn . close ()

return res

151

compare two list of lines, returns true or false
def check_output(lines):
if lines = "”7:
return True
if lines.count(”Fatal error:”) > 0
return False
return True

create_log_file , returns a path
if path already exists, add something at the end
def create_log_file ():

res = "LOG_parsertests_”
res += str(time.ctime()).replace(’ 7,’_")
res += ’.log’

res = os.path.abspath(os.path.join (logspath ,res))
if os.path.exists(res):

counter = 1
while os.path.exists(res):
counter = counter + 1

res = res[:—4] + '(’ + str(counter) + ’).log’
return res

add lines to a log path, can pass in one string or list of string
def add_-to_-log(logf,lines):
flog = open(logf,’a’)
if string
if type(lines) = type(” ”):
flog . write(lines + ’'\n’)
else:
for 1 in lines:
flog . write(l + ’\n’)
close
flog . close ()

help menu

def die_with_usage ():
print 7 s ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok sk ok % ok ok ok ok sk ok sk ok ok % ok ok ok ok ok sk sk ok ok ok % ok ok ok ok sk ok sk ok ok ok
print 'Welcome to Drull test suite’
print ’to launch test, type:’

)

print °’ LaunchTests.py —go’

print 7’

print ’test files should end in: .drultest’
print ’and corresponding outputs: .drultestout’

print ’Of course, test names must match, like:’

print ” 'testpatternl.drultest’ and ’'testpatternl.drultestout’”
pril‘lt 7 sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok % ok ok ok ok ok ok sk ok ok ok % ok K ok ok sk ok sk ok ok ok
sys.exit (0)

)

#**

MAIN

152

if __name__ =— ’__main__"’

launch help menu if needed
if len(sys.argv) < 2 or sys.argv[l] != "—go”:
die_with_usage ()

check if testing program exzists and can be found

if not os.path.exists(testingprog):
print ”you didn’t install the testing program, make testing”
sys.exit (0)

grab all tests
tests = list ()
os.path.walk (testspath ,grab_tests ,tests)

make sure we found tests

if len(tests) = 0:
print “dummass, there’s no tests”
sys.exit (0)

else

print ’launching’,len(tests), tests’

get logfile
logfile = create_log_file ()

launch every test

counter = 0
countpassed = 0
countfailed = 0
for t in tests:
counter = counter + 1
(out ,outerr) = launch_one_test (t)
isOK = check_output(outerr)
if isOK:
countpassed = countpassed + 1
add_to_log (logfile ,str (counter) + ’) test PASSED: ’+t)
else

countfailed +=1
add_to_log(logfile ,str (counter) + ’) test FAILED: ’+t)
add_to_log (1oglile , 7 sk skokohon sk sk skokokok sk ok sk okokok ok sk sk okokok ok skokokok o okokokok ok ok ok)
add_to_log (logfile ,’last lines:’)
if len(out) < 100

add_to_log (logfile ,out)

add_to_log(logfile ,outerr)
else

add_to_log(logfile ,out[—100:])

add_to_log(logfile ,outerr)

add_to_log (1ogfile , 7 sk sk sk ok skoskok s sk sk skoskok s sk ok ok stk ok ok skok ok skokokok ok skokok)
results
print ’passed’,countpassed,’tests out of’,counter
add_to_log (logfile ,” 7)

153

add_to_log (logfile , #H##HHHH### SUMMARY: *)
add_to_log (logfile , ’passed ’+str (countpassed)+’

C.2.4 Parser test files

../TestSuite/ParserTests/comparisons.drultest

L~ YNy T

../ TestSuite/ParserTests/complexmapl.drultest

map (hi , you)

$1.note ();

$2.rest ();

a = pattern(”01”);

if (31.rest()) { return pattern(””); }
elseif ($2.note()) {return a;}

else { return a.repeat (2);

../ TestSuite/ParserTests/concat.drultest

pl = pattern(”01”);
p2 concat (pl , pl);
p3 concat (pl,p2,pl);

../ TestSuite/ParserTests/dollarsign.drultest

tests

154

out of

>+str (counter))

p-new_rev = map (p-new)

$1.rest ();

map (hi , you)

$1.note ();
$2.rest ();

};

../ TestSuite/ParserTests/ifl.drultest

../ TestSuite/ParserTests/if2.drultest

if (false && true) {pattern(”01”);}

elseif (pattern(”01”) = pattern(”7001”))
{ if (3!= 2) {print(7allo”);}
}

elseif (true || false || (pattern(”0101”).repeat(4) >= pattern(”0101”)))
{ print (Pyo!!lll1II111”):}

../TestSuite/ParserTests/ifbare.drultest

if (1 > foo) { bar; }
1.

)

155

../ TestSuite/ParserTests/ifelsel.drultest

a = 1;
if (a =1

) {b = 3;}
else {b = 4;}

../TestSuite/ParserTests/ifelseif.drultest

if (1 > 3) { foo; } elseif (1 < 3) {bar ;}

../ TestSuite/ParserTests/ifelseifelse.drultest

if(foo) { 1; } elseif (bar) { 2; } else {3;}

../TestSuite/ParserTests/instrument.drultest

instruments (yo, man ,whats ,up);
intruments (can, we, set, more, complex |, things);

intruments (whats, up)

../ TestSuite/ParserTests/logical AND.drultest

a = 1;
b = 2;
a && b;

true && true;

false && false;

true && false;

false && true;

true && false && true;

false && false && true && true;

(false && true) && ((false && false) && true);

156

../TestSuite/ParserTests/logicalOR.drultest

a = 1;

b = 2;

a || b;

true || true;

false || false;

true || false;

false || true;

true || false || true;

false || false || true || true;

(false || true) || ((false || false) || true);

../ TestSuite/ParserTests/logical ORAND.drultest

a = 1;

b = 2;

(false || true && false);

(true && false || true);

(a || b&& 3 || false && true);

(true || false) && ((false && true || true) || true);

../TestSuite/ParserTests/mapper.drultest

mapper mymapper (p)

{
}

p = pattern(”01”);
p2 = map (p) mymapper;

return pattern(”1”);

mapper mymapper2 (bla)

{
a = 3;
b = 4;
res = pattern (7010101”);
return res;
}

../TestSuite/ParserTests/mappercall.drultest

157

map(a ,b ,c¢ ,—=3) //that will be a problem, that will...

{a + 3; b+ 15; "foo”;}

)

../ TestSuite/ParserTests/noendline.drultest

//

../TestSuite/ParserTests/patternrepeat.drultest

a = pattern(”001”);

b = pattern(”01”).repeat (4);
d = a.repeat (3);

../ TestSuite/ParserTests/pnote.drultest

// are there other use possibles?
// is p.note() or p.note ? samething for rest

p.note ();
p.rest ();

../TestSuite/ParserTests/print.drultest

print (717);
print (7allo”);
print (7yo!3748473222937‘1—232—/. _(x& " %3$#Q”);

print (pattern(””));
print (pattern (7010111001”));

a = pattern(”111107);

print (a);
b = 3;
print(b);

¢ = clip(a);
print (c);

158

../TestSuite/ParserTests/rand.drultest

// mot sure of the syntaz, no ezxamples in the Reference Manual
rand ();

a = rand (1);

../TestSuite/ParserTests/refmanexamplecode.drultest

// copied/paste from the RefManual, current wversion on 11/19/2008
//This code manipulates some patterns, associate them to instruments and
//sends them to outputs.

//First the Instrument definition. It has to be done before

//any clips are created, otherwise there will be an error.

instruments (hihat ,bassdrum ,crash ,snare); //define four instruments

//Integer wvariables used as tempos for clips.

a = 350;
b = 300;
//Patterns.

»

pl = pattern

(71001001007) ;
p2 = pattern(

(

(

”7Y; //empty pattern
70”); //pattern with only one rTest in it.
”1”); //pattern with only one mnmote in it.

p3 = pattern
p4 = pattern

//p-concat is essentially concatenation of three patterns.
p-concat = concat(pl, pattern(”11110000”), pattern(”700011”));

//Make a new pattern using above patterns and
//the library methods repeat and slice

p-custom = concat(p2, p3.repeat(2), p4d.repeat(3),

p3.repeat (2) ,p4.repeat(4), p-concat);
p-custom_new = concat(p-custom ,p3.repeat(2) ,p-concat ,p4d.repeat(3));
p-new = concat(p-custom_new.slice (4,10),

p-concat.slice (5,pl.length()), p3.repeat(7));

//Now some complex pattern manipulation.
//New Patterns.

alternate_beats = pattern(”10”).repeat (8);
P_concat_new = concat(p-concat , p_custom);

//Anonymous mapping .

159

p-new_rev = map (p-new)

if (31.rest()) { pattern(”1”); }
else { pattern(70”); }
I

//Mapper definitions.
mapper newMapperl (p-any)

if (p-any.note()) { return pattern(”1”); }
else { return pattern(””); }

}

mapper newMapper2 (p.any ,alternate_beats)

i} //pattern of length 0
)i
)i}

if (alternate_beats.rest()) { return pattern(””)
elseif (p-any.note()) { return pattern(”1”
else { return pattern(”70”

B

}

mapper improved_newMapper2(p_any, alternate_beats)
{
if (alternate_beats.rest ()) { return pattern(””); }
elseif (p-any.note()) { return pattern(”1”); }
elseif (p-any.next(1l).note()) { return pattern(”1”); }
else { return pattern(”0”); }

)

}

p-custom_new_notes = map (p-custom_new) myMapperl;
p-concat_new_downbeats = map (p-concat_new) newMapper2;

//print out the created patterns to Standard Output.

print (?Output from Sample Drul. Code:”);
print (p-concat);

print (p_custom);

print (p-custom_new);

print (p-new);

print (p-new_rev);

print (p_custom_new_notes);

print (p-concat_new_downbeats);

print ("END OF OUTPUT”);

//Pattern associations wusing clips.

// CLIP SYNTAX HAS TO BE REDEFINED

clip_.complete = clip

(

hihat <— p-concat_-new_downbeats,
bassdrum <— p_custom_new_notes,
crash <— p-new._rev,

snare <— p-new

) ’

//output clip as a midi file

160

out.midi(” out_filel .midi” ,clip_complete ,a);//a = tempo (Beats per minute)
// Last instrument has an empty beat—pattern.

clip_-partial = clip(p-concat ,p-custom_new ,p_custom);

//output clip as a midi file

out.midi(” out_file2.midi”,clip-partial ,b);//b = tempo

../TestSuite/ParserTests/simpleint.drultest

../ TestSuite/ParserTests/simplepattern.drultest

a pattern(”01”);
b = pattern(””);
¢ =pattern (”701010001010101001010101001010101001”);

../TestSuite/ParserTests/simplestring.drultest

”3,110”;

2 ”

Yo 5
?drul rocks!”;
717681217298190G#3% " &=+ () -#" ;

77//77 ;
a = 701010101”; // may be bad
b =77, // may be bad
¢ = a + b; // may be bad

../TestSuite/ParserTests/stdC.drultest

161

o]

24
% c;
4;

* ~
Q.0Mm 0.9 -~
N~
* XX NN INSESN
R N
HANM R~ 0 O0OF~ & SM

b
b
1

*5)));

) * ((ax 2/ h) % ((9 / 3) = (14

162

	Language White Paper
	Introduction
	Language specification
	Quick tutorial
	Integers
	Pattern
	Map
	Mapper
	More complex examples
	Instruments and Clips

	Tutorial
	Introduction
	The Very Basics
	Say hello!
	Fundamentals
	One more variable type: patterns

	Combining Patterns
	Manipulating Patterns
	Named mappers
	Assembling clips
	The Big Payoff

	Language Reference Manual
	Introduction
	Lexical Conventions
	Comments
	Whitespace
	Characters
	Identifiers
	Keywords

	Types
	integer
	pattern
	beat
	clip
	string

	Statements
	Expression Statements
	Assignment Statements
	Selection Statements
	Mapper Definition Statements
	Return statements
	Instrument definition

	Blocks, namespace and scoping
	Blocks
	Namespace
	Scoping

	Patterns and pattern operations
	Patterns
	Map
	Mapper

	Clips
	Instruments
	Clips

	Outputs
	Standard output
	Text file
	MIDI file
	Lilypond file

	Project Plan
	Processes
	Style Guide
	Timeline
	Roles and Responsibilities
	Tools and Languages
	Tools
	Code Editors
	Documentation
	Version Control

	Project Log

	Architectural Design
	Architecture Diagram
	Component Interfaces
	Component Implemented By

	Test Suite
	Overview
	Implementation
	Sample tests
	Tests for DruL Parser
	Tests for DruL

	Conclusion

	Lessons Learned
	Introduction
	Rob (team leader)
	Ben
	Thierry
	Waseem

	Appendices
	Number of Lines of Code
	Project Log (SVN Commit Log)
	Code Listings
	Language code
	drul_interpreter.ml
	drul_main.ml
	drul_helpers.ml
	drul_output.ml
	drul_printer.ml
	drul_types.ml
	drul_parser.mly
	drul_scanner.mll
	test.ml
	treedump.ml
	drul_ast.mli
	Makefile

	Test Code
	LaunchTests.py
	General test files
	LaunchTestsParser.py
	Parser test files

