
Final Report on Cards
the Language

By Jeffrey C Wong
jcw2157

Table of Contents

I. Introduction
II. Language Reference
III. Compiler Interface
IV. Lessons Learned
V. Source Code
VI. Architecture

1 Introduction

The idea of a Cards language was to provide a tool to allow game creators the
flexibility of tweaking existing games into a new game. The language allows the
programmer to quickly write up rules to any standard 52 deck cards game and
convert it into a playable game.

The advantage of Cards is that the data types bundled in the language. The
programmer won’t have to worry about declaring data types in the language.
This will let the game creator devote more time to creating a new type of game
with one less worry in the source code.

1.1 Purpose

To provide a simple yet powerful tool for game creators to create a new
game from existing card games.

1.2 Ease of Use

A person without any programming experience will be able to use create an
game with this language.

1.3 Modifiable

Instead of traditional rules to a card game, the game creator can create a
game with custom rules.

2 Tutorial

2.1 Language Reference

2.1.1 Lexical Conventions

Whitespace is defined as either tab or space character. Except for
Whitespace between double quotes (these will be part of the string literal), any
Whitespace will be discarded by the scanner.

Keywords
The following strings of characters are keywords and reserved by the

compiler.

print
scan
break
return
if
else
while
total
pass
shuffle
reveal
hide
number
suit
color
showing
misc
group

Predefined Functions
Print()
Outputs to screen the parameters in the () enclosure.

Scan()
Takes user input from the screen.

Main()
A Specialized function that all programs begin from.

Shuffle()
Shuffles the decks and begins the program. The Shuffle command is initializes
the deck of cards. Depending on the parameter given, the deck will initialize, the
cards to the proper values. For example in BlackJack, the values of the face
cards have strength of ten. The Ace can be either one or eleven. The number
cards are equal to the number should shown on the card.
The following table shows possible decks that can be initialized. More deck
types will have to be create for more games. The basic premise is that the
programmer can create rules to the game without having to declare variables.

Game Type Parameter
BlackJack bj
Baccarat ba

War wa
Hearts he
Rummy ru
Spades sp
…(etc) …(etc)

Pass()
Pass passes the cards out to the grouping. Pass takes in two parameters. The
first parameter is where the card is going to and the second parameter is the
number of cards to pass.

Discard()
Removed the card in the parameter and places it in the discard. This function
takes in one parameter which is the card to discard.

Reveal ()
Changes the value of the card to reveal. Allows for other groups to know the
value of the card and in which group it belongs to.

Total()
Incase of addition, this function all the value of the cards in the grouping. The
parameter is the grouping of the cards.

Return
The return statement is used to return the function to where the function was
initially invoked. The return does not return anything.

Comments
Comment are recognized by the compiler with /* */ notation. Any string between
the * marks will be marked as a comment by the compiler.

Identifiers

An identifier in the Cards language is a string of alphanumeric characters,

Operators

The following operators are used the Cards language. The list below ranks the
operator precedence rank from highest to lowest order. The operators with equal
precedence will be evaluated from left to right associative.

+ - (add, subtract)
> < (greater than, less than)
= ! (equal to, not equal to)
<- (assignment)
& | (and, or)

Additive Operators
The operators + and – perform addition and subtraction. Both Operators are
used only on numeric values. The result of these operators is an integer.

Relational Operators
The relations operators > and < perform the operation GREATER THAN
and LESS THAN respectively. Operands must be of arithmetic type. The
result of the expression is true or false.

Equality Operators
The operators == and != perform EQUALS TO and NOT EQUALS TO.
The results of these operations are true and false. The == operator will
produce and true result if both operands equal and false if the operands do
not equal. The != operator produces the opposite result of == operator with
the same operands.

Logical Operators
The operators & and |. The operations are AND and OR respectively. The
results of the operators is true or false. The compiler is left associative. If
the left expression is true for operator |, then the result is true. Otherwise the
compiler will check the right expression. If both expression aren’t true, then
the result if false. The & operator checks if either left or right expression is
false and returns true if both are not false.

Grammar

Below is a table of symbols used for the Cards language

{} Groups statements in the main and if and else block
() Holds the arguments of a function
, Separates the arguments in a function
; Marks the end of a statement

2.2 Sample code

main() {
 shuffle(bj); /* this is the initialization of a standard deck of cards for blackjack*/
 players(1); /* number of players */
 pass(1, 2); /* pass to player one 2 cards, this command updates the deck */
 pass(d, 2); /* pass to dealer 2 cards */
 while(true) {
 if(total(add(1))< 21){
 while(scan(equals(H)) | scan(equals(h)) | scan(equals(0))){ /* 0 is the initial result to use the loop */
 print(total(add(1))); /* totals the value of the cards and prints it to the screen */
 print("Your cards are ");
 print(cards(1)); /* shows the cards to the player */
 print("hit (H) or stay(S) > ");
 if(scan(equals(H) | scan(equals(h)))) {
 passCards(1,1));
 } else {
 break;
 }
 if(total(add(1) > 21)){
 print("busted");
 return;
 }
 }
 } else {
 print("black jack!");
 }
 /* dealer's turn */
 while(total(add(d) < 17)) {
 pass(d,1));
 }
 if(total(add(d) > 21) | (total(add(1) > total(add(d))))) {
 print("player wins");
 }else if(total(add(d)) = total(add(1))) {
 print("draw");
 }else {
 print("dealer wins");
 }
 }
return;

3 Compiler Interface

All files used to compile with the cards language have to end with the “.cds” file prefix
If the source name is myCards.cds, the command to compile the file will be

./cards <PATHNAME TO myCards.cds> outputName.out

This will produce the following file

outputName.out

./outputName.out will run the file and make a command line executable.

4 Lessons Learned

I’ve should of started earlier. When designing a new language, make sure
you have sufficient time work on the project. I’ve found it hard to learn a new
language when I’m so used to thinking Java. Functional programming is a
completely new way of programming. I did not completely understand how to
program with O’caml until halfway thru the semester. By then I was really behind
on this project. I’ve always found myself short on time. The scope of my project
seemed to get larger, the more I worked on it. I think I’ve took on a project too
ambitious for one person to complete in the time given.

If you’re working on this project by yourself, make sure you have a full
understanding of what is needed to be done.

“Learn as you go” didn’t seem to work for me when I was working on this project.

I’ve also realized I needed more on my Language Reference Manual
when I was writing the code for the Cards language. There were a few things I
wanted to change for my Language Reference Manual. The more I try to create
my language, the more I felt that my language was just another implementation
of C++ or Java with some abstraction built into the handling of the players and
the cards.

Get used to thinking top bottom coding. I was too far used coding from the
bottom up.

Overall I found this to be a very learning experience. I think differently about how
compilers work because of this project. One recommendation I have for future
teams is to write the Final Report first. This is will allow for you to really think
things thru before you start coding.

5 Files

cards.ml
let print = false

let _ =
let lexbuf = Lexing.from_channel stdin in
let top = Parser.top Scanner.token lexbuf in

 Interpret.run top

parser.mly

%{ open Ast %}

/* these are pulled from scanner.mll */
%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token DQUOTE
%token ADD MINUS TIMES DIVIDE ASSIGN
%token EQUALS NEQUALS LESSTHAN GREATER
%token PRINT TOTAL PASS SHUFFLE
%token NUMBER GROUP SUIT COLOR
%token SHOWING REVEAL MISC HIDE
%token RETURN IF ELSE WHILE INT
%token <int> LITERAL
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%left ASSIGN
%left LESSTHAN GREATER
%left EQUALS NEQUALS
%left ADD MINUS
%left TIMES DIVIDE

%start top
%type <Ast.top> top

%%

top:
 /* nothing */ { [], [] }
 | top vdecl { ($2 :: fst $1), snd $1 }
 | top fdecl { fst $1, ($2 :: snd $1) }

fdecl:
 ID LPAREN formals_opt RPAREN LBRACE vdecl_list stmt_list RBRACE
 { { fname = $1;

 formals = $3;
 locals = List.rev $6;
 body = List.rev $7 } }

formals_opt:

 /* nothing */ { [] }
 | formal_list { List.rev $1 }

formal_list:
 ID { [$1] }
 | formal_list COMMA ID { $3 :: $1 }

vdecl_list:
 /* nothing */ { [] }
 | vdecl_list vdecl { $2 :: $1 }

 /* variable declaration */
vdecl:
 INT ID SEMI { $2 }

stmt_list:
 /* nothing */ { [] }
 | stmt_list stmt { $2 :: $1 }

 /* separate out the stmt */
stmt:
 expr SEMI { Expr($1) }
 | RETURN expr SEMI { Return($2) }
 | LBRACE stmt_list RBRACE { Block(List.rev $2) }
 | LPAREN DQUOTE expr DQUOTE RPAREN { Print($3) }
 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

expr_opt:
 /* nothing */ { Noexpr }
 | expr { $1 }

expr:
 LITERAL { Literal($1) }
 | ID { Id($1) }
 | expr ADD expr { Binop($1, Add, $3) }
 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr EQUALS expr { Binop($1, Equal, $3) }
 | expr NEQUALS expr { Binop($1, Neq, $3) }
 | expr LESSTHAN expr { Binop($1, Less, $3) }
 | expr GREATER expr { Binop($1, Greater, $3) }
 | ID ASSIGN expr { Assign($1, $3) }
 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }
 | LPAREN expr RPAREN { $2 }

actuals_opt:
 /* nothing */ { [] }
 | actuals_list { List.rev $1 }

actuals_list:
 expr { [$1] }
 | actuals_list COMMA expr { $3 :: $1 }

scanner.mll

{ open Parser }

rule token = parse
 [' ' '\t' '\r' '\n'] { token lexbuf }
| "/*" { comment lexbuf }
| '"' { DQUOTE }
| '(' { LPAREN }
| ')' { RPAREN }
| '{' { LBRACE }
| '}' { RBRACE }
| ';' { SEMI }
| ',' { COMMA }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| "=" { EQUALS }
| "!" { NEQUALS }
| '<' { LESSTHAN }
| ">" { GREATER }
| "if" { IF }
| "else" { ELSE }
| "for" { FOR }
| "while" { WHILE }
| "return" { RETURN }
| "int" { INT }
| "add" { ADD }
| "print" { PRINT }
| "total" { TOTAL }
| "pass" { PASS }
| "shuffle" { SHUFFLE }
| "hide" { HIDE }
| "number" { NUMBER }
| "group" { GROUP }
| "suit" { SUIT }
| "color" { COLOR }
| "showing" { SHOWING}
| "reveal" { REVEAL }
| "misc" { MISC }
| ['0'-'9']+ as s { LITERAL(int_of_string s) }
| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as s { ID(s) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse
 "*/" { token lexbuf }
| _ { comment lexbuf }

ast.mli

type op = Add | Sub | Mult | Div | Equals | Nequal | Less | Greater

type expr =
 Literal of int
 | Id of string
 | Binop of expr * op * expr
 | Assign of string * expr
 | Call of string * expr list
 | Noexpr

type stmt =
 Block of stmt list
 | Expr of expr
 | Return of expr
 | Print of expr
 | If of expr * stmt * stmt
 | While of expr * stmt
 | Shuffle of expr
 | Pass of stmt
 | Else of expr
 | Scan of expr
 | Hide of expr
 | Total of expr
 | Shuffle of expr
 | Reveal of expr
 | Number of expr
 | Group of expr
 | Showing of expr
 | Suit of expr
 | Misc of expr
 | Cards of expr
 | Color of expr

 (* function declaration *)
type func_decl = {
 fname : string;
 formals : string list;
 locals : string list;
 body : stmt list;
 }

type top = string list * func_decl list

interpret.ml

open Ast

module NameMap = Map.Make(struct
 type t = string
 let compare x y = Pervasives.compare x y
end)

exception ReturnException of int * int NameMap.t

(* The beginning point of top *)
(* called from cards.ml *)
let run (vars, funcs) =
 let func_decls = List.fold_left
 (fun funcs fdecl -> NameMap.add fdecl.fname fdecl funcs)
 NameMap.empty funcs
 in

 let rec call fdecl actuals globals =
 let rec eval env = function

 Literal(i) -> i, env
 | Id(var) ->

let locals, globals = env in
if NameMap.mem var locals then

(NameMap.find var locals), env
else if NameMap.mem var globals then

(NameMap.find var globals), env
else raise (Failure ("undeclared identifier " ^ var))

 | Binop(e1, op, e2) ->
let v1, env = eval env e1 in

let v2, env = eval env e2 in
let boolean i = if i then 1 else 0 in
(match op with

 | Equal -> boolean (v1 = v2)
 | Nequal -> boolean (v1 != v2)
 | Less -> boolean (v1 < v2)
 | Greater -> boolean (v1 > v2), env

(* | Call("pass", [e]) ->
 let v, env = eval env e in
*)

 | Call("print", [e]) ->
 let v, env = eval env e in
 print_endline (string_of_int v);
 0, env

 | Call(f, actuals) ->
 let fdecl =
 try NameMap.find f func_decls
 with Not_found -> raise (Failure ("undefined function " ^ f))
 in
 let actuals, env = List.fold_left
 (fun (actuals, values) actual ->

let v, env = eval env actual in
v :: actuals, values) ([], env) actuals

 in

 let (locals, globals) = env in
 try
 let globals = call fdecl actuals globals in 0, (locals, globals)
 with ReturnException(v, globals) -> v, (locals, globals)

 in

 let rec exec env = function
Block(stmts) -> List.fold_left exec env stmts

 | Expr(e) -> let _, env = eval env e in env
(* | Pass(e, s1) -> let *)
 | If(e, s1, s2) ->

 let v, env = eval env e in
 exec env (if v != 0 then s1 else s2)

 | While(e, s) ->
 let rec loop env =
 let v, env = eval env e in
 if v != 0 then loop (exec env s) else env
 in loop env

 | Return ->
 let v, (locals, globals) = eval env in
 raise (ReturnException(v, globals))

 (*run the program *)
 in let globals = List.fold_left
 (fun globals vdecl -> NameMap.add vdecl 0 globals) NameMap.empty vars
 in try
 call (NameMap.find "main" func_decls) [] globals
 with Not_found -> raise (Failure ("did not find the main() function"))

6 Architecture

Lexer  Parser and Scanner Interpreter (uses the AST)  output

Lexer - scans the inputs and files into tokens
Parser – parses the strings into a abstract syntax tree
Interpreter – interprets the abstract syntax tree

