
Logic Programming: The Prolog Language

Stephen A. Edwards

Columbia University

Fall 2008

Logic

All Caltech graduates are nerds.

Stephen is a Caltech graduate.

Is Stephen a nerd?

Prolog

All Caltech graduates are nerds.

Stephen is a Caltech graduate.

Is Stephen a nerd?

nerd(X) :­ techer(X).

techer(stephen).

?­ nerd(stephen).

yes

More Logic

“My Enemy’s Enemy is My Friend.”

friend(X,Z) :­
enemy(X,Y), enemy(Y,Z).

enemy(stephen, ryan).
enemy(ryan, jordan).
enemy(jordan, jacob).

?­ friend(stephen,jordan).

yes

?­ friend(stephen,X).

X = jordan

?­ friend(X, Y).

X = stephen Y = jordan

X = ryan Y = jacob

The Basic Idea of Prolog

Ï AI programs often involve searching for the solution to a

problem.

Ï Why not provide this search capability as the underlying idea

of the language?

Ï Result: Prolog

Prolog

Mostly declarative.

Program looks like a declaration of facts plus rules for deducing

things.

“Running” the program involves answering questions that refer to

the facts or can be deduced from them.

More formally, you provide the axioms, and Prolog tries to prove

theorems.

Prolog Execution

Facts

nerd(X) :­ techer(X).

techer(stephen).

↓

Query

?­ nerd(stephen). → Search (Execution)

↓

Result

yes

Simple Searching

Starts with the query:

?­ nerd(stephen).

Can we convince ourselves that nerd(stephen) is true given the

facts we have?

techer(stephen).
nerd(X) :­ techer(X).

First says techer(stephen) is true. Not helpful.

Second says that we can conclude nerd(X) is true if we can

conclude techer(X) is true. More promising.

Simple Searching

techer(stephen).

nerd(X) :­ techer(X).

?­ nerd(stephen).

Unifying nerd(stephen) with the head of the second rule,

nerd(X), we conclude that X = stephen.

We’re not done: for the rule to be true, we must find that all its

conditions are true. X = stephen, so we want techer(stephen)

to hold.

This is exactly the first clause in the database; we’re satisfied. The

query is simply true.

More Clever Searching

techer(stephen).

techer(todd).

nerd(X) :­ techer(X).

?­ nerd(X).

“Tell me about everybody who’s provably a nerd.”

As before, start with query. Rule only interesting thing.

Unifying nerd(X) with nerd(X) is vacuously true, so we need to

establish techer(X).

More Clever Searching

techer(stephen).

techer(todd).

nerd(X) :­ techer(X).

?­ nerd(X).

Unifying techer(X) with techer(stephen) succeeds, setting X =

stephen, but we’re not done yet.

Unifying techer(X) with techer(todd) also succeeds, setting X =

todd, but we’re still not done.

Unifying techer(X) with nerd(X) :­ fails, returning no.

More Clever Searching

> ~/tmp/beta­prolog/bp

Beta­Prolog Version 1.2 (C) 1990­1994.

| ?­ [user].

|:techer(stephen).

|:techer(todd).

|:nerd(X) :­ techer(X).

|:^D

yes

| ?­ nerd(X).

X = stephen?;

X = todd?;

no

| ?­

Order Matters

> ~/tmp/beta­prolog/bp

Beta­Prolog Version 1.2 (C) 1990­1994.

| ?­ [user].

|:techer(todd).

|:techer(stephen).

|:nerd(X) :­ techer(X).

|:^D

yes

| ?­ nerd(X).

X = todd?;

Todd returned first

X = stephen?;

no

| ?­

Searching and Backtracking

X

X O

X O X

X O X
O X O

X O X
O X O
X

yes

X O X
O X O

X

X O X
O X O
O X

X O X
O X O
O X X

no

X O X
O X O

X O

X O X
O X O
X X O

no

X O X
O X O

X

yes

X O
X

X O
X

X O
X

X O

X

X O

X

X O

X

X O X
O

X
O

X
O

X

O

X

O

X

O

. . .
X

The Prolog Environment

Database consists of Horn clauses.

Each clause consists of terms, which may be constants, variables, or

structures.

Constants: foo my_Const + 1.43

Variables: X Y Everybody My_var

Structures: rainy(rochester)

teaches(edwards, cs4115)

Structures and Functors

A structure consists of a functor followed by an open parenthesis, a

list of comma-separated terms, and a close parenthesis:

bin_

“Functor”

tree(

paren must follow immediately

foo, bin_tree(bar, glarch))

What’s a structure? Whatever you like.

A predicate nerd(stephen)

A relationship teaches(edwards, cs4115)

A data structure bin(+, bin(­, 1, 3), 4)

Unification

Part of the search procedure that matches patterns.

The search attempts to match a goal with a rule in the database by

unifying them.

Recursive rules:

Ï A constant only unifies with itself

Ï Two structures unify if they have the same functor, the same

number of arguments, and the corresponding arguments unify

Ï A variable unifies with anything but forces an equivalence

Unification Examples

The = operator checks whether two structures unify:

| ?­ a = a.
yes % Constant unifies with itself
| ?­ a = b.
no % Mismatched constants
| ?­ 5.3 = a.
no % Mismatched constants
| ?­ 5.3 = X.
X = 5.3?; % Variables unify
no
| ?­ foo(a,X) = foo(X,b).
no % X=a required, but inconsistent
| ?­ foo(a,X) = foo(X,a).
X = a?; % X=a is consistent
no
| ?­ foo(X,b) = foo(a,Y).
X = a
Y = b?; % X=a, then b=Y
no
| ?­ foo(X,a,X) = foo(b,a,c).
no % X=b required, but inconsistent

The Searching Algorithm

search(goal g , variables e)

for each clause

in the order they appear

h :­ t1, . . . , tn in the database

e = unify(g , h, e)

if successful,

for each term

in the order they appear

t1, . . . , tn ,

e = search(tk , e)

if all successful, return e

return no

Note: This pseudo-code ignores one very important part of the

searching process!

Order Affects Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).
path(X, X).
path(X, Y) :­

edge(X, Z), path(Z, Y).

Consider the query

?­ path(a, a).

path(a,a)

path(a,a)=path(X,X)

X=a

yes

Good programming practice: Put the easily-satisfied clauses first.

Order Affect Efficiency

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).
path(X, Y) :­

edge(X, Z), path(Z, Y).
path(X, X).

Consider the query

?­ path(a, a).

path(a,a)

path(a,a)=path(X,Y)

X=a Y=a

edge(a,Z)

edge(a,Z)=edge(a,b)

Z=b

path(b,a)

Will eventually produce the right answer, but will spend much more

time doing so.

Order can cause Infinite Recursion

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).
path(X, Y) :­

path(X, Z), edge(Z, Y).
path(X, X).

Consider the query

?­ path(a, a).

path(a,a)
Goal

path(a,a)=path(X,Y) Unify

X=a Y=a implies

path(a,Z)

Subgoal

path(a,Z)=path(X,Y)

X=a Y=Z

path(a,Z)

path(a,Z)=path(X,Y)

X=a Y=Z

edge(Z,a)

edge(Z,a)

Bill and Ted in Prolog

super_band(X) :­ on_guitar(X, eddie_van_halen).
on_guitar(X, eddie_van_halen) :­ triumphant_video(X).
triumphant_video(X) :­ decent_instruments(X).
decent_instruments(X) :­ know_how_to_play(X).
know_how_to_play(X) :­ on_guitar(X, eddie_van_halen).

super_band(wyld_stallyns).

What will Bill and Ted do?

Prolog as an Imperative Language

A declarative statement such as

P if Q and R and S

can also be interpreted procedurally as

To solve P, solve Q, then R, then S.

This is the problem with the last path example.

path(X, Y) :­ path(X, Z), edge(Z, Y).

“To solve P, solve P. . . ”

Prolog as an Imperative Language

go :­ print(hello_), print(world).

?­ go.

hello_world

yes

Cuts

Ways to shape the behavior of the search:

Ï Modify clause and term order.

Can affect efficiency, termination.

Ï “Cuts”

Explicitly forbidding further backtracking.

Cuts

When the search reaches a cut (!), it does no more backtracking.

techer(stephen) :­ !.
techer(todd).
nerd(X) :­ techer(X).

?­ nerd(X).

X= stephen?;

no

Controlling Search Order

Prolog’s ability to control search order is crude, yet often critical for

both efficiency and termination.

Ï Clause order

Ï Term order

Ï Cuts

Often very difficult to force the search algorithm to do what you

want.

Elegant Solution Often Less Efficient

Natural definition of sorting is inefficient:

sort(L1, L2) :­ permute(L1, L2), sorted(L2).
permute([], []).
permute(L, [H|T]) :­

append(P, [H|S], L), append(P, S, W), permute(W, T).

Instead, need to make algorithm more explicit:

qsort([], []).
qsort([A|L1, L2) :­ part(A, L1, P1, S1),

qsort(P1, P2), qsort(S1, S2), append(P2, [A|S2], L2).
part(A, [], [], []).
part(A, [H|T], [H|P], S) :­ A >= H, part(A, T, P S).
part(A, [H|T], P, [H|S]) :­ A < H, part(A, T, P S).

Prolog’s Failings

Interesting experiment, and probably perfectly-suited if your

problem happens to require an AI-style search.

Problem is that if your peg is round, Prolog’s square hole is difficult

to shape.

No known algorithm is sufficiently clever to do smart searches in all

cases.

Devising clever search algorithms is hardly automated: people get

PhDs for it.

