
LRM: SHIL

Simulated Human Input Language

COMS W4115 Programming Languages and Translators

Fall 2008

Moses Vaughan (mjv2123@columbia.edu)

Binh Vo (bdv2112@columbia.edu)

Ian Vo (idv2101@columbia.edu)

Chun Yai Wang (cw2244@columbia.edu)

mailto:mjv2123@columbia.edu
mailto:cw2244@columbia.edu
mailto:idv2101@columbia.edu
mailto:bdv2112@columbia.edu

Table of Contents:
Introduction 3

Lexical Conventions 3

• Overview
• White Space
• Comments
• Identifier
• Keywords
• Operators

Data Types and Structures 5

• Data Types
• Data Structures

Functions 6

Expressions 7

• Constants
• Function Calls
• Math/boolean operators
• Comparison operators

Statements 7

• Assignment
• Block
• Conditional
• Iteration
• Return

Namespace 9

SHIL specific functions 9

• Internet Interaction
• String Manipulation
• Data Manipulation

Introduction

• An Overview of Simulated Human Interaction Language(SHIL)

SHIL is a language used primarily for developing HTML based
automated bots. It provides the developer with an abstraction for
automating interaction with web sites and users. From the server's
perspective SHIL can be used to simulate user interactions, which is useful
for many applications ranging from creating spiders to website test scripts.
From the user's perspective SHIL can be used to implement custom user
interfaces. In conjunction with automated server interaction this potentially
can be used to alter existing interfaces for websites or provide interfaces to
additional functionality built on top of existing website functionality.

One of the main motivations for the production of our language are
that many automated browsing tasks are written now in various languages,
primarily PERL and Python. For example many services such as web
search engines need to crawl across existing pages on the internet, or
independent users often wish to automate data collection over various
sites. SHIL intends to provide a language designed specifically for this task
which will reduce the complexity of writing applications of this nature.

Lexical Conventions

• Overview

This section covers the lexical conventions within the SHIL language
that constitute various tokens including elements such as data types, data
structures, reserved words and symbols. A token is a series of contiguous
characters that the compiler will treat as one individual element. The
scanner will parse tokens to be the longest string of characters that can
create a token type.

• White Space

White space is classified only by blank spaces, newlines, tabs, and
within the scanner comments are considered whitespace. The only purpose
of whitespace is to separate tokens, and can essentially be rendered
useless except for human readability issues.

• Comments

/* is the opening of a comment and */ is the closing the respective
block. There are no single line only comment lexemes. Once a comment
opening is seen, everything up until the end of the */ lexeme is considered
invisible to the compiler.

• Identifier

An identifier is a sequence of alphanumeric and non-alphanumeric
characters. Note that the first character can be anything other than a digit.
Casing is distinctive in all positions of an identifier string, meaning that one
identifier is not equivalent to another unless they both follow identical
character order and their characters must have identical casing in their
respective positions.

• Keywords

The following list is the keywords within the SHIL language. They
cannot be used for any programmatic purpose other than their distinct
function.

integer real boolean

struct map array

if while foreach

break end fun

use return true

false maybe

• Operators

An operator is used to specify an operation to be performed. The chart
below gives operators as well as their necessary functions.

Operator Functions
<= assignment
+ - / * math
" string**
; statement

termination
. struct reference
[] array reference
() Logical

grouping
& | ! =
< > >=

Boolean
Operators

Note: ** signifies that this operator must occur in a pairing

Data Types and Structures

• Data Types

String - string is any finite sequence of characters which include letters,
numerals, symbols and punctuation marks. A “ is used to signify the
beginning of a string and an additional one used to signify the end of the
string.

Integer - An integer is a whole number that can be positive, negative, or
zero.

Real - Real numbers include rational and irrational numbers, but must be
signified in decimal format within SHIL. So therefore pi is not an acceptable
value.

Boolean - Boolean represents logical variables and can be of the values
true or false.

• Data Structures

Struct - A type which can hold a grouping of variables within one variable.
To reference the individual variables within a struct you must have the
formatting:

 <Struct Name>.<Variable Name>

Map – An associated array which holds key value pairings. The operation
of finding a value with a given key is called a lookup.

Array - A linear data structure where each element holds the same data
type. The structure itself occupies a contiguous block of storage.

Functions

SHIL functions can take multiple arguments, return either a single basic
data type value or nothing, and modify multiple existing values

function (type1 arg1, type2 arg2 …) => <return_type> {

/* arbitrary code */

};

Args are passed by value (with the exception of data structures). The
return value is specified with the 'return' operator.

For example, the following function can return a sum:

sum <= function (integer x, integer y) => integer {

return x + y;

};

User-defined libraries of functions can be stored in a separate file and
included

with the 'use' directive:

use “filename”;

Expressions

Expressions are token groups which result in a value, they fall into several
categories.

Constants: result <= “string”; result <= 1; result <= 1.0; result = true;

String constants are always surrounded by double quotes. Digits
containing a '.' are real valued, otherwise integer-valued, and booleans are
one of either 'true' or 'false'.

Function Calls: result <= func_name(arg1, arg2 => ref1, ref2);

Function calls return at most one value, not necessarilly related to the
arguments passed by reference.

Math/boolean operators: result <= val1 <operator> val2;

Boolean operators ('&', '|', '!') always return a boolean value.
Mathematical operators ('+', '-', '*', '/', '%') return a real value if either of the
input values is real, and an integer value otherwise.

Comparison operators: result <= “asdf” = “asdf”;

Comparison operators ('=', '!=', '<' , '>', '<=', '>=') return a boolean
value from two values of same type.

Assignment: result <= foo <= bar;

Assignment operators also return the value assigned.

Statements

Statements are complete SHIL instructions, are terminated by the ';'
character, and fall into four categories:

Expression

<expression>;

A lone expression may be evaluated as a statement.

Block

{<statement>; <statement>; <statement>;};

Curly braces can be used to group several statements into one statement.

Conditional

if <expression> then <statement>; else <statement>;

'if' can be used with a boolean-valued expression to execute one of two
statements.

Iteration

while <expression> <statement>;

'while' can be used with a boolean-valued expression to repeatedly execute
a statement.

foreach <key_name> <value_name> in <array_or_map_name>
statement;

'foreach' can be used to execute a statement once for each element in a
map or array. key_name and value_name will become variables within the
context of this statement. For an array, key_name is an integer index from
0 to the length of the array, and for a map, key_name is the key of the map.

Return

return <expression>;

Within a function body, this can be used to terminate execution of the
function and return a value.

Namespace

Variable names and function names will occupy the same case sensitive
namespace, and can be assigned with the <= operator. Function bodies
will use a private namespace, and statement blocks will inherit the parent
namespace, however any variables declared within the block will expire
with the termination of the block.

SHIL specific functions

The SHIL language has a number of built-in functions that are always
available. They are categorized here according to purpose:

Internet Interaction

string <= (SendRequest map)

Returns the HTML result as a string, given an HTTP request of
type map.

map <= (ParseHTML string)

Returns a nested map representation of an HTML page in string
format.

string <= (GenerateHTML map)

Returns a string representation of an HTML page in map
format.

map <= (ShowHTML string)

Displays a given HTML code of string in the user’s default web
browser and returns the next HTTP request as a map.

String Manipulation

string <= (SubString string int int)

Returns a string that is the substring of the given string,
bounded by the starting and ending integer indexes.

int <= (StringLength string)

Returns the length of the given string.

int <= (StringFind string string)

Returns the index within the given string of the first occurrence
of the specified substring.

Int[] <= (StringFindAll string string)

Returns an array of indexes within the given string of all
occurrences of the specified substring.

String[] <= (SplitString string string)

Returns an array of strings resulting from splitting the given
string according to a regular expression provided in string
format.

string <= (StringReplace string string string)

Replaces all instances of the search string with the replacement
string in the given string.

string <= (StringToUpper string)

Returns the given string with all its characters converted to
upper case using the rules of the default locale.

string <= (StringToLower string)

Returns the given string with all its characters converted to
lower case using the rules of the default locale.

Data Manipulation

array <= (Sort array)

Returns a sorted version of the provided array.

array <= (Randomize array)

Returns a randomized permutation of the provided array.

array <= (GetKeys map)

Returns an array of the keys for the provided map.

array <= (GetValues map)

Returns an array of the values for the provided map.

int <= (Length array)

Returns the number of elements for the provided array.

arraytype <= (Aggregate array, fun(arraytype, sometype ->
sometype), sometype)

Aggregate all the values of the provided array with the given
function.

Array <= (Modify array, fun(arraytype -> arraytype))

Apply a function to every element in the provided array.

