FAST VECTOR PROCESSING LANGUAGE

LANGUAGE REFERENCE MANUAL

Gowri Kanugovi <gk2263@columbia.edu>
Pratap V Prabhu <pvp2105@columbia.edu>
Ravindra Babu Ganapathi <rg2547@columbia.edu>

TABLE OF CONTENTS

SR 011 o o (5 ox 1 o o U SSTRPP 3
2. L eXiCal CONVENTIONS.iiiiiiieeiiiies e ee et e e e e e e e e e e ee e et e e e e e e eeeaaan e e eeeeeeeeesnsnaans 3
2% S O 01 0 1= o PP 3
P Lo (< | L) = TS URUPRPPRRRN 3
2.3, KEYWOIAS 3
S O 0] 1S =T | £ TUPRPP 4
P T O o1 = o] TP PPRRPPPPRPPTIN 4
P S < o= - | o | PSP P PP T PR 5
2.7. BIOCK delimitationiiieieiiiiiiiie e rre eaeees 5
P2 S T oo o1 o[D PRSP PPPPPPPPPP 6

T B T = B Y 1< TP PRRRPP
B . BaASIC T Y P 6

4. BranChing CONSIIUCEccooiiiiiiie e e eeeans 6

E R oo o1 o To N @ = 1 1 Tox A 7

6. DECIAIALIONS. ...ceiiiieeii ittt et e e e e s et r e e e e e e r e e e e 7

A = ¥ T o g PSPPSR PP PP PPPPPPPRPPPT

8. EX@MPIEPIOgramM ...cccoeiiiiii ittt 8

S T = PSP P PP O PP PPPRPRTPTRPRPIN

O T = 10] = PSPPSR 10

1. Introduction

Fast Vector Processing Language (FVPL) allows m@ogners to transparently and
efficiently utilize the power of SIMD instructionsuch as SSE, SSE2) to compute large
amount of sequential data at higher speeds. Maatipul of large sequential data is common
in various domains like image processing, databasek cryptography, but most of the
current C/C++ compilers generate slow native cadex86 family of processors. The new
processors include a vector processing unit whiad the capability to compute data in
parallel. These instructions known as SIMD (Sinlgistruction Multiple Data) operate on
128 bits of data at a time.

FVPL aims to make use of the power of the new geitar processors.

2. Lexical Conventions
FVPL comprises tokens such as: keywords, idengifieomments, integer constants, floating
point constants, operators and separators. Itffieeaform language; spaces, tabs and new lines
are ignored and considered to only serve as delimiietween tokens.

2.1. Comments
Single line comments in FVPL are begin with therelters // like in the C-language. Multi-
line comments are also supported by FVPL. Such cemtsnbegin with /* and should be
terminated by */

2.2. |dentifiers
Identifiers are sequence of letters, digits anduhéerscore (‘_’) character. The first letter
however has to be only either an alphabet or thaenscore character. Identifiers cannot
begin with a digit. FVPL identifiers are case-séwsi Following are some examples of
FVPL identifiers
Valid identifiers:A, foo, a, _bar, bar_foo, count2
Invalid identifiers:1A, a#, foo-bar

2.3. Keywords
The following table summarizes the identifiers uasckeywords in FVPL. These keywords
cannot be used as otherwise.

int Float double dynamic main
for dynamic void return sizeof
static int8 if else

2.4. Constants
Constants provide programmers the ease of init@iany of their identifiers to one of the
supported primitives. The different types of constasupported by FVPL are:

2.4.1. Integer constantstntegers of FVPL consists of an optional ‘+’ or sign followed
by any number of digits in the range of 0-9.

2.4.2. Floating point constantsFloating point numbers in FVPL comprises of aniapsl
‘+' or *-* sign followed by an integer of one or m® digits. This is followed by a
decimal point which is then followed by an integéone or more digits.

2.5. Operators
FVPL supports operations on both scalars and v&ctor

2.5.1. Operators on ScalarsA programmer can perform the following actions oscalar
type in FVPL:

* Arithmetic operators: The operators ‘+, -, *" dn'/’ are supported by FVPL. The
semantics of the operators are similar to thosaddition, subtraction, multiplication
and division respectively. The multiplication anevision operators are however
supported only for the int and float data typesFWPL. The precedence and
associativity of operators follows the same conearistas in the C-language.

» Bitwise logical operators: FVPL supports bitwisgitml AND, OR, XOR and NOT
operations. These are denoted by ‘&', ‘|, V" andrespectively.

» Assignment operators: The assignment operator iRLFi¢ denoted the ‘=" symbol.
This operator assigns the value of the right hadd expression to the left hand side
expression.

» Sizeof operator: The sizeof operator returns tize sf the operand in bytes. The
result is an integer value and thus can be useasfigning any integer variable.

2.5.2. Operators on Vectord=VPL, being a vector processing language triegtoige the
programmer the maximum benefit of vector operatidrteese operators can be used
transparently by the programmer as though he i®ming the operation on a scalar.
For example, there is no need for him to maintaioop to perform operation on each
of the vector member. The following operators angperted by FVPL:

» Vector arithmetic operators: The operators ‘+’, ** and ‘/’ are supported by FVPL.
The semantics of the operators are similar to thoSeaddition, subtraction,
multiplication and division respectively. Additioof two vectors implies that each
element of one vector is added to the corresporelemment of the other vector.

For e.g.: Three vectors A,B and C
The operation (A+B)*C implies that the sum of eattthe element in
A and B is multiplied by the corresponding elemer@

» Vector logical operators: FVPL supports bitwisgit@l operations on the vector
elements. The logical AND, OR, XOR and NOT are espnted as ‘|&, ‘', “*" and
‘~" respectively. Any logical vector operation ings that the operator is applied on
each of its corresponding elements.

For e.g.: Two vectors A and B
The operator A&B implies a bitwise logical AND beem every
element of A and the corresponding element of B.

» Vector assignment operator: The vector assignmeatabor denoted by ‘=" operator
implies that every element of the vector is inisatl with the value of the scalar
element on the right hand side of the operator.

For e.g.: Vector A
A=5 assigns the value 5 to every element of A

* Vector initialization: At the time of the creatinthe vector, FVPL allows the
programmer to initialize every element of the vecidis is particularly useful when
the programmer is trying to create small vectoid wants to assign distinct values to
it manually.

For e.g.: Vector A
A ={1, 2, 3, 4, 5} initializes the vector with fements each with the
value given in the braces.

» Vector concatenation: FVPL allows two vectors todoacatenated with each other
by using the ‘@’ operator. At the end of this opiemwe will have one vector which
contains all the elements of the two vectors ingdlin the operation.

For e.g.: Vector A ={1, 2, 3}
Vector B = {4, 5, 6}
A@B returns {1, 2, 3, 4, 5, 6}

» Vector copy. In FVPL, elements of one vector carcdygied into the other vector by
using the vector copy operator. The operator usaaine as the assignment operator,
but in this case the right hand side of the openatias to be a vector.

For e.g.: Vector A, B
A = B implies every element of B is copied into tloeresponding
position in A i.e. A[0]=B[0], A[1]=B[1]... A[999]=B[999]

» Vector casting: FVPL supports casting of vectonfrioat to integer or vice-versa.
Casting operation is applied to each of the eleroktite vector.

For e.g.: Vector A ={1.2, 2.3, 3.4}
Vector B = (int)A then B will contain {1,2,3}

* Vector sizeof operator: The sizeof operator on eecteturns the size in bytes of the
total memory allocated to the vector. For examléhe vector contains 'n' integer
elements then the sizeof operator returns (4*ngdyt

2.6. Separators
The two separators supported by FVPL are commgafiyd semi-colon (‘;’). The separator

7 is used to indicate the end of a statement whsrthe ‘,’ separator separates two
identifiers.

2.7. Block delimitation
In FVPL, the opening flower braces ‘{* indicatesetbeginning of a block of code and the
closing flower braces ‘}’ indicate the end of thiedk of code. Blocks play a major role in
defining the scope of variables. All variables defl within a block are visible only to the
code in that block. Scoping is explained in mor&ilen the next section.

2.8. Scoping
Scope of variables can be defined in two differttexts in FVPL:

Local scopeVariables declared in a block of code are vistiiiy within that block.
This is the local scope of the variable. Accesshmgvariable anywhere outside its
scope will result in a compilation error indicatitigt the variable is undefined.
Global scopeA global variable is declared outside all funo8o These variables can
be accessed by any part of the program. If anytimmclters the value of this
variable, then the altered variable is seen byodier functions. However, local
variables with the same name override the globahlke within that block.

3. Data Types
Every identifier in FVPL is associated with a typ#ich indicates the way the identifier is
interpreted by the program.

3.1. Basic Type
FVPL allows data manipulation on both the scalal aector types.

Scalar data types: FVPL supports the following bdsita types on scalars:

int8 is a sequence of 8 bits

intis a sequence of 32 bits

floatis a single precision floating number, having & $£32 bits
doubleis a double precision floating number, having & si#64 bits

Vector data types: FVPL supports the following batata types on vectors:

int8 creates a vector such that each of its elemenseésjaence of 8 bits

int creates a vector such that each of its elemenseésjaence of 32 bits

float creates a vector such that each of its elemensisghe precision floating point
number with size of 32 bits

doublecreates a vector such that each of its elementdsuble precision floating
point number with size of 64 bits

4. Branching Construct
In FVPL, the following constructs are used to cohtihe flow of code:

if: 'if' is the keyword used for conditional executioncofle. If the condition associated
with the 'if' statement is true, then the code blassociated with it is executed

Syntax: if(condition) { /* statements to be exeauté}

else:'else’ is the keyword used in conjunction with When the condition associated
with the 'if' statement evaluates to false then dbde block associated with ‘else’ is
executed.

Syntax: else { /* statements to be executed */ }

* return: The 'return' keyword passes the flow of contraihte statement which called for
the execution of a particular function. This keyd/as specifically used to return from
the called function back to the calling function.

Syntax: return;

5. Looping Construct
The looping construct in FVPL is the keywoilal". The semantics of FVPIEor' is same as the C
language ‘for' loop. Itis used to execute theespirace of code till some condition is met.

Syntax: for(initialization; condition; looping)

{

/* statements to be executed till
the termination condition is
reached */

}

6. Declarations
Any variable used in the FVPL program needs to édaited before it is used in the program.
The declaration of a variable should include theadype, the identifier name and also
additionally whether it requires memory to be adli@d to it dynamically. If the programmer
does not request the variable to be allocated digadly) it is assumed that the variable will be
allocated memory in a static manner.

Syntax: (dynamic/static) data-type identifieendifier;

Two identifiers of the same type can be declared gingle line and separated with a comma.
Declaration statements can optionally include tiialization of the variable.

7. Functions
FVPL supports function calls like the C-languagenétions are written to perform a particular
sub-task which can be reused. In FVPL, functionsdni® be declared like any other variable
before they are actually used.

The starting point of an FVPL program, like in € themainfunction. Therefore, any functions
that are used in the program need to be eithenetfor declared before it.

Functions can optionally return some value to thikec After returning from the function, the
calling function resumes execution. Given belowhis syntax of function declaration

Syntax: return-type function-name(function-pargers { //body of the function }

Return-type: It can be any one of the data types supported BLR\E. int, float, double. If the
function is not returning a value to the calleeritihe return type should be “void”.

Function-name: It is the identifier of the function. This nameused as the reference to the
function when the function is to be called.

Function-parameters: A list of variables that are passed to the funcbody by the caller. The
parameters can be of any data type but the orderhioh these data types are passed to the
function is important.

Function-body: A block of code, which performs the task of theduon. Any variable declared
within the function exist only within the functicand cannot be viewed anywhere outside. But
the function can access and modify the global Béesgin the program.

8. Example program
Following is an example FVPL program.

i nt main()

int A1024];

int B[1024];

int C 1024];

int i;

/*array initializing code goes here. Either load fromfile or
initialize in program */

/'l Every element of the vector Bis nmultiplied by 2 and added to
//the corresponding el ement of vector A The result is stored in
//the corresponding position in vector C

C=A+B* 2

O. Lexer

{
type token = EOF | MAIN |IF |ELSE |WHILE |[FOR |RERN| LBRACKET | RBRACKET

| STATIC |INT |[FLOAT |DOUBLE |INT8 |VOID |LPARANFPRRAN |LBRACE |RBRACE
|PLUS |[MINUS |[MUL|DIV |OR |AND |XOR |[NOT |ASN [SEFOMMA |LT |GT |LTEQ |GTEQ
|EQ INOTEQ |DIGIT | ID

}

let digit=['0"-'9"]

rule token = parse

| eof {EOF}
| "main” { MAIN}
| "if" {IF}

"else" { ELSE}

I

| "while" { WHILE}

| "for" { FOR}

| "return” { RETURN}
| "static" { STATIC}

| “int" {INT}

| "float" { FLOAT}

| "double” { DOUBLE}
| "int8" { INT8}

| "void" { vOID}

K¢ { LPARAN}
| { RPARAN}
BS { LBRACE}
|y { RBRACE}
[T { LBRACKET}
[{ RBRACKET}
| '+ { PLUS}

|- { MINUS}

| { MUL}

Ki {DIV}

B { OR}

& { AND}

| '~ { XOR}

| '~ { NOT}

| = { ASN}

| { SEP}

| { COMMA}
| '< {LT}

| > {GT}

| <= TEQ)

| ">=" GTEQ}

| == {EQ)

| "= {NOTEQ}
| digit+ {DIGIT }

| [a'-'z"_" 'A-'Z+(digit|['a’-'z"A'-'Z7)* { D}
| { token lexbuf }

10. Grammar

File Consists of start symbol Main and user defiwgtttions

Main -> INT MAIN LPARAN RPARAN LBRACE (STATEMENT)*RBRACE
STATEMENT -> (DECL| EXPR| COND| LOOP| FUNCALL| LBRZE STATEMENT
RBRACE) SEP

DECL-> TYPE VAR_DECL SEP

TYPE-> INT| FLOAT| DOUBLE] INT8|

VAR_DECL -> VAR COMMA VAR | VAR

VAR -> ID | ID LBRACKET DIGIT RBRACKET

EXPR -> ID ASN TERM | TERM

TERM -> TERM OP TERM | ID

OP -> PLUS | MINUS | MUL | DIV | OR | AND | XOR

COND -> IF LPARAN BOOL_EXPR RPARAN STATEMENT (ELS&ETATEMENT)?
BOOL_EXPR -> ID RELOP ID | DIGIT

RELOP -> LT | GT | LTEQ | GTEQ | EQ | NOTEQ

LOOP -> FOR LPARAN INIT SEP COND SEP INC RPARAN

INIT -> ID ASN DIGIT |

INC -> ID ASN ID (PLUS|MINUS) DIGIT

FUNCALL-> ID LPARAN ARG RPARAN

ARG -> ARG COMMA ARG| ID

FUNDEF-> RETTYPE ID LPARAN PARAM RPARAN LBRACE STAHMENT RBRACE
PARAM -> PARAM COMMA PARAM | TYPE ID

RETTYPE -> TYPE | VOID

10

