Review for the Final

Stephen A. Edwards

Columbia University

Fall 2008
The Midterm

70 minutes
4–5 problems
Closed book
One single-sided 8.5 × 11 sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game
Little, if any, programming.
Details of O’Caml/C/C++/Java syntax not required
Broad knowledge of languages discussed
Topics

Structure of a Compiler

Scanning

Regular Expressions

The Subset Construction Algorithm

Parsing

Bottom-up Parsing

Name, Scope, and Bindings

Static Semantic Analysis

Intermediate Representations

Separate Compilation and Linking

The Lambda Calculus

Logic Programming (Prolog)

Concurrency
Part I

Structure of a Compiler
Compiling a Simple Program

```c
int gcd(int a, int b)
{
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```
What the Compiler Sees

```c
int gcd(int a, int b)
{
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```

Text file is a sequence of characters
A stream of tokens. Whitespace, comments removed.
Parsing Gives an AST

```
int gcd(int a, int b) {
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```

Abstract syntax tree built from parsing rules.
Semantic Analysis Resolves Symbols

Symbol Table:

```plaintext
int a
int b
```

Types checked; references to symbols resolved
Translation into 3-Address Code

L0: sne $1, a, b
 seq $0, $1, 0
 btrue $0, L1 % while (a != b)
 sl $3, b, a
 seq $2, $3, 0
 btrue $2, L4 % if (a < b)
 sub a, a, b % a -= b
 jmp L5
L4: sub b, b, a % b -= a
L5: jmp L0
L1: ret a

int gcd(int a, int b) {
 while (a != b) {
 if (a > b) a -= b;
 else b -= a;
 }
 return a;
}

Idealized assembly language w/ infinite registers
Generation of 80386 Assembly

```
gcd:  pushl  %ebp               % Save FP
     movl   %esp,%ebp
     movl   8(%ebp),%eax        % Load a from stack
     movl   12(%ebp),%edx       % Load b from stack
.L8:  cmpl   %edx,%eax         % while (a != b)
     je     .L3                 % if (a < b)
     jle    .L5
     subl   %edx,%eax          % a -= b
     jmp    .L8
.L5:   subl   %eax,%edx       % b -= a
     jmp    .L8
.L3:   leave                 % Restore SP, BP
     ret
```
Part II

Scanning
Describing Tokens

Alphabet: A finite set of symbols

Examples: \{ 0, 1 \}, \{ A, B, C, \ldots, Z \}, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: \(\epsilon \) (the empty string), Stephen, \(\alpha \beta \gamma \)

Language: A set of strings over an alphabet

Examples: \(\emptyset \) (the empty language), \{ 1, 11, 111, 1111 \}, all English words, strings that start with a letter followed by any sequence of letters and digits
Operations on Languages

Let \(L = \{ \epsilon, wo \} \), \(M = \{ \text{man, men} \} \)

Concatenation: Strings from one followed by the other
\(LM = \{ \text{man, men, woman, women} \} \)

Union: All strings from each language
\(L \cup M = \{ \epsilon, wo, \text{man, men} \} \)

Kleene Closure: Zero or more concatenations
\(M^* = \{ \epsilon \} \cup M \cup MM \cup MMM \cdots = \{ \epsilon, \text{man, men, manman, manmen, menman, menmen, manmanman, manmanmen, manmenman, manmenman, \ldots} \} \)
Part III

Regular Expressions
A standard way to express languages for tokens.

1. ϵ is a regular expression that denotes $\{\epsilon\}$
2. If $a \in \Sigma$, a is an RE that denotes $\{a\}$
3. If r and s denote languages $L(r)$ and $L(s)$,
 - $(r) | (s)$ denotes $L(r) \cup L(s)$
 - $(r)(s)$ denotes $\{tu : t \in L(r), u \in L(s)\}$
 - $(r)^*$ denotes $\cup_{i=0}^{\infty} L^i$ ($L^0 = \{\epsilon\}$ and $L^i = LL^{i-1}$)
Nondeterministic Finite Automata

“All strings containing an even number of 0’s and 1’s”

1. Set of states S: \{A, B, C, D\}
2. Set of input symbols Σ: \{0, 1\}
3. Transition function $\sigma : S \times \Sigma_e \rightarrow 2^S$

<table>
<thead>
<tr>
<th>state</th>
<th>ϵ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>–</td>
<td>{B}</td>
<td>{C}</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>{A}</td>
<td>{D}</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>{D}</td>
<td>{A}</td>
</tr>
<tr>
<td>D</td>
<td>–</td>
<td>{C}</td>
<td>{B}</td>
</tr>
</tbody>
</table>

4. Start state $s_0 : A$
5. Set of accepting states F: \{A\}
The Language induced by an NFA

An NFA accepts an input string \(x \) iff there is a path from the start state to an accepting state that “spells out” \(x \).

Show that the string “010010” is accepted.
Translating REs into NFAs

- **a**
 - Start
 - Transition: a to a

- **r_1r_2**
 - Start
 - Transition: i, r_1, r_2, f

- **$r_1|r_2$**
 - Start
 - Transition: i, r_1, r_2, f

- **$(r)^*$**
 - Start
 - Transition: i, r, f
Translating REs into NFAs

Example: translate $(a|b)^* a b b$ into an NFA

Show that the string “aabb” is accepted.
Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the \(\epsilon \)-closure of the start state
2. For each character \(c \),
 - New states: follow all transitions labeled \(c \)
 - Form the \(\epsilon \)-closure of the current states
3. Accept if any final state is accepting
Simulating an NFA: \(\cdot aabb, \) Start
Simulating an NFA: $aabb$, ε-closure
Simulating an NFA: $a \cdot ab$
Simulating an NFA: $a \cdot abb$, ε-closure
Simulating an NFA: $aa \cdot bb$
Simulating an NFA: $aa \cdot bb$, ϵ-closure
Simulating an NFA: $aab \cdot b$
Simulating an NFA: $aab \cdot b$, ε-closure
Simulating an NFA: $aabb$.
Simulating an NFA: $aabb\cdot$, Done
Deterministic Finite Automata

Restricted form of NFAs:

- No state has a transition on ϵ
- For each state s and symbol a, there is at most one edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser, *Introduction to the Theory of Computation*)

Very easy to check acceptance: simulate by maintaining current state. Accept if you end up on an accepting state. Reject if you end on a non-accepting state or if there is no transition from the current state for the next symbol.
Deterministic Finite Automata

```
{
    type token = ELSE | ELSEIF
}

rule token =
    parse "else"  { ELSE } |
    "elseif"  { ELSEIF }
```

![Diagram of a deterministic finite automaton](image)
Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
 parse "if"
 | ['a'-'z'] ['a'-'z' '0'-'9']* as lit { ID(lit) }
 | ['0'-'9']+
 as num { NUM(num) }

```
Part IV

The Subset Construction Algorithm
Building a DFA from an NFA

Subset construction algorithm
Simulate the NFA for all possible inputs and track the states that appear.
Each unique state during simulation becomes a state in the DFA.
Subset construction for \((a|b)^* abb\) (1)
Subset construction for $(a|b)^*abb$ (2)
Subset construction for \((a|b)^* abb\) (3)
Subset construction for \((a|b)^* abb\) (4)
Part V

Parsing
Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing

\[ 3 - 4 * 2 + 5 \]

with the grammar

\[ e \rightarrow e + e \mid e - e \mid e * e \mid e / e \mid N \]
Fixing Ambiguous Grammars

A grammar specification:

```
expr :
 expr PLUS expr {}
| expr MINUS expr {}
| expr TIMES expr {}
| expr DIVIDE expr {}
| NUMBER {}
;
```

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”
Assigning Precedence Levels

Split into multiple rules, one per level

```
expr : expr PLUS expr {} | expr MINUS expr {} | term {}
;

term : term TIMES term {} | term DIVIDE term {} | atom {}
;

atom : NUMBER {}
;
```

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”
Assigning Associativity

Make one side the next level of precedence

```
expr : expr PLUS term {}
 | expr MINUS term {}
 | term {}

;,

term : term TIMES atom {}
 | term DIVIDE atom {}
 | atom {}

;,

atom : NUMBER {}
```

This is left-associative.

No shift/reduce conflicts.
Part VI

Bottom-Up Parsing
Rightmost Derivation

1:  \( e \rightarrow t + e \)
2:  \( e \rightarrow t \)
3:  \( t \rightarrow \text{Id} \ast t \)
4:  \( t \rightarrow \text{Id} \)

The rightmost derivation for \( \text{Id} \ast \text{Id} + \text{Id} \):

At each step, expand the rightmost nonterminal.

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambiguous.
Rightmost Derivation

1: \[ e \rightarrow t + e \]
2: \[ e \rightarrow t \]
3: \[ t \rightarrow \text{Id} \ast t \]
4: \[ t \rightarrow \text{Id} \]

The rightmost derivation for \[ \text{Id} \ast \text{Id} + \text{Id} \]:

Tokens on the right are all terminals.
In each step, nonterminal just to the left is expanded.
Reverse Rightmost Derivation

1:  $e \rightarrow t + e$
2:  $e \rightarrow t$
3:  $t \rightarrow \text{Id} \ast t$
4:  $t \rightarrow \text{Id}$

The reverse rightmost derivation for $\text{Id} \ast \text{Id} + \text{Id}$:

Beginning to look like a parsing algorithm: start with terminals and reduce them to the starting nonterminal.

Reductions build the parse tree starting at the leaves.
Reverse Rightmost Derivation

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

The reverse rightmost derivation for $\text{Id} \ast \text{Id} + \text{Id}$:

- Big question: where are the handles?
- A handle is the right side of a production, but not always vice-versa.
- A handle is the result of an expansion in the rightmost derivation.
- Every step in a rightmost derivation is a right sentential form.
Handle Hunting

The basic trick, due to Knuth: build an automaton that tells us where the handle is in right-sentential forms.

Represent where we could be with a dot.

\[ e \rightarrow \cdot t + e \]
\[ e \rightarrow \cdot t \]
\[ t \rightarrow \cdot \text{Id} * t \]
\[ t \rightarrow \cdot \text{Id} \]

The first two come from expanding \( e \). The second two come from expanding \( t \).

Consider the expansion of \( e \) first. This gives two possible positions:

\[ e \rightarrow t \cdot + e \] when \( e \) was expanded to \( t + e \)
\[ e \rightarrow t \cdot \] when \( e \) was expanded to just \( t \); \( t \) is a handle

The expanded- \( t \) case also gives two possible positions:

\[ t \rightarrow \text{Id} \cdot * t \] when \( t \) was expanded to \( \text{Id} + t \)
\[ t \rightarrow \text{Id} \cdot \] when \( y \) was expanded to just \( \text{Id} \); \( \text{Id} \) is a handle
Constructing the LR(0) Automaton

**S0:** $e \rightarrow \cdot t$
- $e' \rightarrow \cdot e$
- $e \rightarrow \cdot t + e$
- $t \rightarrow \cdot \text{Id} \ast t$
- $t \rightarrow \cdot \text{Id}$

**S1:** $t \rightarrow \text{Id} \ast t$
- $t \rightarrow \text{Id}$

**S2:** $e \rightarrow t \cdot + e$
- $e \rightarrow \cdot t + e$
- $e \rightarrow \cdot t$
- $t \rightarrow \cdot \text{Id} \ast t$
- $t \rightarrow \cdot \text{Id}$

**S3:** $t \rightarrow \text{Id} \ast t$
- $t \rightarrow \cdot \text{Id}$

**S4:** $e \rightarrow \cdot t$
- $t \rightarrow \cdot \text{Id} \ast t$
- $t \rightarrow \cdot \text{Id}$

**S5:** $t \rightarrow \text{Id} \ast t$

**S6:** $e \rightarrow t + e$

**S7:** $e' \rightarrow e \cdot$
Shift-reduce Parsing

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow Id \ast t$
4: $t \rightarrow Id$

Scan input left-to-right, looking for handles.
An oracle says what to do
### LR Parsing

1. \( e \rightarrow t + e \)
2. \( e \rightarrow t \)
3. \( t \rightarrow \text{Id} \ast t \)
4. \( t \rightarrow \text{Id} \)

#### Stack, Input, Action

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0] \text{Id} \ast \text{Id} + \text{Id} )</td>
<td>$ )</td>
<td>Shift, goto 1</td>
</tr>
</tbody>
</table>

1. Look at state on top of stack
2. and the next input token
3. to find the next action
4. In this case, shift the token onto the stack and go to state 1.
LR Parsing

1:  \( e \rightarrow t + e \)
2:  \( e \rightarrow t \)
3:  \( t \rightarrow \text{Id} \ast t \)
4:  \( t \rightarrow \text{Id} \)

<table>
<thead>
<tr>
<th>stack</th>
<th>input</th>
<th>action</th>
</tr>
</thead>
</table>
| 0 \[
| 0 \[
| 0 \[
| 0 \[
| 0 \[
| 0 \[

<table>
<thead>
<tr>
<th>e t</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Action is “reduce with rule 4 \((t \rightarrow \text{Id})\).” The right side is removed from the stack to reveal state 3. The goto table in state 3 tells us to go to state 5 when we reduce a \( t \):
LR Parsing

1: \( e \rightarrow t + e \)
2: \( e \rightarrow t \)
3: \( t \rightarrow \text{Id} \ast t \)
4: \( t \rightarrow \text{Id} \)

<table>
<thead>
<tr>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Id} + \ast $</td>
<td>e t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>stack</th>
<th>input</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\text{Id} \ast \text{Id} + \text{Id} $</td>
<td>shift, goto 1</td>
</tr>
<tr>
<td>0 \text{Id}</td>
<td>* \text{Id} + \text{Id} $</td>
<td>shift, goto 3</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id}</td>
<td>\text{Id} + \text{Id} $</td>
<td>shift, goto 1</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id}</td>
<td>+ \text{Id} $</td>
<td>reduce w/ 4</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id}</td>
<td>+ \text{Id} $</td>
<td>reduce w/ 3</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>+ \text{Id} $</td>
<td>shift, goto 4</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>\text{Id} $</td>
<td>shift, goto 1</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>$ $</td>
<td>reduce w/ 4</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>$ $</td>
<td>reduce w/ 2</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>$ $</td>
<td>reduce w/ 1</td>
</tr>
<tr>
<td>0 \text{Id} \ast 3 \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id} \text{Id}</td>
<td>$ $</td>
<td>accept</td>
</tr>
</tbody>
</table>
Building the SLR Parse Table from the LR(0) Automaton

**S7:** \[ e' \rightarrow e \cdot \]

**S0:** \[ e \rightarrow \cdot t \]
\[ t \rightarrow \cdot \text{Id} * t \]
\[ t \rightarrow \cdot \text{Id} \]

**S1:** \[ t \rightarrow \text{Id} * \cdot t \]
\[ t \rightarrow \text{Id} \cdot \]

**S3:** \[ t \rightarrow \text{Id} * \cdot t \]
\[ t \rightarrow \cdot \text{Id} \]

**S2:** \[ e \rightarrow \cdot t + e \]
\[ e \rightarrow \cdot t \cdot + e \]

**S4:** \[ e \rightarrow \cdot t \]
\[ t \rightarrow \cdot \text{Id} * t \]

**S5:** \[ t \rightarrow \text{Id} * \cdot t \]

**S6:** \[ e \rightarrow t + \cdot e \]

---

**Action Table:**

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s1</td>
<td>e</td>
</tr>
<tr>
<td>1</td>
<td>r4</td>
<td>s3</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td>r4</td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td>r2</td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>6</td>
<td>r4</td>
<td>r1</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Part VII

Name, Scope, and Bindings
Names, Objects, and Bindings

Diagram showing bindings between objects and names:
- Object1 is bound to Name2.
- Object2 is bound to Name3 and Name4.
- Object3 is not bound to any name.
- Object4 is bound to Name1.
Activation Records

| argument 2 |
| argument 1 |
| return address |
| old frame pointer |
| local variables |
| temporaries/arguments |

← frame pointer
← stack pointer
↓ growth of stack
### Activation Records

<table>
<thead>
<tr>
<th>Return Address</th>
<th>Old Frame Pointer</th>
<th>A’s variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Return Address</td>
<td>Old Frame Pointer</td>
<td>B’s variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Return Address</td>
<td>Old Frame Pointer</td>
<td>C’s variables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z</td>
</tr>
</tbody>
</table>

```c
int A() {
 int x;
 B();
}

int B() {
 int y;
 C();
}

int C() {
 int z;
}
```
Nested Subroutines in Pascal

procedure mergesort;
var N : integer;

procedure split;
var I : integer;
begin
...
end

procedure merge;
var J : integer;
begin
...
end

begin
...
end
**Nested Subroutines in Pascal**

```pascal
procedure A;
 procedure B;
 procedure C;
 begin
 ...
 end
 begin
 D
 end
begin
 D
end

procedure E;
begin
 B
end

begin
 E
end
```
Static vs. Dynamic Scope

```pascal
program example;
var a : integer; (* Outer a *)

procedure seta;
begin
 a := 1 (* Which a does this change? *)
end

procedure locala;
var a : integer; (* Inner a *)
begin
 seta
end

begin
 a := 2;
 if (readln() = 'b')
 then locala
 else seta;
 writeln(a)
end
```
let
    var n := 8
    var x := 3
    function sqr(a:int)
        = a * a
    type ia = array of int
in
    n := sqr(x)
end
Part VIII

Static Semantic Analysis
Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

```plaintext
if i 3 "This" /* valid */
#a1123 /* invalid */
```

Syntactic analysis: Makes sure tokens appear in correct order

```plaintext
for i := 1 to 5 do 1 + break /* valid */
if i 3 /* invalid */
```

Semantic analysis: Makes sure program is consistent

```plaintext
let v := 3 in v + 8 end /* valid */
let v := "f" in v(3) + v end /* invalid */
```
Static Semantic Analysis

Basic paradigm: recursively check AST nodes.

1 + break

1 - 5

Ask yourself: at a particular node type, what must be true?
Implementing multi-way branches

```java
switch (s) {
 case 1: one(); break;
 case 2: two(); break;
 case 3: three(); break;
 case 4: four(); break;
}
```

Obvious way:

```java
if (s == 1) { one(); }
else if (s == 2) { two(); }
else if (s == 3) { three(); }
else if (s == 4) { four(); }
```

Reasonable, but we can sometimes do better.
Implementing multi-way branches

If the cases are *dense*, a branch table is more efficient:

```c
switch (s) {
 case 1: one(); break;
 case 2: two(); break;
 case 3: three(); break;
 case 4: four(); break;
}
```

A branch table written using a GCC extension:

```c
/* Array of addresses of labels */
static void *l[] = { &&L1, &&L2, &&L3, &&L4 };

if (s >= 1 && s <= 4)
 goto *l[s-1];
goto Break;
L1: one(); goto Break;
L2: two(); goto Break;
L3: three(); goto Break;
L4: four(); goto Break;
Break:
```
What is printed by

```c
q(p(1), 2, p(3));
```
Applicative- and Normal-Order Evaluation

```c
int p(int i) { printf("%d ", i); return i; }

void q(int a, int b, int c) {
 int total = a;
 printf("%d ", b);
 total += c;
}

q(p(1), 2, p(3));
```

Applicative: arguments evaluated before function is called.
Result: 1 3 2

Normal: arguments evaluated when used.
Result: 1 2 3
Most languages use applicative order.

Macro-like languages often use normal order.

```
#define p(x) (printf("%d ",x), x)

#define q(a,b,c) total = (a), \
 printf("%d ", (b)), \
 total += (c)

q(p(1), 2, p(3));
```

Prints 1 2 3.

Some functional languages also use normal order evaluation to avoid doing work. “Lazy Evaluation”
Nondeterminism

Nondeterminism is not the same as random:

Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may affect behavior.

Bottom line: don’t know what code will do, but often know set of possibilities.

```c
int p(int i) { printf("%d ", i); return i; }
int q(int a, int b, int c) {}
q(p(1), p(2), p(3));
```

Will *not* print 5 6 7. It will print one of

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1
Modern memory systems read data in 32-, 64-, or 128-bit chunks:

Reading an aligned 32-bit value is fast: a single operation.
Layout of Records and Unions

Slower to read an unaligned value: two reads plus shift.

![Diagram of layout of records and unions]

SPARC prohibits unaligned accesses.

MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.
Most languages “pad” the layout of records to ensure alignment restrictions.

```c
struct padded {
 int x; /* 4 bytes */
 char z; /* 1 byte */
 short y; /* 2 bytes */
 char w; /* 1 byte */
};
```

**x**: Added padding
Local arrays with fixed size are easy to stack.

```c
void foo()
{
 int a;
 int b[10];
 int c;
}
```

<table>
<thead>
<tr>
<th>return address</th>
<th>← FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b[0]</td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
</tr>
<tr>
<td>b[9]</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>← FP + 12</td>
</tr>
</tbody>
</table>
Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

```
void foo(int n)
{
 int a;
 int b[n];
 int c;
}
```

 Doesn’t work: generated code expects a fixed offset for `c`. Even worse for multi-dimensional arrays.
Allocating Variable-Sized Arrays

As always:
add a level of indirection

```c
void foo(int n)
{
 int a;
 int b[n];
 int c;
}
```

Variables remain constant offset from frame pointer.
Part IX

Intermediate Representations/Formats
Stack-Based IR: Java Bytecode

```java
int gcd(int a, int b) {
 while (a != b) {
 if (a > b) {
 a -= b;
 } else {
 b -= a;
 }
 }
 return a;
}
```

```
Method int gcd(int, int)

0 goto 19

3 iload_1 // Push a
4 iload_2 // Push b
5 if_icmple 15 // if a <= b goto 15

8 iload_1 // Push a
9 iload_2 // Push b
10 isub // a - b
11 istore_1 // Store new a
12 goto 19

15 iload_2 // Push b
16 iload_1 // Push a
17 isub // b - a
18 istore_2 // Store new b

19 iload_1 // Push a
20 iload_2 // Push b
21 if_icmpne 3 // if a != b goto 3

24 iload_1 // Push a
25 ireturn // Return a
```
int gcd(int a, int b) {
    while (a != b) {
        if (a > b)
            a -= b;
        else
            b -= a;
    }
    return a;
}
Basic Blocks

```c
int gcd(int a, int b) {
 while (a != b) {
 if (a < b) b -= a;
 else a -= b;
 }
 return a;
}
```

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is a branch target.

Usually ends with a control-transfer statement.
Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A: sne t, a, b
   bz E, t
   slt t, a, b
   bnz B, t
   sub b, b, a
   jmp C

B: sub a, a, b

C: jmp A

E: ret a
Part X

Separate Compilation and Linking
Separate Compilation

C compiler cc:
- foo.c
- bar.c

Assembler as:
- foo.s
- bar.s

Archiver ar:
- printf.o
- fopen.o
- malloc.o
- libc.a

Linker ld:
- foo.o
- bar.o
- ...

foo — An Executable
Part XI

The Lambda Calculus
The Lambda Calculus

Fancy name for rules about how to represent and evaluate expressions with unnamed functions.

Theoretical underpinning of functional languages. Side-effect free. Very different from the Turing model of a store with evolving state.

O’Caml: \[
\text{fun } x \rightarrow 2 * x
\]

The Lambda Calculus: \[
\lambda x. 2 \times x
\]

English:

The function of \(x\) that returns the product of two and \(x\)
Grammar of Lambda Expressions

\[
expr \rightarrow \text{constant} \\
\mid \text{variable-name} \\
\mid expr \ expr \\
\mid (expr) \\
\mid \lambda \text{variable-name} . expr
\]

Constants are numbers; variable names are identifiers and operators.

Somebody asked, “does a language needs to have a large syntax to be powerful?”
Bound and Unbound Variables

In $\lambda x. \ast 2 x$, $x$ is a *bound variable*. Think of it as a formal parameter to a function.

“$\ast 2 x$” is the *body*.

The body can be any valid lambda expression, including another unnamed function.

$$\lambda x. \lambda y. \ast (+ x y) 2$$

“The function of $x$ that returns the function of $y$ that returns the product of the sum of $x$ and $y$ and 2.”
Currying

\[
\lambda x. \lambda y. * \ (\ + \ x \ y) \ 2
\]

is equivalent to the O’Caml

\[
\text{fun } x \rightarrow \text{fun } y \rightarrow (x + y) * 2
\]

All lambda calculus functions have a single argument.

As in O’Caml, multiple-argument functions can be built through such “currying.”

Currying is named after Haskell Brooks Curry (1900–1982), who contributed to the theory of functional programming. The Haskell functional language is named after him.
Calling Lambda Functions

To invoke a Lambda function, we place it in parentheses before its argument.

Thus, calling $\lambda x. \times 2x$ with 4 is written

$$(\lambda x. \times 2x) 4$$

This means 8.

Curried functions need more parentheses:

$$(\lambda x. (\lambda y. \times (+ x y) 2) 4) 5$$

This binds 4 to $y$, 5 to $x$, and means 18.
Evaluating Lambda Expressions

Pure lambda calculus has no built-in functions; we’ll be impure.
To evaluate \((+ (* 5 6) (* 8 3))\), we can’t start with + because it only operates on numbers.

There are two reducible expressions: \((* 5 6)\) and \((* 8 3)\). We can reduce either one first. For example:

\[
(+ (* 5 6) (* 8 3))
(+ 30 (* 8 3))
(+ 30 24)
54
\]

Looks like deriving a sentence from a grammar.
Evaluating Lambda Expressions

We need a reduction rule to handle λs:

\[
(\lambda x. * 2 x) 4
(\ast 2 4)
8
\]

This is called β-reduction.

The formal parameter may be used several times:

\[
(\lambda x. + x x) 4
(+ 4 4)
8
\]
Beta-reduction

May have to be repeated:

\[
((\lambda x.(\lambda y. - x y)) 5) 4 \\
(\lambda y. - 5 y) 4 \\
(- 5 4) \\
1
\]

Functions may be arguments:

\[
(\lambda f.f 3)(\lambda x. + x 1) \\
(\lambda x. + x 1)3 \\
(+ 3 1) \\
4
\]
More Beta-reduction

Repeated names can be tricky:

\[
(\lambda x. (\lambda x. + (- x 1)) x) 3 9 \\
(\lambda x. + (- x 1)) 9 3 \\
+ (- 9 1) 3 \\
+ 8 3 \\
11
\]

In the first line, the inner \(x\) belongs to the inner \(\lambda\), the outer \(x\) belongs to the outer one.
Free and Bound Variables

In an expression, each appearance of a variable is either “free” (unconnected to a \( \lambda \)) or bound (an argument of a \( \lambda \)).

\( \beta \)-reduction of \((\lambda x. E) \ y\) replaces every \( x \) that occurs free in \( E \) with \( y \).

Free or bound is a function of the position of each variable and its context.

Free variables

\[(\lambda x. x \ y \ (\lambda y. + \ y)) \ x\]

Bound variables
One way to confuse yourself less is to do $\alpha$-conversion. This is renaming a $\lambda$ argument and its bound variables. Formal parameters are only names: they are correct if they are consistent.

$$\lambda x.(\lambda x.x) (+ 1 x) \leftrightarrow_\alpha \lambda x.(\lambda y.y) (+ 1 x)$$
Alpha Conversion

An easier way to attack the earlier example:

\[
\begin{align*}
(\lambda x.(\lambda x. + (\neg x \ 1)) \ x \ 3) \ 9 \\
(\lambda x.(\lambda y. + (\neg y \ 1)) \ x \ 3) \ 9 \\
(\lambda y. + (\neg y \ 1)) \ 9 \ 3 \\
+ (\neg 9 \ 1) \ 3 \\
+ 8 \ 3 \\
11
\end{align*}
\]
Reduction Order

The order in which you reduce things can matter.

\[(\lambda x.\lambda y.y)\ ( (\lambda z.z\ z)\ (\lambda z.z\ z) )\]

We could choose to reduce one of two things, either

\[(\lambda z.z\ z)\ (\lambda z.z\ z)\]

or the whole thing

\[(\lambda x.\lambda y.y)\ ( (\lambda z.z\ z)\ (\lambda z.z\ z) )\]
Reduction Order

Reducing \((\lambda z.z \ z) \ (\lambda z.z \ z)\) effectively does nothing because \((\lambda z.z \ z)\) is the function that calls its first argument on its first argument. The expression reduces to itself:

\[(\lambda z.z \ z) \ (\lambda z.z \ z)\]

So always reducing it does not terminate.

However, reducing the outermost function does terminate because it ignores its (nasty) argument:

\[(\lambda x.\lambda y.y) \ (\ (\lambda z.z \ z) \ (\lambda z.z \ z) \ ) \]

\[\lambda y.y\]
Reduction Order

The *redex* is a sub-expression that can be reduced.

The *leftmost* redex is the one whose $\lambda$ is to the left of all other redexes. You can guess which is the *rightmost*.

The *outermost* redex is not contained in any other.

The *innermost* redex does not contain any other.

For \[(\lambda x.\lambda y.y) \ ( (\lambda z.z \ z) \ (\lambda z.z \ z)),\]

\[(\lambda z.z \ z) \ (\lambda z.z \ z)\] is the leftmost innermost and

\[(\lambda x.\lambda y.y) \ ( (\lambda z.z \ z) \ (\lambda z.z \ z))\] is the leftmost outermost.
Applicative vs. Normal Order

Applicative order reduction: Always reduce the leftmost innermost redex.

Normative order reduction: Always reduce the leftmost outermost redex.

For

\[(\lambda x.\lambda y.y) \ ((\lambda z.z \ z) \ (\lambda z.z \ z))\]

applicative order reduction never terminated; normative order did.
Applicative vs. Normal Order

**Applicative:**
reduce leftmost innermost
“evaluate arguments before the function itself”
eager evaluation, call-by-value, usually more efficient

**Normative:**
reduce leftmost outermost
“evaluate the function before its arguments”
lazy evaluation, call-by-name, more costly to implement, accepts a larger class of programs
Normal Form

A lambda expression that cannot be reduced further is in *normal form*.

Thus,

\[ \lambda y.y \]

is the normal form of

\[ (\lambda x.\lambda y.y) ( (\lambda z.z z) (\lambda z.z z) ) \]
Normal Form

Not everything has a normal form. E.g.,

\[(\lambda z. z \ z) (\lambda z. z \ z)\]

can only be reduced to itself, so it never produces an non-reducible expression.

“Infinite loop.”
Part XII

Logic Programming
Unification

Part of the search procedure that matches patterns.
The search attempts to match a goal with a rule in the database by
unifying them.

Recursive rules:

- A constant only unifies with itself
- Two structures unify if they have the same functor, the same
  number of arguments, and the corresponding arguments unify
- A variable unifies with anything but forces an equivalence
Unification Examples

The = operator checks whether two structures unify:

| ?- a = a.                      |
| yes                           |
|                              |
| % Constant unifies with itself|

| ?- a = b.                      |
| no                            |
|                              |
| % Mismatched constants        |

| ?- 5.3 = a.                    |
| no                            |
|                              |
| % Mismatched constants        |

| ?- 5.3 = X.                    |
| X = 5.3?;                      |
| no                            |
|                              |
| % Variables unify             |

| ?- foo(a,X) = foo(X,b).        |
| no                            |
|                              |
| % X=a required, but inconsistent|

| ?- foo(a,X) = foo(X,a).        |
| X = a?;                       |
| no                            |
|                              |
| % X=a is consistent          |

| ?- foo(X,b) = foo(a,Y).        |
| X = a                         |
| Y = b?;                       |
| no                            |
|                              |
| % X=a, then b=Y               |

| ?- foo(X,a,X) = foo(b,a,c).    |
| no                            |
|                              |
| % X=b required, but inconsistent|
The Searching Algorithm

search(goal \( g \), variables \( e \))

for each clause \( h : = t_1, \ldots, t_n \) in the database

\[ e = \text{unify}(g, h, e) \]

if successful,

for each term \( t_1, \ldots, t_n, \)

\[ e = \text{search}(t_k, e) \]

if all successful, return \( e \)

return no

Note: This pseudo-code ignores one very important part of the searching process!
Order Affects Efficiency

Consider the query

?- path(a, a).

Good programming practice: Put the easily-satisfied clauses first.
Order Affect Efficiency

\[\text{edge}(a, b). \text{edge}(b, c).\]
\[\text{edge}(c, d). \text{edge}(d, e).\]
\[\text{edge}(b, e). \text{edge}(d, f).\]
\[\text{path}(X, Y) :\]
\[\quad \text{edge}(X, Z), \text{path}(Z, Y).\]
\[\text{path}(X, X).\]

Consider the query

\[?- \text{path}(a, a).\]

\[\text{path}(a, a)\]
\[\text{path}(a, a) = \text{path}(X, Y)\]
\[\text{X} = a \text{ Y} = a\]
\[\text{edge}(a, Z)\]
\[\text{edge}(a, Z) = \text{edge}(a, b)\]
\[\text{Z} = b\]
\[\text{path}(b, a)\]

Will eventually produce the right answer, but will spend much more time doing so.
Order can cause Infinite Recursion

\[ \text{edge}(a, b). \ \text{edge}(b, c). \]
\[ \text{edge}(c, d). \ \text{edge}(d, e). \]
\[ \text{edge}(b, e). \ \text{edge}(d, f). \]
\[ \text{path}(X, Y) : - \]
\[ \quad \text{path}(X, Z), \ \text{edge}(Z, Y). \]
\[ \text{path}(X, X). \]

Consider the query

?- path(a, a).

Goal
\[ \text{path}(a, a) \]
\[ \text{path}(a, a) = \text{path}(X, Y) \]
\[ \text{Unify} \]
\[ \text{X} = a \quad \text{Y} = a \]

Subgoal
\[ \text{path}(a, Z) \]
\[ \text{edge}(Z, a) \]
\[ \text{path}(a, Z) = \text{path}(X, Y) \]
\[ \text{X} = a \quad \text{Y} = Z \]
\[ \text{path}(a, Z) = \text{path}(X, Y) \]
\[ \text{X} = a \quad \text{Y} = Z \]
\[ \text{edge}(Z, a) \]