
Stephen A. Edwards

Columbia University

Fall 2008

Katsushika Hokusai, *In the Hollow of a Wave off the Coast at Kanagawa*, 1827
Language Design Issues

Syntax: how programs look

- Names and reserved words
- Instruction formats
- Grouping

Semantics: what programs mean

- Model of computation: sequential, concurrent
- Control and data flow
- Types and data representation
C History

Developed between 1969 and 1973 along with Unix
Due mostly to Dennis Ritchie
Designed for systems programming

- Operating systems
- Utility programs
- Compilers
- Filters

Evolved from B, which evolved from BCPL
BCPL

Martin Richards, Cambridge, 1967

Typeless

- Everything a machine word (n-bit integer)
- Pointers (addresses) and integers identical

Memory: undifferentiated array of words

Natural model for word-addressed machines

Local variables depend on frame-pointer-relative addressing: no dynamically-sized automatic objects

Strings awkward: Routines expand and pack bytes to/from word arrays
C History

Original machine, a DEC PDP-11, was very small:

24K bytes of memory, 12K used for operating system

Written when computers were big, capital equipment

Group would get one, develop new language, OS
C History

Many language features designed to reduce memory

- Forward declarations required for everything
- Designed to work in one pass: must know everything
- No function nesting

PDP-11 was byte-addressed

- Now standard
- Meant BCPL’s word-based model was insufficient
int gcd(int m, int n) {
 int r;
 while ((r = m % n) != 0) {
 m = n;
 n = r;
 }
 return n;
}

“New style” function declaration lists number and type of arguments.

Originally only listed return type. Generated code did not care how many arguments were actually passed, and everything was a word.

Arguments are call-by-value
Euclid’s Algorithm in C

```c
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
    }
    return n;
}
```

Automatic variable \(r \)

Allocated on stack when function entered, released on return

Parameters & automatic variables accessed via frame pointer

Other temporaries also stacked
Euclid on the PDP-11

.globl _gcd
.text

_gcd:
.jsr r5, rsave \(\text{Save SP in FP} \)
.L2:
 mov 4(r5), r1 \(r1 = n \)
 sxt r0 \(\text{sign extend} \)
 div 6(r5), r0 \(r0, r1 = m \div n \)
 mov r1, -10(r5) \(r = r1 \mod n \)
 jeq L3 \(\text{if } r == 0 \text{ goto L3} \)
 mov 6(r5), 4(r5) \(m = n \)
 mov -10(r5), 6(r5) \(n = r \)
 jbr L2 \(\text{non-optimizing compiler} \)

.L3:
 mov 6(r5), r0 \(r0 = n \)
 jbr L1 \(\text{return } r0 \text{ (n)} \)

.L1:
 jmp rretrn
Euclid on the PDP-11

.globl _gcd
.text
_gcd:
 jsr r5, rsave
L2: mov 4(r5), r1
 sxt r0
 div 6(r5), r0
 mov r1, -10(r5)
 jeq L3
 mov 6(r5), 4(r5)
 mov -10(r5), 6(r5)
 jbr L2
L3: mov 6(r5), r0
 jbr L1
L1: jmp rretrn

Very natural mapping from C into PDP-11 instructions.

Complex addressing modes make frame-pointer-relative accesses easy.

Another idiosyncrasy: registers were memory-mapped, so taking address of a variable in a register is straightforward.
Part I

The Design of C

Taken from Dennis Ritchie’s *C Reference Manual*
(Appendix A of Kernighan & Ritchie)
Lexical Conventions

Identifiers (words, e.g., foo, printf)

Sequence of letters, digits, and underscores, starting with a letter or underscore

Keywords (special words, e.g., if, return)

C has fairly few: only 23 keywords. Deliberate: leaves more room for users’ names

Comments (between /* and */)

Most fall into two basic styles: start/end sequences as in C, or until end-of-line as in Java’s //
Lexical Conventions

C is a *free-form* language where whitespace mostly serves to separate tokens. Which of these are the same?

1+2 return this
1 + 2 returnthis
foo bar
foobart

Space is significant in some language. Python uses indentation for grouping, thus these are different:

```python
if x < 3:
    y = 2
z = 3
```
Integers (e.g., 10)

Should a leading – be part of an integer or not?

Characters (e.g., ’a’)

How do you represent non-printable or ’ characters?

Floating-point numbers (e.g., 3.5e-10)

Usually fairly complex syntax, easy to get wrong.

Strings (e.g., "Hello")

How do you include a " in a string?
In C, each name has a **storage class** (where it is) and a **type** (what it is).

Storage classes:

1. automatic
2. static
3. external
4. register

Fundamental types:

1. char
2. int
3. float
4. double

Derived types:

1. arrays
2. functions
3. pointers
4. structures
Objects and lvalues

Object: area of memory
lvalue: refers to an object

An lvalue may appear on the left side of an assignment

```c
a = 3; /* OK: a is an lvalue */
3 = a; /* 3 is not an lvalue */
```
Conversions

C defines certain automatic conversions:

- A char can be used as an int
- int and char may be converted to float or double and back. Result is undefined if it could overflow.
- Adding an integer to a pointer gives a pointer
- Subtracting two pointers to objects of the same type produces an integer
Expressions

Expressions are built from identifiers (foo), constants (3), parenthesis, and unary and binary operators.

Each operator has a **precedence** and an **associativity**

Precedence tells us

\[1 \times 2 + 3 \times 4 \text{ means } (1 \times 2) + (3 \times 4) \]

Associativity tells us

\[1 + 2 + 3 + 4 \text{ means } ((1 + 2) + 3) + 4 \]
C’s Operators in Precedence Order

<table>
<thead>
<tr>
<th>Function</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(r,r,...)</td>
<td>a[i]</td>
<td>p->m</td>
<td>s.m</td>
<td></td>
</tr>
<tr>
<td>!b</td>
<td>~i</td>
<td>-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>++l</td>
<td>--l</td>
<td>l++</td>
<td>l--</td>
<td></td>
</tr>
<tr>
<td>*p</td>
<td>&l</td>
<td>(type) r</td>
<td>sizeof(t)</td>
<td></td>
</tr>
<tr>
<td>n * o</td>
<td>n / o</td>
<td>i % j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n + o</td>
<td>n - o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i << j</td>
<td>i >> j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n < o</td>
<td>n > o</td>
<td>n <= o</td>
<td>n >= o</td>
<td></td>
</tr>
<tr>
<td>r == r</td>
<td>r != r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i & j</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i ^ j</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b && c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b ? r : r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l = r</td>
<td>l += n</td>
<td>l -= n</td>
<td>l *= n</td>
<td></td>
</tr>
<tr>
<td>l /= n</td>
<td>l %= i</td>
<td>l & i</td>
<td>l ^= i</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>= i</td>
<td>l <<= i</td>
<td>l >>= i</td>
<td></td>
</tr>
<tr>
<td>r1, r2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Declarators

Declaration: string of specifiers followed by a declarator

```
static unsigned int (*f[10])(int, char*);
```

declarator

Declarator’s notation matches that of an expression: use it to return the basic type.

Largely regarded as the worst syntactic aspect of C: both pre-(pointers) and post-fix operators (arrays, functions).
Storage-Class Specifiers

- **auto**: Automatic (stacked), default
- **static**: Statically allocated
- **extern**: Look for a declaration elsewhere
- **register**: Kept in a register, not memory

C trivia: Originally, a function could only have at most three register variables, may only be int or char, can’t use address-of operator &.

Today, register simply ignored. Compilers try to put most automatic variables in registers.
Type Specifiers

int
char
float
double

struct { declarations }
struct identifier { declarations }
struct identifier
Declarators

identifier
(**declarator**)
declarator ()
declarator [**optional-constant**]
* **declarator**

C trivia: Originally, number and type of arguments to a function wasn’t part of its type, thus declarator just contained ().

Today, ANSI C allows function and argument types, making an even bigger mess of declarators.
Declarator syntax

Is `int *f()` a pointer to a function returning an `int`, or a function that returns a pointer to an `int`?

Hint: precedence rules for declarators match those for expressions.

Parentheses resolve such ambiguities:

- `int *(f())` Function returning pointer to int
- `int (*f)()` Pointer to function returning int
Statements

expression ;
{ statement-list }
if (expression) statement else statement
while (expression) statement
do statement while (expression);
for (expression ; expression ; expression) statement
switch (expression) statement
case constant-expression :
default:
break;
continue;
return expression ;
goto label ;
label :
“A C program consists of a sequence of external definitions”
Functions, simple variables, and arrays may be defined.
“An external definition declares an identifier to have storage class extern and a specified type”
Function definitions

type-specifier declarator (parameter-list)
type-decl-list
{
 declaration-list
 statement-list
}

Example:

```c
int max(a, b, c)
int a, b, c;
{
    int m;
    m = (a > b) ? a : b ;
    return m > c ? m : c ;
}
```
The first C compilers did not check the number and type of function arguments.

The biggest change made when C was standardized was to require the type of function arguments to be defined:

Old-style

```c
int f();

int f(a, b, c)
int a, b;
double c;
{
}
```

New-style

```c
int f(int, int, double);

int f(int a, int b, double c)
{
}
```
Data Definitions

type-specifier init-declarator-list;
declarator optional-initializer

Initializers may be constants or brace-enclosed, comma-separated constant expressions. Examples:

```c
int a;

struct { int x; int y; } b = { 1, 2 };

float a, *b, c;
```
Scope Rules

Two types of scope in C:

1. Lexical scope
 Essentially, place where you don’t get “undeclared identifier” errors

2. Scope of external identifiers
 When two identifiers in different files refer to the same object. E.g., a function defined in one file called from another.
Lexical Scope

Extends from declaration to terminating } or end-of-file.

```c
int a;

int foo()
{
    int b;
    if (a == 0) {
        printf("A was 0");
        a = 1;
    }
    b = a; /* OK */
}

int bar()
{
    a = 3; /* OK */
    b = 2; /* Error: b out of scope */
}
```
External Scope

file1.c:

```c
int foo()
{
    return 0;
}

int bar()
{
    foo(); /* OK */
}
```

file2.c:

```c
int baz()
{
    foo(); /* Error */
}

extern int foo();

int baff()
{
    foo(); /* OK */
}
The Preprocessor

Violates the free-form nature of C: preprocessor lines must begin with #.

Program text is passed through the preprocessor before entering the compiler proper.

Define replacement text:

# define identifier token-string

Replace a line with the contents of a file:

# include "filename"
<table>
<thead>
<tr>
<th>Header</th>
<th>Function/Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;assert.h&gt;</code></td>
<td>Generate runtime errors</td>
<td><code>assert(a &gt; 0)</code></td>
</tr>
<tr>
<td><code>&lt;ctype.h&gt;</code></td>
<td>Character classes</td>
<td><code>isalpha(c)</code></td>
</tr>
<tr>
<td><code>&lt;errno.h&gt;</code></td>
<td>System error numbers</td>
<td><code>errno</code></td>
</tr>
<tr>
<td><code>&lt;float.h&gt;</code></td>
<td>Floating-point constants</td>
<td><code>FLT_MAX</code></td>
</tr>
<tr>
<td><code>&lt;limits.h&gt;</code></td>
<td>Integer constants</td>
<td><code>INT_MAX</code></td>
</tr>
<tr>
<td><code>&lt;locale.h&gt;</code></td>
<td>Internationalization</td>
<td><code>setlocale(...)</code></td>
</tr>
<tr>
<td><code>&lt;math.h&gt;</code></td>
<td>Math functions</td>
<td><code>sin(x)</code></td>
</tr>
<tr>
<td><code>&lt;setjmp.h&gt;</code></td>
<td>Non-local goto</td>
<td><code>setjmp(jb)</code></td>
</tr>
<tr>
<td><code>&lt;signal.h&gt;</code></td>
<td>Signal handling</td>
<td><code>signal(SIGINT,&amp;f)</code></td>
</tr>
<tr>
<td><code>&lt;stdarg.h&gt;</code></td>
<td>Variable-length arguments</td>
<td><code>va_start(ap, st)</code></td>
</tr>
<tr>
<td><code>&lt;stddef.h&gt;</code></td>
<td>Some standard types</td>
<td><code>size_t</code></td>
</tr>
<tr>
<td><code>&lt;stdio.h&gt;</code></td>
<td>File I/O, printing.</td>
<td><code>printf(&quot;%d&quot;, i)</code></td>
</tr>
<tr>
<td><code>&lt;stdlib.h&gt;</code></td>
<td>Miscellaneous functions</td>
<td><code>malloc(1024)</code></td>
</tr>
<tr>
<td><code>&lt;string.h&gt;</code></td>
<td>String manipulation</td>
<td><code>strcmp(s1, s2)</code></td>
</tr>
<tr>
<td><code>&lt;time.h&gt;</code></td>
<td>Time, date calculations</td>
<td><code>localtime(tm)</code></td>
</tr>
</tbody>
</table>
Language design

*Language design is library design.*
— *Bjarne Stroustrup*

Programs consist of pieces connected together.

Big challenge in language design: making it easy to put pieces together *correctly*. C examples:

- The function abstraction (local variables, etc.)
- Type checking of function arguments
- The `#include` directive