Introduction to the Altera SOPC Builder

This tutorial presents an introduction to Altera’s SOPCl&eii software, which is used to implement a system
that uses the Nios Il processor on an Altera FPGA device. Yeem development flow is illustrated by giving

step-by-step instructions for using the SOPC Builder injection with the Quartus Il software to implement a

simple system.

The last step in the development process involves configuhi@ designed circuit in an actual FPGA device,
and running an application program. To show how this is ditieassumed that the user has access to the Altera
DEZ2 Development and Education board connected to a comghatteras Quartus Il and Nios Il software installed.

The screen captures in the tutorial were obtained using theatQs Il version 5.1; if other versions of the
software are used, some of the images may be slightly differe

Contents:

Nios Il System

Altera’s SOPC Builder

Integration of the Nios Il System into a Quartus Il Project
Running the Application Program

Altera’s Nios Il is a soft processor, defined in a hardwarecdpson language, which can be implemented
in Altera’'s FPGA devices by using the Quar@sil CAD system. To implement a useful system it is necessary
to add other funcional units such as memories, input/outgatfaces, timers, and communications interfaces.
To facilitate the implementation of such systems, it is ustf have computer-aided-design (CAD) software for
implementing a system-on-a-programmable-chip (SOPGgr&ks SOPC Builder is the software needed for this
task.

This tutorial provides a basic introduction to Altera’s SOBuilder, which will allow the reader to quickly
implement a simple Nios Il system on the Altera DE2 board. &duller treatment of the SOPC Builder, the
reader can consult thdios Il Hardware Development Tutoriah complete description of the SOPC Builder can
be found in theQuartus Il Handbook Volume 4: SOPC Buildgihese documents are available on the Altera web
site.

1 Nios Il System

A Nios Il system can be implemented on the DE2 board as shoWwigure 1.

Host computer

USB-Blaster

interface
b Cyclone II
JTAG D JTAG UART :
Nios II processor “oug . FPGA chip
module interface
Avalon switch fabric
. Flash .
On-chip SRAM SDRAM memo Parallel I/O Serial /0
memory interface interface . Y interface interface
interface
SRAM SDRAM Flash Parallel Serial
. . memory I/0O port I/O port
chip chip . . .
chip lines lines

Figure 1. A Nios Il system implemented on the DE2 board.

The Nios Il processor and the interfaces needed to connethérs chips on the DE2 board are implemented
in the Cyclone Il FPGA chip. These components are intercaiegeby means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in thelGye Il device can be used to provide an on-chip
memory for the Nios Il processor. The SRAM, SDRAM and Flasimuogy chips on the DE2 board are accessed
through the appropriate interfaces. Parallel and serfaltfioutput interfaces provide typical I/O ports used in
computer systems. A special JTAG UART interface is used tmeot to the circuitry that provides a Universal
Serial Bus (USB) link to the host computer to which the DE2rdas.connected. This circuitry and the associated
software is called th&lSB-Blaster Another module, called the JTAG Debug module, is provideallow the host
computer to control the Nios Il system. It makes it possiblpérform operations such as downloading programs
into memory, starting and stopping execution, setting kpeants, and collecting real-time execution trace data.

Since all parts of the Nios Il system implemented on the FP@Gif are defined by using a hardware descrip-
tion language, a knowledgeable user could write such codatement any part of the system. This would be
an onnerous and time consuming task. Instead, one can uSOIRE Builder to implement a desired system
simply by choosing the required components and specifyiegoarameters needed to make each component fit
the overall requirements of the system. In this tutorial,wikillustrate the capability of the SOPC Builder by
designing a very simple system. The same approach is usesigndarge systems.

Host computer

USB-Blaster
Reset_n Clock interface

| |

Nios II processor

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Avalon switch fabric

On-chi Switches LEDs
memorg parallel input parallel output
interface interface

LI LI

| |
SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios Il system.

Our example system is given in Figure 2. The system realizegal task. Eight toggle switches on the DE2
board,STW7 — 0, are used to turn on or off the eight green LED% DG7 — 0. The switches are connected to the
Nios Il system by means of a parallel I/O interface configucealct as an input port. The LEDs are driven by the
signals from another parallel I/O interface configured tice@can output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the switdes to be sent to the output port to activate the LEDs.
This will be done by having the Nios Il processor execute @am stored in the on-chip memory. Continuous
operation is required, such that as the switches are togiggelights change accordingly.

We will use the SOPC Builder to design the hardware depict&igure 2. Next, we will assign the Cyclone 11
pins to realize the connections between the parallel imted and the switches and LEDs which act as 1/0O devices.
Then, we will configure the FPGA to implement the designedesys Finally, we will use the software tool called
theNios Il Debug Cliento assemble, download and execute a Nios Il program thabimasfthe desired task.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to design a Nios Il-based system
¢ Integrating the designed Nios Il system into a Quartus |jgm
¢ Implementing the designed system on the DE2 board

e Running an application program on the Nios Il processor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the QuatltuBAD software. It allows the user to easily
create a system based on the Nios Il processor, by simplgtgejehe desired functional units and specifying
their parameters. To implement the system in Figure 2, we tminstantiate the following functional units:

¢ Nios Il processor, which is referred to as a Central Prongddnit (CPU); we will use the standard 32-bit
version of the processor

¢ On-chip memory, which consists of the memory blocks in thel@ye Il chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

e Two parallel /O interfaces
e JTAG UART interface for communication with the host compute
To define the desired system, start the Quartus Il softwadgarform the following steps:

1. Create a new Quartus Il project for your system. As showviigare 3, we stored our project in a directory
calledsopc_builder_tutorigland we assigned the narights to both the project and its top-level design
entity. You can choose a different directory or project naing be aware that the SOPC Builder software
does not permit the use of spaces in file names. For examplattempt to use a directory nansepc
builder tutorialwould lead to an error. In your project, choose the EP2C33E6£hip as the target device,
because this is the FPGA on the DE2 board.

2. Selecflools > SOPC Builder, which leads to the pop-up box in Figure 4. Emérs_systeras the system
name; this will be the name of the system that the SOPC Buililegenerate. Choose Verilog as the target
HDL, in which the system module will be specified. CligK to reach the window in Figure 5.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] g|

‘what iz the working directory for this project?

|D:\sopc_builder_tutorial
‘what iz the name of this project?
[ights

‘what iz the name of the top-level design entity for this project? Thiz name iz case senzitive
and must exactly match the entity name in the design file.

lights [

| Usze Existing Project Settings ...

| Mest > | Finizh | Cancel

Figure 3. Create a new project.

LM Create New System

Syskem Mame: i_nibs_syétem

Target HOL
(&) Verilog () ¥HDL

Figure 4. Create a new Nios Il system.

3. Figure 5 displays the System Contents tab of the SOPC @&uilchich is used to add components to the
system and configure the selected components to meet tigndesgiuirements. The available components
are listed on the left side of the window. Before choosing@mponents, examine the area in the figure
labeledTarget. A drop-down list is provided that allows some availableetdt boards to be selected. It is
not necessary to select a board, and since the DE2 board isahaded in the list leave the selection as
Unspecified board. Next, check the setting for tH2evice Family and ensure thatyclone Il is selected.

4. The Nios Il processor runs under the control of a clock. tRisr tutorial we will make use of the 50-MHz
clock that is provided on the DE2 board. As shown in Figuret & possible to specify the names and
frequency of clock signals in the SOPC Builder display. If alveady included in this list, specify a clock
namedclk with the source designated Bsternal and the frequency set to 50.0 MHz.

198 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

stem Contents | System Generation |

£ Attera SOPC Builder ~ Sy
Create Mewy Componert..

Source

alon Components

£
=

|External

iz Il Frocessor - Altera
ridges
@ Lwalon Tristate Bridy —

Device Family: |Cyclone I & | HardCopy Compatible

MHz
|s0.0

Fipeline

O

@]

ommunication
@ ITAG LART Hsh
@ =PI(3Wire Serial)

@ UART (RS-232 serial

< D16550 UART with 1

O DI2CMW I2C Bus Interfs

O DI2CSE 12C Bus Inter

2 DSPI Serial Periphera

O HIB5505 UART -- C2

O HE250 -- CAST, Inc.

2 High Performance Gig o
¢ | Ed ‘

Module Mame

Description

Irput Clock

Baze

Encl

Add.. @ Check

(1] Done checking for updates,

Exit

Prey Next =

Figure 5. The System Contents tab window.

5. Next, specify the processor as follows:

e On the left side of the window in Figure 5 sel@atalon Components > Nios |l Processor - Altera

Corporation and clickAdd, which leads to the window in Figure 6.

I Altera Nios Il - cpu_0

Nios IT Core | Caches & Tightly Coupled Memaries | ITAG Debug Madule | Custom Instructions

Select a Mios | core:

Selector Guide
Family: Cyclone I

f 50 MHz

systam:

Performance at 50 MHz Up ta 5 DMIPS
Logic Usage &00-700 LEs
Mermory Usage Twio Maks

Instruction Cache
Branch Prediction
Hardware Multiply
Hardware Divide

Up ko 26 DMIPS
1200-1400 LE=
Two M4Ks + cache

|©Nios 1I/e ONios II/s ONios II/f
Nios IT 5% i el

Instruction Cache
Branch Prediction
Hardware Mulkiply
Hardware Divide
Barrel Shifter
Data Cache

Dynamic Branch Prediction

Up ko 56 DMIPS
1400-1500 LE=
Three M4Ks + cache

[Erbecd rpiers v]

Cancel

[Mext > | [Finish |

Figure 6. Create a Nios Il processor.

e Choose Nios ll/fe which is the simplest version of the prooesslick Finish to return to the window
in Figure 5, which now shows the Nios Il processor specifiethdigated in Figure 7. There may be
some warnings or error messages displayed in the SOPC BMletesages window (at the bottom of
the screen), because some parameters have not yet bediedpdgnore these messages as we will
provide the necessary data later. Observe also that a nevalialNios I More “cpu_0" Settings
appears, which allows further configuration of the processe will not use it.

I® Aliera SOPC Builder - nios_system

File Module System Wiew Tools Help
| System Cantents ‘ Nios I More "cpu_0" Settings | System Generation |
L] Altera SOPC Builcler & - Targst — . - |
H Create Mew Componert.. e | Clock ZOUrce MHZ Fipeline !
-Avalon Components Eidelit Lstecied Bost: Ak |External |50.0 I il
Device Family: i‘C‘yé\éne-I-I“ v HardCopy Compatible | | | 0O |
L@ Awalon Tristate Bridy |
~Communication il
Use Mocule Mame Description Input Clock Base Encl IRy I
SPI(3VMire Setial) | Hepu 0 Mios | Processar - Aftera Corporation|clk | ‘
UART [RS-232 serial ‘ [E instruction_master |Masler port 5
D1B550 UART with 1 data_mazter haster port RGO IRG 31
fag_debug_mocule |Slave port 0x00000000] OxD00007FF|
= |
O DIZCSE 12C Bus Inter
2 DSPI Serial Periphera
@ i 4 Move Up] I w* Move Down
132 cpu_0: Exception Address must be at least 0xZ0 bytes higher than the Reset Address, ~ |
i Sion : : 2
() cpu_n: Unspecified Reset address, Exception Address |
R B e putl
| s
Exit Prev Mext =

Figure 7. The defined processor.

6. To specify the on-chip memory perform the following:

SelectAvalon Components > Memory > On-Chip Memory (RAM or ROM) and clickAdd

In the On-Chip Memory Configuration Wizard window, shown iguite 8, set the memory width to
32 bits and the total memory size to 4 Kbytes

Do not change the other default settings

Click Finish, which returns to the System Contents tab as indicated ur€ig

On-chip Memory - onchip_memory_0

Memary Type

() ROM (read-only)

[] Dual-Port Access

[eutomatic]

Size
Memory Width: bits

Total Memory Size:

Read Latency
Slave s1

Mon-Default Memory Initialization

[Lv]

[] Enable Man-Default Intialization File

(7] Memary will be initialized From onchip_memory_0.hex
[7) Aukomatically choosing M4k blacks (the only available block bype)

Cancel Finish

Figure 8. Define the on-chip memory.

198 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

System Contents ‘ Nios I More "cpu_ 0" Settings | System Generation |

- @ Cypress CYTC1380C A

i~ Targsek — x|
EPCS =erial Flash Co o Clock Source MHz Fipeline
Flash Memary (Cornre Board: | Unspecified Board hall ok |Exierna\ 50,0 [B
IDT71%415 SRAM R | & N I | E
Drevice Family: ICyc\one il

@ SDRAM Cortrollsr
- AMD 29800 Flash

O DOR SDRAM Controll Use hdacule Mame Description Input Clock | Baze End IR
- DOR2 SDRAM Cortra B cpu_d |Nios Il Processor - Altera Corporation ik |
2 IDTTY016 SRAM for instruction_master Master port
O Legacy SDRAM Caont data_master |Master port IRG 0| Ra 3|
icrocontrollers . jftag_debug_module Slave port 0x000007FF|
-I--Other onchip_memor_y_l] on-Chip Memory (RAN o RO elk: 0x00001000 0x00001FFF!

@ CompactFlash Irterfa
DA, ‘

2 Interval timer
- @ Mailaoy & ‘

< | >

Add. . @ Check [4 Move Up] [W Move Down

(1) cpu_0; defauling Reset Address, Exception Address to onchip_memory_0
© cpu_I: The fese@,ad_dlj_ess' i g'.t'n_vo?ék_i\e MEmMary, E_Xg'cut\on_pf undefined code may §0c_c_uf' upon ressk,
1) Done checking for updates,

Exit < Prey [Next =] [Generate I

Figure 9. The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

e SelectAvalon Components > Other > PIO (Parallel I/O) and clickAdd to reach the PIO Config-
uration Wizard in Figure 10

e Specify the width of the port to be 8 bits and choose the doadif the port to bénput, as shown in

the figure

e Click Finish to return to the System Contents tab as given in Figure 11

Avalon PIO - pio_0

Basic Settings | Input Options || Simulation

‘Width

bits

PIC wicth must he hetween 1 and 32 hits
Direction

() Bidirectional (tri-state) ports

@®

(O Bath input and autput parts

() Qutput parts anly

Cancel

Mext = Finish

Figure 10. Define a parallel input interface.

198 pltera SOPC Builder - nios_system

File Module System ‘iew Tools Help

System Contents ‘ Nios I More "cpu_ 0" Settings | System Generation |

LD IDTTYO1E SRAM for e
-~ Legacy SDRAM Cont
Microcontrollers

CompactFlash Interfa

Dihd 2,

Interval timer

@ Mailoox

Lt
3|

PLL (Phase-Locked L

System D Peripheral

Dt Controller -- Eur

Cl

|- Peripherals

1-uP Interfaces

-AHB Components P

- Target — it
; o Clock Source MHz Fipeline
EBoard; iUnspechiedFoard Ev | ok |Exierna\ ‘SD.D | =]
Drevice Family: | volone I & ! - ‘ | 3]
Use htodule Mame Description Input Clock Enil IR
Eepu_0 |Nios I Processar - Atera Carporstion (clk |
instruction_master Master port
data_master |Master port IRG 0| Ra 3|
. jftag_debug_module Slave port 0x00000000 DxDDDDD?FFl
onchip_memory_0 On-Chip Memary (RAK or ROM) clk: 0x00001000) Ox00001FFF|
pio_0 FIO (Paraliel 1100 clk: 0x00000§00, 0xDO0D0O0S0F)

@ Check

[4 Move Up]

[» Move Down

' cpu_0: The reset address
1) Done checking for updates,

(1) cpu_0; defauling Reset Address, Exception Address to onchip_memory_0
t'o_vo?ék_i\e MEMary, E_Xg'cut_\on_pf undefined code may §0c_c_uf' upon ressk,

Exit < Prev

[Next =]

[Generate I

Figure 11. The parallel input interface is included.

8. In the same way, specify the output parallel I/O interface

e SelectAvalon Components > Other > PIO (Parallel I/O) and clickAdd to reach the PIO Config-

uration Wizard again

e Specify the width of the port to be 8 bits and choose the doadif the port to beDutput
e Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a mearmsfomunication between the Nios Il system
and the host computer. This can be accomplished by instiaugtihe JTAG UART interface as follows:

e SelectAvalon Components > Communication > JTAG UART and clickAdd to reach the JTAG
UART Configuration Wizard in Figure 12

¢ Do not change the default settings

e Click Finish to return to the System Contents tab

Depth: |64

Depth: |64

Cancel

v

v

1M JTAG UART - jtag_uart 0 53

‘Write FIFO { data from Awvalon o ITAG)

[] Construct using registers instead of memary blacks

Read FIFO | data from ITAG to Avalon)

[] Construct using registers instead of memary blacks

IR Threshold: 3

IR Threshold: 3

Mext = Finish

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note teaS®PC Builder automatically chooses names for
the various components. The names are not necessariljifitegcenough to be easily associated with the
target design, but they can be changed. In Figure 2, we useatines Switches and LEDs for the parallel

input and output interfaces, respectively. These namebeased in the implemented system. Right-click
on thepio_0 name and then seleBename. Change the name to Switches. Similarly, chapipe 1 to

11.

LEDs.

The base and end addresses of the various componen¢sdadigned system can be assigned by the user,
but they can also be assigned automatically by the SOPC &ulide will choose the latter possibility. So,
select the command (using the menus at the top af the SOP@eBwindow)System > Auto-Assign
Base Addresses, which produces the assignment shown in Figure 14.

10

198 pltera SOPC Builder - nios_system
File Module System ‘iew Tools Help

System Contents ‘ Nios I More "cpu_D" Settings | System Generation |

$5) Altera SOPC Builder & g
Create Mew Component.. o Clock Source MHz Fipeline
Avalon Components Board: | Unspecified Board vl ok |[External 50,0 I H
\ [
Use Module MNatme Description Input Clock Baze Enil IR
Eecpu_0 |Nios Il Processar - Altera Carporation clk: |
instruction_master Master port
data_master |Master port IRG 0| IRG 3
O DI2CM 12C Bus Interfs jtan_debug_module Slave port 0x00000000| DxDDDDD?FFl
O DIZCSE 12C Bus Irter onchip_memory_0 On-Chip Memory (Rahd or RO) clk 0x00001000) 000001 FFF|
© DSPI Serial Periphera Switches FIO (Parallel 110 = UX00000800) OX0I0000SCF|
O HIB5505 UART - C2 LEDs FIC (Parallel 110 clk 0x00000810 0x0000081F|
O HE250 -- CAET, Ine. jtag_uart_0 UTAG UART iclk 0x00000827|[0
2 High Performance Gt 4 ‘ .

Add. . @ Check [4 Move Up] [W Move Down

(71 cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_0: The fese@.addlj_ess'p:_ointg'.t'n_vo?éki\e MEmMary, E_Xe'cut\on of undefined cods may occur upon reset,
1) Done checking for updates,

Exit

[Next =] [Generate I

Figure 13. The complete system.

198 pltera SOPC Builder - nios_system
File Module System ‘iew Tools Help

System Contents ‘ Nios I More "cpu_D" Settings | System Generation |

$4J Attera SOPC Buider & g
b Create Mewr Componert.. ; | Clack Source MHz Fipeling
valon Components Board: | | k. |External |50.0 | H
@ Miog Il Processor - Akera I: taaddn ‘ | 3]
I Device Family: |
@ Awalon Tristate Bridg
E ommunication
Use Module MNatme Description Input Clock Baze Enil IR
SPI (3 Wire Serial) Sl cpu_o |Nins Il Processor - Aftera Carporation clk |
@ ULRT (RS-232 serial instruction_master Master port
D16550 UART with 1 data_mazter |Master port RGO IRG 31
O DI2ZCM 12C Bus Interfe jtag_debug_module Slave port 0x00001000, 000001 'f'FFl
DIZCSE 12C Bus Inter onchip_memory_0 On-Chip Memory (Rahd or RO) clk 0x00000000 DxDDUDDFFFl
DISPI Serial Periphera Switches FIC (Paraliel 110 clk 0x00001§00, 000001 SEIFl
H1B550% UART -- CA LEDs PIC (Parallel M clk 0x00004810) 00000181 F|
O HE250 -- CAST, Inc. jtag_uart_0 WTAG UART clk 0x00001820, Ox00001 82?||T
B i High Performance Gii .
s = |
[4 Move Up] [W Move Down

(71 cpu_0; defaulting Reset Address, Exception Address to onchip_memory_0
cpu_0: The fese@.addlj_ess'p:_ointg'.t'n_vo?éki\e MEmMary, E_Xe'cut\on of undefined cods may occur upon reset,
1) Done checking for updates,

Exit < Prev [Rext] [Generate I

Figure 14. The final specification.

12. Having specified all components needed to implementdlgatl system, it can now be generated. Select
the System Generation tab, which leads to the window in Figure 15. Turn &imulation - Create
simulator project files, because in this tutorial we will not deal with the simulatiof hardware. Click

11

Generate on the bottom of the SOPC Builder window. The generation @se@roduces the messages
displayed in the figure. When the message “SUCCESS: SYSTENERATION COMPLETED" appears,
click Exit. This returns to the main Quartus Il window.

1M Altera SOPC Builder - nios_system Q@@

File Module Systern View Tools Help

System Contents | Nios IT More "cpu_0" Settings |{ System Generation |

| - optians

BB Run nios 11 IDE

HOL: Generate system module logic in Werilog:

[Simulation. Create simulator project files,

Info: to the terms and conditions of the Lltera Program License Al
Info: Subscription Lgreement, Lltera MegaCore Function License
Info: Agreement, or other applicable license agreement, including,
Info: without limitation, that your use is for the sole purpose of
Info: programming logic devices manufactured by Altera and sold by
Info: kltera or its authorized distributors. Please refer to the
Info: applicable agreement for further details.
Info: Processing started: Wed Apr 19 17:32:56 2004
Info: Command: qUartus_sh -t nilos_sSystem _Setup guartus.tcol
Info: Evaluation of Tel seript nios system setup gquartus.tel was successful
Info: Quartus II Shell was successful. 0 errors, 0 warnings
Info: Processing ended: Wed ipr 19 17:32:57 Z006
Info: Elapsed time: 00:00:01
E# 2006.04.18 17:32:57 (7] Completed generation for system: nios_system.
2006.04.19 17:32:57 (*) THE FOLLOWING SYSTEM ITEMS HAVE BEEN GENERALTED:
SCOPC Builder database @ D:fSupc_bullder_tutur1alfnlus_system.ptf
System HDL Model : D:/sope_bullder tutorial/nios_system.v
Swystem Generation Script @ D:/sopc_hullder_tutor1al/nlos_systenLgenerat10n_scr1pt

—

2006.04.19 17:32:57 (*) SUCCE33: 3Y3ITEN GENERATICN CONFLETED.

Press 'Exit' to exit. ¥
% | >

!ﬁ] cpu_0 was generated as plain-text HOL,

© cpu_D: The reset addréss.pdln_ts.to volatile memary, Execution of undefined code may occur upon reset,
(7} Done checking for updates,

Exit = Prev = Re-Generate

Figure 15. Generation of the system.

Changes to the designed system are easily made at any tine@bgning the SOPC Builder tool. Any com-
ponent in the System Contents tab of the SOPC Builder canléetse and deleted, or a new component can be
added and the system regenerated.

3 Integration of the Nios Il System into a Quartus Il Project
To complete the hardware design, we have to perform thefolig:

¢ Instantiate the module generated by the SOPC Builder it@ttartus Il project

Assign the FPGA pins

Compile the designed circuit

Program and configure the Cyclone Il device on the DE2 board

12

3.1 Instantiation of the Module Generated by the SOPC Builde

The instantiation of the generated module depends on thgrdestry method chosen for the overall Quartus Il
project. We have chosen to use Verilog HDL, but the approadiniilar for both VHDL and schematic entry
methods.

Normally, the Nios Il module is likely to be a part of a largegsin. However, in the case of our simple
example there is no other circuitry needed. All we need tosdinstantiate the Nios Il system in our top-level
Verilog file, and connect inputs and outputs of the paral@lports, as well as the clock and reset inputs, to the
appropriate pins on the Cyclone Il device.

The Verilog module generated by the SOPC Builder is in thenfibs_system.iwn the directory of the project.
Note that the name of the Verilog module is the same as thersysaime specified when first using the SOPC
Builder. The Verilog code is quite large. Figure 16 depitis portion of the code that defines the input and
output signals for the modulgos_systemThe 8-bit vector that is the input to the parallel pSwitchess called
in_port_to_the Switche3he 8-bit output vector is calleaut_port from_the LEDsThe clock and reset signals
are callectlk andreset_nrespectively. Note that the reset signal is added auteaibtiby the SOPC Builder; it
is calledreset_rbecause it is active low.

obc) nios_system.v

module nios system |
/4 1) global signals:
clk,
reset_n,

/¢ the LEDs
out_port_from the LED=s,

/¢ the Switches
in_port_to_the ZJwitches

)

output [7: 0] out_port_ from the LEDs;

input clk:

input [7: 0] in_port_to_the 3witches;

input reset_n; v
< »

Figure 16. A part of the generated Verilog module.

Figure 17 shows a top-level Verilog module that instansidgte Nios Il system. This module is namigghts,
because this is the name we specified in Figure 3 for the tad-tiesign entity in our Quartus Il project. Note
that the input and output ports of the module use the pin ndargke 50-MHz clock,CLOCK_5Q pushbutton
switches KEY, toggle switchesSW and green LEDd, EDG, that are specified in the DE2 User Manual. Type
this code into a file calletights.v. Add this file and all the *.v files produced by the SOPC Builaeyour Quartus
Il project. Also, add the necessary pin assignments on th fard to your project. The procedure for making
pin assignments is described in the tutofalartus Il Introduction Using Verilog DesigriNote that an easy way
of making the pin assignments when we use the same pin namegtes DE2 User Manual is to import the
assignments given in the file call®E2_pin_assignments.csvthe directoryDE2_tutorials,design_fileswhich
is included on the CD-ROM that accompanies the DE2 board an@lso be found on Altera’s DE2 web pages.

Since the system we are designing needs to operate at a 5G:Mekzfrequency, add the needed timing as-
signment in your Quartus Il project. The tutoriiming Considerations with Verilog-Based Desigh®ws how
this is done.

13

// Implements a simple Nios Il system for the DE2 board.
/I Inputs: SWZ-0 are parallel port inputs to the Nios Il system
1 CLOCK_50is the system clock
1 KEYO is the active-low system reset
// Outputs: LEDG70 are parallel port outputs from the Nios Il system
module lights (SW, KEY, CLOCK_50, LEDG);
input [7:0] SW,
input [0:0] KEY;
input CLOCK_50;
output [7:0] LEDG;

Il Instantiate the Nios Il system module generated by theGBFlder:
/I nios_system (clk, reset_n, out_port_from_the LEDsport _to_the_Switches)
nios_system Niosll (CLOCK_50, KEY|[0], LEDG, SW);

endmodule

Figure 17. Instantiating the Nios Il system.

Having made the necessary settings compile the code. Yowse®mgome warning messages associated with
the Nios Il system, such as some signals being unused ordravong bit-lengths of vectors; these warnings can
be ignored.

3.2 Programming and Configuration
Program and configure the Cyclone Il FPGA in the JTAG programgmode as follows:

1. Connect the DE2 board to the host computer by means of a dBIB plugged into the USB-Blaster port.
Turn on the power to the DE2 board. Ensure that the RUN/PRG@Isig in the RUN position.

2. Selecflools > Programmer to reach the window in Figure 18.

3. If not already chosen by default, select JTAG in the Mode Adso, if the USB-Blaster is not chosen by
default, press thelardware Setup... button and select the USB-Blaster in the window that pops up.

4. The configuration fildights.sofshould be listed in the window. If the file is not already l&téhen click
Add File and select it.

5. Click the box undeProgram/Configure to select this action.

6. At this point the window settings should appear as inédah Figure 18. PresStart to configure the
FPGA.

14

W lights.cdf

éa Hardware Setup... USE-Blaster [USE-0] Mode: [JTAG | Progress: 0%

™ Enable realtime ISP ta allow background prograrring (for MAK || devices)

Uszercode
FFFFFFFF

Checkzum Werify

Wb Start

*E'ﬂ Auto Detect
¥ Delete

s Add File...
li= Change File...
2 Add Device...

||« >

Frogram/
Confi

Figure 18. The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA devigs riow necessary to create and execute an appli-
cation program that performs the desired operation. Thisbeadone by writing the required program either in
the Nios Il assembly language or in a high-level languagb ssdC. We will illustrate both approaches.

A parallel I/O interface generated by the SOPC Builder iseasible by means of registers in the interface.
Depending on how the PIO is configured, there may be as marmguasdgisters. One of these registers is called
the Data register. In a PIO configured as an input interfaoe,data read from the Data register is the data
currently present on the PIO input lines. In a PIO configuedraoutput interface, the data written (by the Nios
Il processor) into the Data register drives the PIO outmdi If a PIO is configured as a bidirectional interface,
then the PIO inputs and outputs use the same physical linésisicase there is a Data Direction register included,
which determines the direction of the input/output trandfeour unidirectional PIOs, it is only necessary to have
the Data register. The addresses assigned by the SOPC Bai&léx00001800 for the Data register in the PIO
called Switches and 0x00001810 for the Data register in tBecalled LEDs, as indicated in Figure 14.

You can find a full description of the PIO interface by openihg SOPC Builder window in Figure 14 and
right-clicking on the module name of a PIO (either Switched BDs). Then, in the pop-up box selebata
Sheet to open the documelO Core with Avalon Interfacehich gives a full description of the interface. To
use this facility you need to be connected to the Internet.

4.1 Using a Nios Il Assembly Language Program

Figure 19 gives a Nios Il assembly-language program thatements our trivial task. The program loads the
addresses of the Data registers in the two PI1Os into procesgisters-2 andr3. It then has an infinite loop that
merely transfers the data from the input PElyitchesto the output PIOLLEDs Note that the program contains

a statement that includes tiidos_macrosand two statements, GFUNC and BREAK, needed to assemble the
program properly.

15

.include "nios_macros.s"

.equ Switches, 0x00001800
.equ LEDs, 0x00001810

GFUNC _start

movia r2, Switches

movia r3, LEDs
loop: Idbio r4,0(r2)

stbio r4, 0(r3)

br loop

BREAK

Figure 19. Assembly language code to control the lights.

Enter this code into a filights.sand place the file into a working directory. We placed the fil® idirec-
tory sopc_builder_tutorialapp_softwareThe program has to be assembled and converted into an SeRédep
lights.sreg suitable for downloading into the implemented Nios |l gyst

Altera provides thenonitor software, calledNios 1l Debug Clientfor use with the DE2 board. This software
provides a simple means for compiling, assembling and doadihg of programs into a Nios Il system imple-
mented on a DE2 board. It also makes it possible for the useetiorm debugging tasks. A description of this
software is available in thNios Il Debug Clientutorial.

Open the Nios Il Debug Client, which leads to the window inUf&20. This software needs to know the
characteristics of the designed Nios Il system, which avergin the ptf filelights.ptf Select the fildights.ptf
as indicated in the figure. Note that this file is in the desigaaiory sopc_builder_tutorial The Nios Il Debug
Client also needs to know where to load the application @agrin our case, this is the memory block in the
FPGA device. The SOPC builder assigned the namahip_memory_ this block. If not already done, select
this name in the window in Figure 20. Having provided the ssaey information, clickConfirm.

Next, the main Nios Il Debug Client window appears, as shawigure 21. To assemble and download the
light.sprogram clickCompile & Load. A dialog box in Figure 22 appears. Select the ligats.sas indicated in
the figure and cliclOpen.

As a result of opening the file, the Nios Il Debug Client invelean assembler program, followed by a linker
program. The commands used to invoke these programs, andtiha they produce, can be viewed in thebug
tab of the Client window. The downloaded program is dispthiyethe Disassemble tab of the Client window
as illustrated in Figure 23. Observe thabvia is a pseudoinstructionvhich is implemented as two separate
instructions. See thHios Il Processor Reference Handbdok a description of the Nios Il instruction set.

Click Run to execute the program. With the program running, you can testvthe design by turning the
switches,SW7 to SW0 on and off; the LEDs should respond accordingly.

16

Mios Il System Properties

Look In: |3 sopc_huilder_tutorial

00| O—
|'| S

1 .sopc_builder
I db
[nios_system_sim

D hios_system.ptf

SOPC Builder PTF File

File Name: |nios_system.ptf |
Files of Type: |SOPC Builder PTF Files (.t |~
Program Memory onchip_memory_0 | - |
Selected Memaory Size © 4 Khytes
Confirm
Figure 20. The Nios Il Debug Client Settings window.
0 ehug L]
File Help
-Connect Usil
[1sE-Blaster [UsE-0] =
“MIOS Il Debug Output -Registers
Disassemble | Memary | Advanced | Console | Trace | Debug | | Regster | use |
= =/ RO (zero) 00000000
F|| IRt (at) 00000000
RZ 00000000
R3 noo0oooag
R4 00000000
RE noo0oooag
Ré 00000000
R7 noo0oooog
RE 00000000
|x1x] NOO000000
-Interesting Memony-
Tyvpe | Address Data
4 Dl
i bl Comols ~Break + Watch

Start Address (or Symbal) l:l Mum Instruckions | ‘ Prink

“Next Instruction

NOF

“NIOSI Controls

Compile & Load

Figure 21. The Nios Il Debug Client window.

17

Look In: |[:l app_software

File Mame: |Iights.s

Files of Type: |Assembly Language Source Files {53

Figure 22. Open File dialog box.

os |l Debug Client (n2client)

File Help

Connect Using

HIOS Il Debug Output - Registers-
Disassemble | Memory | Advanced | Conscle | Trace | Debug | _ Register | vaus |
| |[RO [zera) 00000000 ||
— || [|F1 {at) deadbeef
RZ 0os0ig00
k3 0os01810
R4 Qooooong
_______ 3 deadbeef
Rd deadbeef
""" (g deadbeef
kg deadbeef
k9 deadbeef
"""" k10 deadbeef
k11 deadbeef
RlZ deadbeef
R13 deadbeef |
14 deadbeef
156 deadbeef
Rrla deadbeef
RI7 deadbeef
g deadbeef
______ k19 deadbeef
rzo deadbeef -
Interesting Memory
""" Type | Address | Data |
: -
4] | |
Disassembile Controls Break + Watch
Start Address (or Symbol} E_DDDDDDDD Murn Instruckions ‘32 | | Prink : | P |
1 R = |
Hext Instruction l : l
| - !
0x00000000: arhi REZ, zero, 0Ox80 [- |
NIOSI Controls
T 1 |
| Restart | | Single Step | | Digplay Memory |
| Cisconnect | | Run | | Cizassemble |

Figure 23. Display of the downloaded program.

18

The Nios Il Debug Client allows a number of useful functioasbe performed in a simple manner. They
include:

e single stepping through the program

e examining the contents of processor registers
e examining the contents of the memory

e setting breakpoints for debugging purposes

e disassembling the downloaded program

A description of this software and all of its features is &zl in theNios 1l Debug Clientutorial.

4.2 Using a C-Language Program

An application program written in the C language can be hehitl the same way as the assembly-language pro-
gram. A C program that implements our simple task is giverignfe 24. Enter this code into a file callkghts.c

#define Switches (volatile char *) 0x0001800
#define LEDs (char *) 0x0001810

void main()
{ while (2)

*EDs = *Switches;
}

Figure 24. C language code to control the lights.

To use this program, get to the window in Figure 21 and p@sspile & Load. In the dialog box in Figure
22 select the filéights.c The rest of the operation is the same as described above.

Copyright(©2006 Altera Corporation. All rights reserved. Altera, Thedtammable Solutions Company, the
stylized Altera logo, specific device designations, anatider words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenradts and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicmes are the property of their respective holders.
Altera products are protected under numerous U.S. andgiongatents and pending applications, mask work
rights, and copyrights. Altera warrants performance oksémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefwesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitijability arising out of the application or use of any
information, product, or service described herein excepbgressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialewate specifications before relying on any published
information and before placing orders for products or s&wi
This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdienor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitnesssd particular purpose, are specifically disclaimed.

19

