Serial Communications

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

Columbia University
Spring 2008
Early Serial Communication

Morse code key

<table>
<thead>
<tr>
<th>Letters</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>Q</td>
<td>-</td>
</tr>
<tr>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Z</td>
<td>-</td>
</tr>
</tbody>
</table>

Serial Communications – p.
Later Serial Communication

Data Terminal Equipment

Data Communications Equipment
RS-232

Defined in early 1960s
Serial, Asynchronous, Full-duplex,
Voltage-based, point-to-point, 100 ft+ cables

\[
\begin{align*}
+12V & \quad \text{SPACE} = 0 \\
+3V & \\
-3V & \quad \text{MARK} = 1 \\
-12V &
\end{align*}
\]

Idle Start LSB B1 B2 B3 B4 B5 B6 MSB Stop

Tx
RS-232 Signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin</th>
<th>DCE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxD</td>
<td>2</td>
<td>←</td>
<td>Data received by DTE</td>
</tr>
<tr>
<td>TxD</td>
<td>3</td>
<td>→</td>
<td>Data sent by DTE</td>
</tr>
<tr>
<td>SG</td>
<td>5</td>
<td>—</td>
<td>Ground</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>←</td>
<td>Data Set Ready (I’m alive)</td>
</tr>
<tr>
<td>DTR</td>
<td>4</td>
<td>→</td>
<td>Data Terminal Ready (me, too)</td>
</tr>
<tr>
<td>DCD</td>
<td>1</td>
<td>←</td>
<td>Carrier Detect (hear a carrier)</td>
</tr>
<tr>
<td>RTS</td>
<td>7</td>
<td>→</td>
<td>Request To Send (Yo?)</td>
</tr>
<tr>
<td>CTS</td>
<td>8</td>
<td>←</td>
<td>Clear To Send (Yo!)</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>←</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>
Most UARTs actually use 16\times clocks
Parity bit: (Even = true when even number of 1s)

Two stop bits:
Baud Rate

Baud: bits per second

<table>
<thead>
<tr>
<th>Baud</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>ASR-33 Teletype</td>
</tr>
<tr>
<td>300</td>
<td>Early acoustic modems</td>
</tr>
<tr>
<td>1200</td>
<td>Direct-coupled modems c. 1980</td>
</tr>
<tr>
<td>2400</td>
<td>Modems c. 1990</td>
</tr>
<tr>
<td>9600</td>
<td>Serial terminals</td>
</tr>
<tr>
<td>19200</td>
<td></td>
</tr>
<tr>
<td>38400</td>
<td>Typical maximum</td>
</tr>
</tbody>
</table>
Physical Variants

Connectors: DB-25, DB-9, Mini DIN-8
RS-422: Differential signaling RS-485: Bus-like

![Diagram showing RS-422 and RS-485 configurations](image-url)
Philips invented the Inter-IC bus c. 1980 as a very cheap way to communicate slowly among chips. E.g., good for setting control registers. 100, 400, and 3400 kHz bitrates.

SCL: Clock, generated by a single master
SDA: Data, controlled by either master or slaves
I²C Bus Transaction

Idle | Start | “0” | “1” | Ack | Stop

SCL

SDA

Write data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>W</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
</table>

< n data bytes >

Read data

<table>
<thead>
<tr>
<th>S</th>
<th>slave address</th>
<th>R</th>
<th>data</th>
<th>A</th>
<th>data</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
</table>

< n data bytes > last data byte

Master

Slave

transmitter

receiver

transmitter

receiver

S = Start condition
A = Acknowledge
P = Stop condition

R/W = read / write not
A = Not Acknowledge
USB: Universal Serial Bus

1.5 Mbps, 12 Mbps, and 480 Mbps (USB 2.0)
Point-to-point, differential, twisted pair
3–5m maximum cable length
USB Connectors

<table>
<thead>
<tr>
<th>Series "A" Connectors</th>
<th>Series "B" Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Series "A" plugs are always oriented upstream towards the Host System</td>
<td>• Series "B" plugs are always oriented downstream towards the USB Device</td>
</tr>
</tbody>
</table>

"A" Plugs
From the USB Device

"A" Receptacles
Downstream Output from the USB Host or Hub

"B" Plugs
From the Host System

"B" Receptacles
Upstream Input to the USB Device or Hub
NRZI: 0 = toggle, 1 = no change

Bit stuffing: 0 automatically inserted after six consecutive 1s

Each packet prefixed by a SYNC field: 3 0s followed by two 1s

Low- vs. full-speed devices identified by different pull-ups on D+/D- lines
USB Packets

Always start with SYNC
Then 4-bit type, 4-bit type complemented
2 bits distinguish Token, Data, Handshake, and Special, other two bits select sub-types
Then data, depending on packet type
Data checked using a CRC
Addresses (1-128) assigned by bus master, each with 16 possible endpoints
Polled bus: host initiates all transfers.
Most transactions involve three packets:
- “Token” packet from host requesting data
- Data packet from target
- Acknowledge from host

Supports both streams of bytes and structured messages (e.g., control changes).
USB Data Flow Types

- Control
 For configuration, etc.

- Bulk Data
 Arbitrary data stream: bursty

- Interrupt Data
 Timely, reliable delivery of data. Usually events.

- Isochronous Data
 For streaming real-time transfer: prenegotiated bandwidth and latency
USB: Flash Card Device

Bus 001 Device 002: ID 05e3:0760 Genesys Logic, Inc.
- `bcdUSB`: 2.00
- `bMaxPacketSize0`: 64
- `idVendor`: 0x05e3 Genesys Logic, Inc.
- `idProduct`: 0x0760
- `bcdDevice`: 1.14
- `iManufacturer`: 2 Genesys
- `iProduct`: 3 Flash Reader
- `iSerial`: 4 002364

Configuration Descriptor:
- `bNumInterfaces`: 1
- `MaxPower`: 300mA

Interface Descriptor:
- `bNumEndpoints`: 2
- `bInterfaceClass`: 8 Mass Storage
- `bInterfaceSubClass`: 6 SCSI
- `bInterfaceProtocol`: 80 Bulk (Zip)

Endpoint Descriptor:
- `bEndpointAddress`: 0x81 EP 1 IN
 - `bmAttributes`: 2
 - `Transfer Type`: Bulk
 - `Synch Type`: none
 - `wMaxPacketSize`: 64
- `Endpoint Descriptor:`
 - `bLength`: 7
 - `bDescriptorType`: 5
 - `bEndpointAddress`: 0x02 EP 2 OUT
 - `bmAttributes`: 2
 - `Transfer Type`: Bulk
 - `Synch Type`: none
 - `wMaxPacketSize`: 64

Language IDs: (length=4)
- 0409 English(US)
Bus 002 Device 002: ID 04b4:0001 Cypress Semiconductor Mouse

Device Descriptor:
 bcdUSB 1.00
 idVendor 0x04b4 Cypress Semiconductor
 idProduct 0x0001 Mouse
 bcdDevice 4.90
 iManufacturer 1 Adomax Sem.
 iProduct 2 USB Mouse
 iSerial 0

Configuration Descriptor:
 bNumInterfaces 1
 bmAttributes 0xa0
 Remote Wakeup
 MaxPower 100mA

Interface Descriptor:
 bNumEndpoints 1
 bInterfaceClass 3 Human Interface Devices
 bInterfaceSubClass 1 Boot Interface Subclass
 bInterfaceProtocol 2 Mouse
 iInterface 5
 EndPoint1 Interrupt Pipe

HID Device Descriptor:
 bDescriptorType 34 Report
 wDescriptorLength 52

Endpoint Descriptor:
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 3
 Transfer Type Interrupt
 Synch Type none
 wMaxPacketSize 4
 bInterval 10

Language IDs: (length=4)
 0409 English(US)
On the DE2, one downstream port, one host
Operates at 12 or 480 Mbps speeds
Two control endpoints + 14 user endpoints
4096 (host) + 2462 (device) bytes buffer memory
Supports DMA data transfers
Many configuration and status registers
150-page data “sheet” + 99-page embedded programming guide