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Milestones

1: All computations / low level modules are working
2: The system is integrated and we can write to our memory from a C program on the 
NIOS.
3: Low resolution video

Final: An improved resolution video and we have a simple video game or simulation 
running from the NIOS processor.

Hardware Module Hierarchy

RayCasterProject - connects pins
RayCasterSystem - built by SOPC Builder

NIOS Processor
Avalon Bus Stuff
SRAM Interface (other generated stuff)
JTAG Debug Interface
RayCasterModule - our stuff 

RayCasterRenderer
RectMem - stores world rectangles
CameraMem - stores camera position
AvalonInterface - allows access to our memories over the bus



Hardware Modules

The diagrams we've produced are somewhere between block diagrams and logic diagrams. 
They're closer to the latter, but are a little handwavy about certain aspect such as how may 
bits signals are and some details about memory accesses. As many important issues are 
fleshed out as we could get to.

Rays will be represented by 6 numbers: X, Y, Z, DX, DY, and DZ. The D variables are the 
slopes. Coordinates in our world space and slopes will be represented by 9 bits.



RayCasterRenderer

At a high level there are three systems here.  There's the ray casting system which is 
composed of the RayCaster module and the screen row and screen column counters. 
 There's the video generator which takes the data produced by the RayCaster and sends it 



out to the VGA chip.  And there's a double buffered line buffer which passes data between 
the two.

The video generator is the main driver of the whole system.  When it's about to start 
drawing the screen, it asserts the StartScreen signal. This resets both counters and the 
RayCaster.  The RayCaster will wake up, take the information from the row, column offset, 
RectMem, and CamCoordMem lines and will start processing.

The design that we drew has two ray units computing in parallel. When we build this, we 
plan on having 32 ray units in parallel.  The design scales in an obvious way but we didn't 
want to make a big mess on the paper.  For the diagram shown, if we'll be working with the 
resolution 320 by 200, the max constant which appears in a couple of places would be 160, 
which is 320 columns / 2 parallel ray units. For our final product, the max constant will 
probably be 10, which is 320 columns / 32 parallel units.

The line buffer is broken up in two ways.  The first way is that there's an A buffer and a B 
buffer. If the RayCaster is writing to the A buffer the VideoGenerator will be reading from 
the B buffer and vice versa.  This is controlled using bit zero of the screen row counter 
which we call LineBufSel.  The second way that the line buffer is broken up is that there's a 
separate section for each chunk of pixels that we do in parallel.  This allows us to write 
them all at once.  So for a row of 320 pixels, the 0 buffers will contain pixels 0 through 159 
and the 1 buffers will contain pixels 160 through 319.

When the RayCaster finishes producing the colors on its output lines, it will bring the done 
signal high.  This will cause its outputs to be written to the appropriate parts of the line 
buffer, the column offset counter to be incremented, and itself to be reset.  It will then start 
again on the next columns.

With what we've described so far, after the column offset counter reached the maximum 
value, the RayCaster would continue to compute values and start overwriting memory that 
we want.  To prevent this, when that counter reaches the Max value (which is one more 
than the last value we compute) we'll stop the RayCaster from running again with the use 
of the comparator between the column offset and the Max value feeding into the 
RayCaster's enable line. This will also stop the column counter and prevent it from rolling 
over and having the enable line be true again.

When the column offset counter changes and the RayCaster is reset, we don't want the 
RayCaster to start immediately because we need to wait for the comparator on its enable 
line to produce the correct output. So we've added the ResetDelay flip flop and the or gate 
in front of its reset line.  The RayCaster's reset is synchronous.  If any of the lines feeding 
into its reset are asserted, on the next cycle the RayCaster will reset.  Additionally on that 
second cycle the reset delay flip flop will grab that reset value and hold it for the following 
cycle.  This will cause the reset line to be asserted for two cycles.  This is illustrated in the 
accompanying timing diagrams.

The column line coming out of the video generator represents the column that it needs to 
read for video output and is independent of the column counter that we use for generating 
rays.



Ray Caster

The RayControl module is intimately connected with the RayUnits. We only have one of 
them in the RayCaster because it will control many ray units running in parallel.   One of 
the jobs of  the ray control  is  to cycle through all  the rectanglels in  the RectMem and 
present the current one on the CurrentRect lines.  Other than that it will assert the various 
signals in the proper order at the proper times in order to operate the ray units.



RayUnit  

To start off, ResetZBuffer and ResetColor will be asserted, which will clear the ZBuffer and 
ColorCombiner.

Initially,  Row,  ColumnBase,  ColumnOffset,  and  CameraCoordMem  will  have  values  on 
them.  The ScreenToRay signal will be asserted and the RayGenerator will produce X, Y, Z 
and  DX,  DY,  and  DZ  values.   The  InitialRay  signal  will  be  1  so  the  values  from  the 
RayGenerator  will  be  directed  to  the  IntersectionFinder.  The  first  rectangle  will  be 
presented on the Rect lines and FindIntersection will be asserted. Some serious math will 
happen and then the IntersectionFinder will produce the X, Y, and Z coordinates of the 
intersection, DX, DY, and DZ of the reflected ray, and the color at that intersection. The 
WriteZBuf line will be asserted and the Z Buffer will decide whether those values are closer 
to the source than the previous values and if so, store those new values.

The FindIntersection and WriteZBuf steps will be repeated for every rectangle.  Each time 
a new rectangle will be on the Rect lines. After all of them have been processed, AddColor 
will be asserted which will cause the ColorCombiner to grab the resulting color from the Z 
Buffer. StoreRay will also be asserted which will cause RayMem to store the values of the 
reflecting ray from the Z Buffer.



The entire process will be repeated to handle the reflection except that InitialRay will be 0 
so we'll be finding the intersection from the reflected ray instead of from the initial camera 
ray.  This time when the ColorCombiner adds the color, it will combine the previous color 
and the new color to produce a color value that includes the reflection.

Timing

Cycle Budget

Rows Cols
Pixels / 
Frame FPS

Pixels / 
Sec

# of 
Ray 
Units

Pixels / 
Sec / Ray 
Unit

Sec / Pix-
el / Ray 
Unit

Clock 
Freq

Clock 
Period

Cycles / 
Pixel / Ray 
Unit

200 320 64,000 60
3,840,0

00 32 120,000
8.3333E-

06
50MH

z 2E-08 417
The table illustrates the number of cycles we have for each ray unit to process 1 pixel.

Cycles Required

Scene 
Rectan-
gles

Reflec-
tions

Rays / 
Pixel

Cycles 
to Di-
vide

Cycles to 
Multiply

Intersec-
tion Helper

Cycles / 
Ray / 
Rectangle

Cycles / 
Pixel

12 1 2 9 1 13 17 408



Timing Diagrams

Video Generator and Counters

Ray Caster Enable and Reset



Ray Caster Renderer and Ray Unit

Ray Control and Ray Unit



Ray Unit and Output



The Math Behind our Simple, Real-Time Ray Tracer

The Scene

The Coordinate System
The scene is located on an x, y, z coordinate system. Each axis extends from 0 to 511, 
which just so happens to be 9 bits long, which just so happens to be the width of the on 
board multipliers on the FPGA.

The Camera
The camera can be placed anywhere. However, the viewing axis of the camera must always 
be parallel to the x axis. Hence, x is always depth, y is side-to-side, and z is height.

The camera is looking through a viewing rectangle 100 units from the camera along the x-
axis. The viewing rectangle is 320 units wide and 240 units tall. The point on the rectangle 
50 units from the bottom and 160 units from either side is closest to the camera. 
Accordingly, the vanishing point of the scene will appear to approach the center of the 
screen, but towards the bottom.

Scene Rectangles
Our scene consists of a small number of scene rectangles. We describe each scene 
rectangle with two cordinates which represent 2 oposite corners. Every scene rectangle 
must be parallel to the plane x = 0, y = 0, or z = 0. For example, the scene rectangle (0, 0, 
0) (511, 511, 0) makes a good floor. Each scene rectangle is further described by red, 
green, and blue color values.

Light
Our entire scene is uniformly lit. Hence, no shadows exist.

Rectangles do no refract. They do, however, reflect off of scene rectangles 50%. 
Mysteriously, light rays only reflect once or twice.

The Math

For each pixel, we need to determine the color of that pixel. Accordingly, we conceive of a 
ray which begins at the camera and goes through the corresponding pixel in the viewing 
rectangle. Then, for each scene rectangle, we determine whether or not our ray intersects 
that scene rectangle.

Let’s say that our camera is positioned at (cameraX, cameraY, cameraZ). Furthermore we 
are looking through the point that corresponds to the pixel which is topOffset pixels from 



the top of the screen and leftOffset pixels from the left. Accordingly, our ray goes through 
the point

x = cameraX + 100
y = cameraY − (320/2) + leftOffset

z = cameraZ + (240 − 50) − topOffset
Or in other words, the ray has slope

(100, −160 + leftOffset, 190 − topOffset)
Recall that the viewing rectangle is always 100 units from the camera along the x-axis. Let 
us rewrite this slope as

(viewX, viewY, viewZ)
So our ray can be described by the equations

x = cameraX + viewX  t∗
y = cameraY + viewY  t∗
z = cameraZ + viewZ  t∗

Now consider a scene rectangle which is parallel to the plane y = 0. Its corners are located 
at (corner1X, cornerY, corner1Z) and (corner2X, cornerY, corner2Z). Notice that the y 
value for both corners is the same. Our scene rectangle is therefore located on a plane 
described by the equation

y = cornerY
Now we must determine where our ray intersects our scene rectangle. Let’s call this point 
(intersectX, intersectY, and intersectZ). Trivially,

intersectY = cornerY
We simply have to compute intersectX and intersectZ.
Consider our ray where

y = cameraY + viewY  t∗
We know y = intersectY = cornerY, so

cornerY = cameraY + viewY  t∗
Hence

t = (cornerY − cameraY )/viewY
intersectX = cameraX + viewX  (cornerY − cameraY )/viewY∗
intersectZ = cameraZ + viewZ  (cornerY − cameraY )/viewY∗

As you can see, for every ray with every rectangle, we must compute an equation in this 
form twice:

a + b  (c − d)/e∗
We continue by computing the intersection of every scene rectangle with our ray. We 
determine which is closest by simply picking the smallest

|cameraX − intersectX|

Reflection
The reflecting ray for a ray and a scene rectangle is simple. Simply determine whether the 
scene rectangle is parallel to x = 0, y = 0, or z = 0. Then multiply the corresponding 
portion of the ray by - 1. So in the previous example, our reflecting ray would start at 
(intersectX, intersectY, intersectZ) and would have slope

(100, −1  (−160 + leftOffset), 190 − topOffset)∗
At this point you can use the same math that we used in the above example to determine 
color of the reflecting ray.
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