& PHILIPS

Philips Semiconductors

Connectivity

AN10008-01

June 2002

ISP1362 Embedded Programming Guide

Rev: 0.9
Revision History:
Rev. Date Descriptions Author
0.9 4/15/2002 Added content on OTG Wang Zhong Wei
0.81 1/3/2002 Update on the Host Controller information Ng Chee Yu
0.80 28/02/2002 Content on the Device Controller added Alvin Lim
0.70 19/02/2002 Modification based on 9 Jan review Ng Chee Yu
0.65 07/02/2002 OTG chapter added Wang Zhong Wei
0.61 05/02/2002 Complete the Host Controller information added Ng Chee Yu
0.60 29/01/2002 Three advanced features Ng Chee Yu
We welcome your feedback. Send it to wired.support@philips.com.
= PHILIPS
Philips Semiconductors - Asia Product Innovation Centre N4

Visit http://www.flexiusb.com

Connectivity 20f 99

ISP1362 Embedded Programming Guide Rev. 0.9

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting this
product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER

PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS
SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS
SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL,
PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO
USE THE PRODUCT, EVEN IF PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 30f99

1.

2,

3.

5.

6.

7.

ISP1362 Embedded Programming Guide Rev. 0.9

CONTENTS
INTRODUCTION ...ttt esssessss st e ssssessssessbs e sssessss s s bs e s sssssbsse bt e sssessbaes sesbssessessssnesssnes 9
ISP1362 PROGRAMMER’S MODEL.......iiiiiiiiiiiiiiniiieiiiecniieesiisessissecsssseesssssssessssssesssssssssssesassses 10

ACCESSING REGISTERS ..ottt st s e sas s sss s s e sas e s as s s ssesss be s snsessnesas 11

3.1. SOFTWARE ACCESSIBLE HARDWARE COMPONENTScoiiiititniniiniieise st ssssesse sttt ss bbb sa s 11
32, I/OPORTS OF THE ISPI302 ...t ssss s ssssssssssss s ssss s sssss s ssssssssssssses
3.3. BASIC REGISTER ACCESSEScvevetriririreeieiereieneneneseeneaenes
3.3.1. Reading and Writing of 8-Bit and 16-Bit Registers
3.3.2. Reading and Writing of 32-Bit Registers
3.3.3. T/ O FUHCHONS ettt sttt ettt ae sttt se s se st st e s ses et ese st et enest st ass st enentesesessenensasasens
3.34. Excample: Reading the Chip IDccccviuiiniiciniciniiisnicsecis ettt
3.3.5. Excample: Testing the HeScrateh REGISIEr ..ot

ACCESSING HOST CONTROLLER BUFFERS

4.1, INDIRECT ADDRESSING.....estiiteiteititietesseisessestessesssssess st s ss e s bbb s bbb bbb s b bbb a b s et
4.2, DIRECT ADDRESSING w..coittitiiiieiteiiitis st sie sttt ss et s b ss sttt b bbbt bbb bbbttt
4.2.1. Setting Up the HeDirectAddressLength Register......................
4.2.2. Accessing Memory Using the Direct Addressing Modec.cuvuveeicucicivivininiiiiieiniininicceieeisieesseeseeseneaes

SETTING UP THE ISP1362 HOST CONTROLLER FOR USB OPERATIONScccooctennueernnnensnucnnnne 19

5.1. SETTING UP THE BUILT-IN HOST CONTROLLER BUFFERcoositiiiiiiniiniiininieisitsi s 19

5.2. SETTING UP REGISTERS w..coiuiiiriitiieiictietetse ettt st a s 19
5.2.1. CONIIOL ANA STATUS SCHUP ..ot 20
5.2.2. Frame Counter Setup
5.2.3. ROOF HID SCUP ...ttt s
5.24. THIETTUPE SCUP ..o s
5.2.5 Hardware Configuration Setup...................cccveocvivivinicininnnns

5.3. HOST CONTROLLER IN THE OPERATIONAL MODE

BASIC USB TRANSEERooiiiiiitiitiitiiieiiententesttesinessessssessessesssesssesssesssessssssesssesssesssessssesssesssessssnnes 25

6.1. PREPARING OR FORMATTING DATA IN THE PTDD oottt ettt ettt et et eve s eaeeneens 25
6.1.1. Generic PTD fleldsccooeucunieuniiiiniciniciiiccicnecnecs e
6.1.2. Traffic SPecific Fieldscccovcuviiivniciriciiccseceice e
6.2. COPYING DATA TO THE ISP1362
6.3. ACTIVATING THE ISP1362 AND CHECKING TRANSFER STATUS ..vevetevirteveierereseeseessesessesessssesessssessssessssesessssesessens
6.3.1. Ouverall Buffer-1_evel Activation—HcBufferStatus Register ...
6.3.2. Block-1 evel Activation—HcATI SkipMap and HeATILLastPTD
6.4. CHECKING STATUS OF THE ATL TRANSEER.......cotitetietieteieseereesestestetesteseesessessessessssessessessesssssssessessessssssssssessensessosens
6.4.1. Checking 1he PTD (POUING).........covuvwviniiiiniiiiiiiiiiiiiiii s
6.4.2. Checking HeATLDONEMaD (POUING) «......coouvaiiiiiiiiiiiiciiiciciciciiic s sssssassssaes
6.4.3. Tn2er19Pt DEVEn CHECRING oot
6.5. NOT ACKNOWLEDGE (NAK)
6.6. POST-TRANSEER PROCESSING0evetietieviverrereereereesesessesseseesessessessessessesesessessessesessessessessessssessensessessssessessessessessssnsessens
6.7. EXAMPLE: SENDING OUT A SETUP TOKEN......c.eetertetietieterrereereereeressesereesessessesessessesessessesesessessensesessessssessesesessssens
6.7.1. Constrncting 1he PTD........c.ocuvveeuvvinninicceieinininicceeeniecenenenns
6.7.2. Activating the PTD........ccveiviiiniiniiniicieicecs s
6.7.3. Looking at the Resull...........uceveecuviniieiiiiiniiiiiiiciicicicciccisis
6.8. ERROR HANDLINGcuviitiiticteetteeteeteeete et eteeteereeeteeteeeseeteesseeseesseeseesseesesssenseasseaseessesseesesssessesssessesssesseasessensensesssensenseessanes

CASE STUDY: USB MOUSEcooviiiiiiiiiiiiiiiintinitcsitsnsresssesessssssesssssssssssssssssssssssssssssessssssssssssssssssssssssnns 30

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 4 0f 99

ISP1362 Embedded Programming Guide Rev. 0.9
7.1.1. Confignring 1he ISPTI02........ocuviiiiiiciiiic ettt 31
7.1.2. Setting the Host Controller to the Operational State and Enabling the Port................ccccvcecuniciniccinicnciinicnicn,
7.1.3. S$07706 BACRGIOUNUS ..ottt nenenns
7.14. FF15E CORMPACE ettt ettt ettt ettt e e at et e st e nt et e e at et e eat et et e eat et e ert et e eatenteas
7.1.5. ROSCE AA SCLAGATESS.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et et ev et e e e et s teeae st e sa e st e s esae s taseeatessesateesessessessestessesatesennes
7.2. GET_CONTROL() FUNCTION
7.2.1. GOIEING DESCTIDIONS .ottt bbb
7.3. SET_CONFIG FUNGCTION ... uttitieieieeette ettt ettt s et et e sateeettesateesaeesatesssesaseesesssteeseesaseessesssssestessteeseesnseesesssesseesnteannes
8. ADVANCED FEATURE 1: MULTI-FRAME BUFFERING OF THE ISO TRANSFERccccccceeeunne. 44
8.1. CONFIGURATION OF THE ISO BUFFERcvitiitiitiietietietietieeeeeeeteereeressesseteeseesesessessessesessessessesessesessessessssessessensessesens 45
8.2. ISO PTD FORMAT oottt eteeveevesevsereevesens st essese s ensessesserensen
8.3. MULTI-FRAME BUFFERING CONTROL REGISTERS
8.3.1. Multi-Frame Buffering Mechanmisn ... sssessssans
8.4. TRAFFIC, HOST CONTROLLER AND CPU ACTIVITIES ...vevetetrririririeseseieseessesissssssssesesesssssessssssssssesesssesssssssssssesesesesens 46
9. ADVANCED FEATURE 2: PAIRED-PTD FOR THE BULK TRANSFER.......cccccoevvrttttetiierrrreeeeeeesssnns 47
9.1. CONFIGURATION OF THE ATL BUFFER ...cutotiitiitiiitietieteetetet et sttt et ese st stesteseessstesssssessesesssssessensesssssssessessensensasens 47
9.2. PTD FORMAT OF PAIRED PTDD ..ottt ettt ettt ettt et ev s eneessetsesesssnsensessesessensensessessssnsensens 47
9.3. REGISTERS FOR PAIRED-PTD MECHANISM CONTROL ...cuveuveriirierereeieriereesesseseessesseseesessessesessessessessesssssssessessessessesens 48
9.4, DONE, SKIP, LLAST ..cvetiriiretinieteieteeistereeesesessesesesesessesessesesessesessssessssesessssesessens
9.5. PAIRED-PTD BUFFERING MECHANISM
10. ADVANCED FEATURE 3: AUTOMATIC POLLING FOR THE INTERRUPT ENDPOINT 50
10.1. CONFIGURING THE INTL BUEFERcvititiitietitetetietietesteeeseereeressesesseseesessessessessessesessessessessssesessessessesessensensessesens 50
10.2. INTERRUPT PTD FORMAToooviietietietiieeeeetesrectee et eeve e ne e
10.3. REGISTERS FOR THE INTERRUPT AUTOMATIC POLLING CONTROL
10.4. DONE, SKIP, LLAST .ottt se e stesse s s sessessesseseseesessessenns
10.5. INTERRUPT AUTOMATIC POLLING CONTROL ...covtitiititeeiesietieteeeeeeseeseetessesseseessesessessessesssssssessessesssssessssessessessssesses
11. ON-THE-GO—HINP AND SRPcittttttrurreeeeeerrereueseeeeeeesssssssssessssssssssssssessssssssssssssesssssssssssssssssssssssssssesss 52
11.1. INTRODUCTIONcvietieteeteetreeteeteesteeseesseeseesesseessesseessesesssessesssessessesssesesssessessssssesesssessesssesesssessessassessessessssssesseesenns
11.2. OTG REGISTERS
T 2000 REOGISIET SEISueninieiieueieiiieinieeieieietsir ettt ettt bbbttt ettt b s a st tane
T1. 220 REOGISIET AACCESS oottt ettt s e tane
11.3. PROGRAMMING SRP...........

11.3.1. B-Device Initiating SRP
11.3.2. A-Device Detecting SRP

11.4. PROGRAMMING HNP STATE MACHINEcvrtiteiieintiteise et sttt a s st 54
11.4.1. HNP State Machine (OTG_EFSIM).......cccouiuiiniiiiiiiiiiiiicisieccs sttt ssssss st 54
11.4.2. Procedures for Handling HNP
11430 OTG IRICITUDE .. bbb
11.4.4. Using OtgLimer and OGAITIINErc.cvvveveeeiirniniceieeieiristeeee sttt et esaeas
1145, Using Anto CONNECt ...,

11.4.6. Using Auto Bus Reset
11.4.7. Using Otglnterrupt to Wake-np the Chip

11.5. OTG HNP STATE MACHINE PSEUDO CODE ...cueeietisieieeieisiesienieiesiesessesseseesessessessessesessessessessessessssessassessessssessens 58
11.5.1. Dual-Role A-Device S1ate MACHINecoceereeeeeeeceeeeeereereieeierieseieesessesessessesessssessessessessesessssessessessessssessessessssessens 58
11.5.2. Dual-Role B-Device State Machine

11.6. POWER SAVING AND CHIP WAKE-UPcoriuiisniiseiisisssissssssssssssssssssssssssss s ssssssssss st st sssss st st sssssssssssssssssssssssssssnsssss
11.6.1. Suspending the Host COMIOUEEocoviiviniiiiiiiiiiiiiiiici i
11.6.2. Suspending the Device Controller...............c.vuvwecivvuniuvicininenvicinnnn.

11.6.3. Resuming the Host Controller................occuvivviniccecvnnniccccnenns
11.6.4. Resuming the Device COMPOrccuveeeucenicuriccinicnicciinicnicnns
11.6.5. ISP1362 in Minimum Power Current State and Wake-Up Method. ...,

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 50f99

12.4.1. Hardware Abstraction Layer for the Systentccovvviviiininnnn.
12.4.2. Hardware Abstraction Layer for the Device Controller of the ISP1362

ISP1362 Embedded Programming Guide Rev. 0.9
12. DEVICE CONTROLLER OF THE ISPI3062cceiirutiiiinriinirneiiiineeiiieeesisseesssseesssssesssssseesssssessns 64
12.1. FIRMWARE STRUCTURE OF THE DEVICE CONTROLLER.....ccvitiiiiiiiiiiiscicisisisesscss s sssssssssenes 65
12.1.1. Hardware Abstraction Layer—HALASYS. C....ocovuiiiiniiiiiiiiiiciicisiicsicsiesesc st 65
12.1.2. Hardware Abstraction Layer—HALADT3.C....ccovuvnviveeinirinininiceieisinintseeneisisisiesieesessesesessisessssesesesssssssacns 65
12.1.3. Interrupt Service Routine—ISR.C........ccccvviiviiiiiniiiiiiiiiiii e 65
12,14, Profocol Layer—CHAP_9.C......uiiiiiiiiiiiiiiiiisiiitic s 66
12.1.5. Protocol Layer—DT3BUS.Ci.....couvviiiiiiiiiiiiiiiiiiii s 66
12.1.6. Main Logp—NMAINLOOP.C.......cooueeuiiiiiiiiinienicseee ettt sttt
12.2. PORTING THE FIRMWARE TO OTHER CPU PLATFORM
12.3. DEVELOPING THE FIRMWARE IN THE POLLING MODEccccoviniimiiiiiniiiiiicnn s 66
12.4. HARDWARE ABSTRACTION LAYER w..uuctrvtuiuntiscerecereiseascsecseessesscssecssesssessessssssesssessssssssesssesssssesssesssessnssscssecenes 66

12.5. INTERRUPT SERVICE ROUTINE ...ccceviieietierierisieeereeressesseseneseesessesseneens
12.5.1. BULSE RESCE oottt ettt ettt ettt ettt ettt et e et et e et et e eae et e eteententeeateteeaeenrens 70
1252, SUSPENA CHANGE.......ceeeeiciciic sttt
(2 R S O N A = SO
1254 Control Endpoint Handler.
12.5.5. CORITOL QOUT HARALET «.vvvovoveeeeeereereeeeeeeeeeeeeeeveieete et ee et et es et eaees s essessebassessesessersesensenseseesessensensesseressensen
12.5.6 Control IIN Handler..........cuceeceeeeeerecreireiieieeresreceeesessessessenns

12.5.7. Bulk Endpoint Handler

12.5.8. 15O Endpoint Handlercvneniviciniinesinicininninians

12.6.
12.7.

12.7.1. Clear Feature Request..............cccccccecuvicuniccucinicnicsinncne.

IMIATIN TLOOP ...ttt ettt et s et e st e s et et e st s e s et e s ene s es et e s en et e st e s entebene s esentesenesesaneenan
STANDARD DEVICE REQUESTS....ucctirterterteteriesiesiestesieriesessessestesessessessessessesessessessessessssessassessessessesessessessessssassassassasses

12720 Gt STAIUS ROGUESE ...
12.7.3. 56t Address REGUESToouiiuiiiiiiiiiiiiiiciiiisis st

12.7.4 Get Configuration Request

12.7.5. Get Descriptor Requestcuvieuvivinciviiniiciiiiciicsicsnnis

12.7.6. Set Configuration Regnest

12.7.7. Get and Set INIrface ROGUESES...........ccovviuieiiaiiiiiiiiniciiiiiis s
12.7.8. 86t FOAIUIE REGUESE ...ttt
12.7.9. Class ReGUESE ..ot

12.8.

12.8.1. Vendor Request for the Bulke Transfer...............cvivinncininnnes

VENDOR REQUEST

12.8.2. CATC Capture of @ PIO OUT THARSIEr.......ovuviiniiiiniiiiiiiiicicicis i
12.8.3. CATC Capture of @ PIO IN TTHSEr ...ttt

12.8.4. Vendor Request for the ISO Transfer............cccowcveccvnecnnne

12.8.5. CATC Capture of an ISO OUT THARSENcooeeueurieiriiieisicisice ettt
12.8.6. CATC Capture of an ISO IN TTABSIEccuviiiciiiiiiiiciiciicisics ettt

13, REFERENUCES......cocoiititiiiieiininntitiiesiessesstestotsssessesstsstsstesssssessesstsstessessessesssssssssessessesssssssssssssessessesses 99

Table 3-1:
Table 4-1:
Table 4-2:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:

Fout POtts Of the ISPTI302.....c.ociceicvieeeeeetecteeteteeeeteetee ettt er et ee et eve s essetsebe et essssessesseseesessesseseessasensesserseteesensenees
HcDirectAddressLength Register: Bit Allocation
HcDirectAddressLength Register: Bit Description
HcControl Register: Bit ALIOCAEON «...cuvuiuiiiiiiiiiiiiiicii s sessaes
HcFmlnterval Register: Bit Allocation
HcRhPortStatus[1:2] Register: Bit ALIOCAHONccuiiiiciiciiiiicic et
HcpPlnterrupt Register: Bit ALOCAHOMN «.....vuiuiiiciiiiiiiiciiciiie et
HcHardwareConfiguration Register: Bit Allocation ...

HcHardwareConfiguration Register: Bit Description

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 6 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Table 6-1: Number of PTDs required for a Transfer
Table 6-2: Generic PTD: Bit Allocation.........

Table 6-3: Generic PTD: Bit Description
Table 6-4: Bits in HcBufferStatus to Activate the Buffer Areas ... 27
Table 6-5: HcBufferStatus Register: Bit ALIOCAtON c....vuvuiviieieiiiiiiiciicici s saes 27
Table 6-6: Fields Updated After PTD Processing
Table 6-7: PTD Bit DESCIIPLONcuuiieiieiieiiciicte ettt sa e
Table 6-8: Fields Updated after PTID PrOCESSINEcucuiuuiucuicieiiiciricieicieeeieie ettt ecssaensces
Table 6-9: Changes after the TTanSACHONccuiiuiiieciiiciicec e

Table 6-10: USB Transaction Error Codes
Table 7-1: Values of Fields in the PTDcccooiiiiiinieiciceccecce e

Table 8-1: ISO PTD Structure: Bit ALIOCATIONucvuvvieiirictiieicictc ettt
Table 8-2: ISO PTD Structure: Bit DeSCIIPLON......ciiiiiiiiiciiiieieiciiie e sss s saes
Table 8-3: Registers Related to the ISO Transfer
Table 8-4: Isochronous Buffering MeChaniSITl......c..ccciuiuiuiciiiiciiciiciecce et ss e
Table 9-1: Paired-PTD Structure: Bit ALIOCAtIONcu.uiuiiiiiciiciiciccei et
Table 9-2: Paired-PTD Structure: Bit Description.........ccciiiciiiciiiciicsncscsines

Table 9-3: Registers Related to the Paired-PTD Bulk Transfer
Table 9-4: Example of Register Values in a Bulk Transfer........coocoviiviiiincicinnnn,

Table 10-1: Interrupt PTD Structure: Bit AllOCAtHONcuiiiiiiiiiiiii e
Table 10-2: Interrupt PTD Structure: Bit DeSCrPtOn ..o ssssseesaes
Table 10-3: Registers Related to the Interrupt Automatic Polling Control
Table 10-4: Example of Automatic Polling Schedulingccocciiiniciniincncnnncn

Table 11-1: OT'G REGISTELScuuiiiiieciriiieiiciriciecie e

Table 11-2: OtgStatus Register: Bit AlOCAHONc.iiiiiiiiiiiiic s
Table 11-3: Otglnterrupt Register: Bit AllOCAtONc.vuiuiiiiiiiiiiciii e
Table 11-4: OtgControl Register: Bit Allocation
Table 11-5: OtgTimer Register: Bit AlIOCAtION. ..o 53
Table 11-6: OtglnterruptEnable Register: Bit ALIOCAtIONcouvuviviiiiiiiiiiici s sssseesaes
Table 11-7: HepPlnterruptEnable Register: Bit AloCation.........c.cveeviiivviciciniiscicicicninns

Table 11-8: DcHardwareConfiguration Register: Bit Allocation
Table 12-1: Building Blocks ModifiCationscciueuricuiciriiciicieiciciscc e

Table 12-2: Dclnterrupt Register: Bit ALIOCAtION ..ot
Table 12-3: DcEndpointStatus Register: Bit ALlOCAtION.cviiiiiiiiiiiicicic e
Table 12-4: DcEndpointStatus Register: Bit Desctiption
Table 12-5: Recommended DcEndpointConfiguration Register Programming for a Bulk Endpoint.......cccccecveeiecivieniennaes
Table 12-6: DcEndpointConfiguration Register: Bit ALIOCAHON.cuiuviciriiiciiecieiciecicriciieiceeee e eeee
Table 12-7: DcEndpointConfiguration Register: Bit Descriptioncocuecenicunicirnieenicriceieree e
Table 12-8: Recommended DcEndpointConfiguration Register Programming for an ISO Endpoint ...
Table 12-9: DcMode Register: Bit ALIOCAHON.c.viuiiiciiiciriic s
Table 12-10: DcMode Register: Bit DeSCIPHONviiiiiiiiiiiicii s
Table 12-11: DcAddress Register: Bit ALIOCAIONcuuviuiiiniiiiiiiiiiiiiii s
Table 12-12: DcAddress Register: Bit Description
Table 12-13: DEVICE REQUESLcuuvuiiiiiiiiiiiiiiiiii s
Table 12-14: Proprietary Definition of the Sample Firmware and Applet ...
Table 12-15: DEVICE REQUESEcuvuiuiieiieiieciicieic ettt

FIGURES

Figure 2-1: Programmer’s Model of the ISPTI302 ..o
Figure 2-2: Software Model of the ISPT302cccooiiiiiiiiiiiii s
Figure 3-1: 16-Bit Register ACCeSS CYCle.......oiiiiiiiiiiiiiiiiiii s
Figure 3-2: Code Example for 16-Bit Register WIIteccocvivvieiveiiinicieiiiniccncccccniens
Figure 3-3: Code Example for 16-Bit Register Readccoovvviviviviniiciinicincicce
Figure 3-4: 32-Bit Register ACCESS CYCLE......ouiiiiiiiiiiciiiciiiec it

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Figure 3-5: 3
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:

Figure 8-1: Traffic, Host Controller and CPU Activities
Figure 9-1: Paired-PTD Flowchart

Figure 12-1:
Figure 12-2:
Figure 12-3:
Figure 12-4:
Figure 12-5:
Figure 12-6:
Figure 12-7:
Figure 12-8:
Figure 12-9:

Figure 12-10:
Figure 12-11:
Figure 12-12:
Figure 12-13:
Figure 12-14:
Figure 12-15:
Figure 12-16:
Figure 12-17:
Figure 12-18:
Figure 12-19:
Figure 12-20:
Figure 12-21:
Figure 12-22:
Figure 12-23:
Figure 12-24:
Figure 12-25:
Figure 12-26:
Figure 12-27:
Figure 12-28:

Code Example for Accessing the ISP1362 by Using GPIOs
Reading the Chip ID
Testing the HcScratch Register
Code Example for Reading from the ATL Buffer
Code Example for Writing to the ATL Buffer
Code Example for Setting Up the HcDirectAddressLength Register
Code Example for a Direct Address Read
Flowchart of the Host Controller in the Operational State
set_operational() Subroutine....
enable_port() Subroutine
make_ptd() Subroutine
send_control() Subroutine
Enumeration Capture
Get_Descriptor Capture
Code Example of the Setup Stage
Code Example of the Data Stage
Code Example of the Status Stage

7 of 99

Rev. 0.9

2-Bit Register Read

set_address () Subroutine
set_address() Capture
get_control() Flowchart
Code Example for Checking whether a Mouse is Connected
set_config() Function
Code for Calling the set_config() Function
Snapshot of the Mouse Movement Data on the USB Bus

Firmware Structure of the Device Controller of the ISP1362
Flowchart of ISR
Code Example of a Typical ISR
Code Example to Read the Dclnterrupt Register
Control Flags
State Machine of the Control Transfer
Flowchart of the Control OUT Handler

Code Example for Checking Status of the OUT Endpoint
Code Example for Reading the DcEndpointStatus REGISTELcuvuiiiviiniiiiiiiiciiniiciiciscisinscieiecessiines 73
Code Example for Reading the Contents of an OUT Buffer........coccviiicinicinicicnccncreercceeceee 73

Code Example for Reading the DcEndpointStatus Register
Code Example for Checking the Status of the IN Endpoint
Code Example for Writing the Contents to an IN Buffer
Flowchart of the Control IN Handler
Code Example for Configuring a Bulk OUT or Bulk IN Endpoint
Function Definition of void SetEndpointConfig(lUCHAR bEPConfig, UCHAR bEPIndex)
Flowchart of the Bulk OUT Handler
Code Example for Reading the DcEndpointStatus Register
Code Example for Checking the Status of the Bulk OUT Endpoint
Code Example for Reading the Contents of a Bulk OUT Buffer
Flowchart of the Bulk IN Handler
Code Example for Reading the DcEndpointStatus Register
Code Example for Checking the Status of the Bulk IN Endpoint
Code Example for Writing the Contents into a Bulk IN Buffer
Code Example for Configuring an ISO OUT or ISO IN Endpoint
Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)
Flowchart of the ISO OUT Handler
Flowchart of the ISO IN Handler

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Figure 12-29:
Figure 12-30:
Figure 12-31:
Figure 12-32:
Figure 12-33:
Figure 12-34:
Figure 12-35:
Figure 12-36:
Figure 12-37:
Figure 12-38:
Figure 12-39:
Figure 12-40:
Figure 12-41:
Figure 12-42:
Figure 12-43:
Figure 12-44:
Figure 12-45:
Figure 12-46:
Figure 12-47:
Figure 12-48:
Figure 12-49:
Figure 12-50:

8 of 99

Rev. 0.9

Code Example for Reading the DcEndpointStatus Register
Code Example for Reading from an ISO Endpoint Buffer
Code Example for Writing to an ISO Endpoint Buffer............cccco....

Flowchart of the Main LOOP ...cciiiiiiiiii e
Code Example for Writing to the DcMode Register
Code Example on Setting SoftConnect
Flowchart of Clear Feature
Code Example for Sending Zero-Length Packet........coviiiiiiiiiiiiciiciccicrecicccrcseeee e
Code Example to Stall or Unstall an Endpoint.......cccccevcivicccnicinicciinncnnes

Flowchart of Get Status
Flowchatrt Of Set AddIesS..uuiiiiierieriieieiitiireceee et ee e et sresers e ssessesseseens
Code Example of the Set Address ROULNEccuviiiiiiiiiiii s
Flowchart of Get Configuration
Flowchart of Get Descriptor
Flowchart of Set CONfIZUIAtION.c.icuiiiieiiiciriciecie ettt
FloOWChatrt Of Get INtEITACE ...viviivieiececeietecte ettt ettt ettt aseaeete et esseseesesteesessensesseresenseneas
Flowchart of Set Interface
Flowchatrt Of SEt FEAtULE ...voviieriericrieeeeecticteceee ettt et eve et nennens
CATC Capture of a PIO OUT Transfer
CATC Capture of 2 PIO IN Transfer ..o
CATC Capture of an ISO OUT TLANSTET ..ot sssasaes
CATC Capture of an ISO IN TIansfer . ..o

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 9 0f 99

ISP1362 Embedded Programming Guide Rev. 0.9

1. Introduction

The ISP1362 is a single-chip Universal Serial Bus (USB) Host Controller (HC) and Device Controller (DC) that
complies with Universal Serial Bus Specification Rev. 2.0 (full-speed). These two USB Controllers—the Host Controller and
the Device Controller—share the same microprocessor bus intetface. They have the same data bus, but different I/O
locations. The ISP1362 uses a flexible interrupt and DMA scheme, which allows the Host Controller and the Device
Controller to use separate interrupt and DMA lines, or share a single interrupt and DMA line, if desired. Besides the
Host Controller and the Device Controller, the ISP1362 also contains the On-The-Go (OTG) Controller. Devices with
OTG Controller built-in can be a USB host or device. Therefore, these devices can communicate with each other
without the need of a personal computer (PC).

There are two USB ports on the ISP1362: port 1 and port 2. Port 1 can be configured as a downstream port, an
upstream port or an OTG port. Port 2 is a fixed downstream port.

The Host Controller is an advanced transfer-based USB Host Controller. It offers a very high efficiency in using the
USB bandwidth and yet requires little CPU intervention. This is because its USB engine is mostly hardware-based.

The Device Controller is compliant with most device class specifications, such as Imaging Class, Mass Storage Devices,
Communication Devices, Printing Devices and Human Interface Devices. The ISP1362 is well suited for embedded
systems and portable devices that require a USB host only, a USB device only, or a combined and configurable USB host
and USB device capabilities. The ISP1362 brings high flexibility to the systems that have it built-in. For example, a
system that has the ISP1362 built-in allows it not only to be connected to a PC or a USB hub that has a USB
downstream port. But it can also be connected to a device that has a USB upstream port, such as USB printer, USB
camera, USB keyboard, USB mouse, among others.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide Rev. 0.9

2. ISP1362 Programmer’s Model

The ISP1362 can be viewed as a complete set of USB functionality—host, device and OTG—that is accessible to the
programmer through four I/O ports. Writing and reading register sets control the functionality, and writing and reading

the respective buffers access the USB traffic.

At the lowest level, the ISP13062 is accessed as four I/O ports. These are:

* Device Controller command port
* Device Controller data port
* Host Controller command port

* Host Controller data port.

The OTG Controller shates the same I/O potts as the Host Controller.

10 of 99

I/0 Port of the
DC

I/0 Port of the
HC and OTG
Controller

ﬁ
2 L

{}
- L

DC Registers and Buffers

HC Registers and Buffers,
OTG Controller Registers and Buffers

1

1 1

DC Cotre

OTG Core

HC Core

SIE 1

10

OTG/HC/DC Port

SIE 2

10

HC Port 2

Figure 2-1: Programmer’s Model of the ISP1362

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 11 o 99

ISP1362 Embedded Programming Guide Rev. 0.9
H‘ Application ‘ ‘ Application ‘
< Device Driver
‘
0s > Class Driver u | Class Driver |
> Host Stack | ‘ Device Stack ‘

\ Low-level System H/W code & ISR \

USB Peripherals

=
 — -
Embedded System Q‘l
USB Upstream T | USB Downstream
>

Figure 2-2: Software Model of the ISP1362

This programming guide contains the information and techniques required for writing the “low-level system hardware
code and interrupt service routine (ISR)” as illustrated in Figure 2-2.

3. Accessing Registers

3.1. Software Accessible Hardware Components

The major hardware components of the Host Controller in the ISP1362 accessible by software are:
* HC control and status registers

* ATL buffer

* INTL buffer

e ITL buffer.

Details of these registers can be found in the ISP1362 datasheet. Three groups of registers in the ISP1362 control the
functions of the chip. These registers are named according to their functional groups.

* OTG Controller Registers Start with Otg. For example, OtgControlStatus.
* Host Controller Registers Start with He. For example, HcBufferStatus.
* Device Controller Registers Start with Dc. For example, DcHardwareConfiguration.

This chapter will explain the basic routines that access registers and buffers.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 12 0£ 99

ISP1362 Embedded Programming Guide Rev. 0.9

3.2. 1/O Ports of the ISP1362

The registers in the ISP1362 are accessible via four ports, specified by the combinations of A0 and Al. Depending on
the type of platform that the ISP1362 is installed on, A0 and A1 can be mapped to different addresses. For example, the
Philips ISP1362 evaluation boatd allows the ISP1362 to be mapped to 290/292/294/296 or 300/302/304/306 on the
I/0O port of the X86-PC. 0x290 and 0x300 are the base addresses of the ISP1362.

The ISP1362 has the I/O port architecture. However, the connected pott for the CPU depends on platforms. For
instance, some RISC CPUs (such as, MIPS, SH and PPC) do not has I/O address space. In such cases, the ISP1362 1/O
port will be mapped on the memory space.

Table 3-1: Four Ports of the ISP1362

I/0O Address A0, Al Description

Base address A0O=0,A1=0 Host Controller Data Port

Base address + 2 AO=1,A1=0 Host Controller Command Port
Base address + 4 AO=0,A1=1 Device Controller Data Port

Base address + 6 A0O=1,A1=1 Device Controller Command Port

In this document, the ports will be referred to as follows:

O Host Controller Data Port hc_data
O Host Controller Command Port hc_com
QO Device Controller Data Port dc_data
O Device Controller Command Port dc_com

In a PC-ISA system in which the ISP1362 is mapped to the base address of 0x290, the ports must be defined as:

#defi ne hc_data 0x290
#defi ne hc_com 0x292
#defi ne dc_data 0x294
#defi ne dc_com 0x296

All accesses through these ports for 8-bit registers are in the 16-bit mode. The valid data resides at the lower byte. For
32-bit registers, the first word to be written or read is the lower word.

3.3. Basic Register Accesses

The two basic types of access a programmer would require while programming with the ISP1362 Host Controller and
OTG are:

e Read/Write, 8-bit or 16-bit
e Read/Write, 32-bit.

3.3.1. Reading and Writing of 8-Bit and 16-Bit Registers

This type of access has two phases: command and data. During the command phase, the index of the target register is
written to the command port. During the data phase, the desired data is written to or read from the data port. The index
of various registers can be found in the ISP1362 datasheet.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 13 0£ 99

ISP1362 Embedded Programming Guide Rev. 0.9

l——— 16-hit registar accass oyl —

wile commanc raad/write data
{16 bitg) {16 bits)
— |
Reaqister data
data bus Command code {lower word)

Figure 3-1: 16-Bit Register Access Cycle

Note that the indices of all the Host Controller and OTG registers follow the convention in which the MSB signifies
whether it is a write or read operation. An index for writing to a register always has the seventh bit set to 1.

For example:

HcBuf f er Status (Read) => 0x2C
HcBuf fer Status (Wite) => 0x2C | 0x80
=> 0OxAC

For convenience, in any command-write operation, the index is ORed with 0x80, so that only one value for each register
needs to be defined.

Note: The registers in the ISP1362 Device Controller do not follow this convention.

Figure 3-2 shows a sample code for a 16-bit register write.

void hc_wite(unsigned int reg_index, unsigned int data_to_wite

out port (hc_com reg_i ndex| 0x80); /'l Wites the register index to the command port
outport(hc_data, data_to wite); /Il Wites data to the data port

Figure 3-2: Code Example for 16-Bit Register Write

The code example in Figure 3-3 reads data from a 16-bit register.

Unsigned int hc_read(unsigned int reg_index)
unsigned int data_to_return;

ites the register index to the conmand port

out port (hc_com reg_index); 1w
/'l Reads data fromthe data port

data_to_return = inport(hc_data);

return(data_to_return);

Figure 3-3: Code Example for 16-Bit Register Read

3.3.2. Reading and Writing of 32-Bit Registers

This type of access has three phases: command, first data and second data. During the command phase, the index of the
target register is written to the command port. During data phases, two words (16-bit) are written to or read from the
data port. The lower word must be accessed first, followed by the higher word.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

14 o£ 99

Rev. 0.9

data bus

write command

read Mwrite data

32-bit register access cycle

readwrite data

{16 bits) ({lower 16 bits) {upper 18 bits)
— 1
~ . Ragister data Ragister data
Gommand code (lowrar word) (upper word)

Figure 3-4: 32-Bit Register Access Cycle

Executing a 32-bit access without completing the second data phase will send the ISP1362 into an indeterminate state.
This is because the ISP1362 expects two data phases following the command phase. A pseudo code for a 32-bit register
read is given in Figure 3-5.

Unsi gned int hc_read32(unsi gned int

unsi gned int data_l ow,
unsi gned i nt data_high;
unsi gned | ong dat a32;

out port (hc_com
data_l ow = inport(hc_data);
dat a_hi gh= i nport (hc_data);

dat a32=dat a_hi gh;
dat a32=dat a32<<16;
dat a32+=dat a_| ow,

return(data32);

reg_i ndex);

reg_i ndex)

/1
/1
/1

Wites the register index to the command port
Reads the LOWword data fromthe data port
Reads the H GH word data fromthe data port

3.3.3.

* Has at least three I/O portts of 8-bit width each (P1, P2, P3), and

I/0O Functions

In the previous sections, a number of routines have been provided for basic register accesses. These routines are written
in Turbo C and use a number of functions provided by Turbo C. For example, inport() and outport(). If you are using
any other compiler, you may need to use a different set of I/O functions. In some embedded cases, you may even need
to implement your own inport and outport functions. This section will provide a pseudo code for a general CPU or
MCU by using the general-purpose 1/O (GPIO) pins.

Assuming that the CPU or the MCU:

e All ports are bi-directional.

The following declarations defines the I/O potts of the CPU or MCU:

Figure 3-5: 32-Bit Register Read

#def i
#def i
#def i
#def i
#def i
#def i
#def i

| o_byte
hi _byte
CS

VR
RD
A0
Al

P1

P2

P3~0
P3~1
P3~2
P3~3
P3~4

/1

/1

/1l Bit O of
/1 Bit 1 of
/1 Bit 2 of
/1 Bit 3 of
/1 Bit 4 of

port
port
port
port
port

Port 1 is |ower
Port 2 is higher

WWwWwww

byte of the 16-bit data bus
byte of the 16-bit data bus
is CS

is
is WR
is RD
is AO
is Al

The pseudo code to access the ISP1362 by using GPIO pins is given in Figure 3-6.

void hc_write(unsigned int

/1 Initialize the control

Cs=1;
RD=1;

reg_i ndex,

signal s

unsigned int data_to_wite)

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 15 0f 99

ISP1362 Embedded Programming Guide Rev. 0.9
WR=1;

A1=0; // Access the HC

/1 Command phase of the access
A0=1; // Conmand phase

/] CQutput the data on the ports
| o_byte=(reg_i ndex&x00FF) ;
hi _byt e=(reg_i ndex&xFF00) >>8;

CS=0; // Assert the CS
WR=0; // Assert the WR

Wai t _uS(50); // Wait for 50 es

WR=1; // De-assert WR
CsS=1; // De-assert CS

/] Data phase of the access
A0=0; // Data phase

/] Qutput the data to ports
|l o_byte=(data_to_wite&Xx00FF);
hi _byte=(data_to_wite&XxFF00) >>8;

CS=0; [// Assert the CS
RD=0; // Assert the RD

Wait_uS(50); // Wait for 50 s

RD=1; // De-assert RD
CsS=1; /| De-assert CS

Figure 3-6: Code Example for Accessing the ISP1362 by Using GPIOs

3.34. Example: Reading the Chip ID

After installing the ISP1362 on your hardware platform, the simple program given in Figure 3-7 can be used to make
sure that the physical connection between the microprocessor system and the ISP1362 is correct.

#i ncl ude <stdio. h>
#i ncl ude <dos. h>

#define hc_data 0x290
#define hc_com 0x292

#define HcChi pl D 0x27
unsi gned int hc_read(unsigned int reg_index);
voi d mai n(voi d)
unsi gned int ChiplD
Chi pI D = hc_read(HcChi pl D);
}pri ntf(“\nChiplDis : %X, ChiplD);

unsi gned int hc_read(unsigned int reg_index)
unsigned int data_to_return;
out port(hc_com reg_i ndex); /! Wites the register index to the command port
data_to_return = inport(hc_data); /'l Reads the data fromthe data port

return(data_to_return);

Figure 3-7: Reading the Chip ID

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 16 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

3.3.5. Example: Testing the HcScratch Register

The program in Figure 3-8 is written to test the ISP1362 Write/Read cycle. The target register (HcScratch) does not
have any specific use. The programmer may use this register for any purposes.

#i ncl ude <stdi o. h>

#define hc_data 0x290
#define hc_com 0x292
#define HcScratch 0x28

unsi gned int hc_read(unsigned int reg_index);
void hc_write(unsigned int reg_index, unsigned int data to wite);

voi d mai n(voi d)

unsi gned int cnt=0, error=0;
unsigned int test_data;

do
hc_wite(HcScratch, cnt);
test _dat a=hc_read(HcScratch);
if(test_datal=cnt)
printf(“\nError Encountered!!”);
printf(“\nWite: %X Read: %X’,cnt,test_data);
error++;
cnt ++;
}
whi | e(cnt <OXFFFF) ;
i f(error==0)
printf(“\nNo error!!”);
el se

printf(“\nTotal error : 9%”,error);

}

void hc_write(unsigned int reg_index, unsigned int data_to_wite)
out port (hc_com reg_i ndex| 0x80); /Il Wites the register index to the command port
outport(hc_data, data_to_wite); /'l Wites the data to the data port

}

unsi gned int hc_read(unsigned int reg_index)
unsigned int data_to_return;

out port (hc_com reg_index); /'l Wites the register index to the comrand port
data_to_return = inport(hc_data); /'l Reads the data fromthe data port

return(data_to_return);

Figure 3-8: Testing the HcScratch Register

4. Accessing Host Controller Buffers

The programmed I/O (PIO) memorty access in the ISP1362 is similar to the register access, except that the data phase is
variable in length. The length of the data phase depends on the amount of data you wish to access. The PIO memory
access can be done using two addressing mode: Indirect Addressing and Direct Addressing.

4.1. Indirect Addressing

This addressing method uses a dedicated register to access each of the four buffer areas. The access always starts from
the location zero of the respective buffer area. The amount of data to be accessed must be specified in
HcTransferCounter.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 17 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

An example of a C code for reading from the ATL buffer is given in Figure 4-1. In this code example:
a_ptr is a pointer that points to the memory array to hold data from the ATL buffer.

data_size is the number of words to be read.

void read_atl (unsigned int *a_ptr, unsigned int data_size)
int cnt;

hc_write(HcTransferCounter, data_si ze*2);
out port (hc_com HcATLBuf ferPort);

cnt =0;
do

{
*(a_ptr+cnt) =i nport (hc_data);
cnt ++;

W%ﬂ le(cnt<(data_size));

data_size is multiplied by two because HeTransferCounter is a Byte counter.
Figure 4-1: Code Example for Reading from the ATL Buffer
Figure 4-2 contains a C code example for writing to the ATL buffer. In this C code example:
a_ptr is a pointer that points to the memory array that holds data to be written to the ATL buffer.

data_size is the number of words to be read.

void wite_atl (unsigned int *a ptr, unsigned int data_size)
int cnt;

hc_write(HcTransferCounter, data_size*2);
out port (hc_com HcATLBuf f er Port | 0x80) ;

cnt =0;
do

out port(hc_data, *(a_ptr+cnt));
cnt ++;

V\A}'li le(cnt<(data_size));

data_size is multiplied by two because HeTransferCounter is a Byte connter.

Figure 4-2: Code Example for Writing to the ATL Buffer

4.2. Direct Addressing

This addressing method views the entire Host Controller buffer memory as a single linear array of 4096 bytes. Since the
ISP1362 does not have dedicated memory address lines, the direct addressing memory access is performed using several
special registers. These registers are:

* HcDirectAddressLength (32-bit)
* HcDirectAddressData (16-bit)

HcDirectAddressLength provides three sets of information necessary to perform a directly addressed access. These ate:
* DBufferStartAddress[14:0]
e Inc/DecBufferAddress

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 18 0f 99

ISP1362 Embedded Programming Guide Rev. 0.9

¢ DataByteCount[15:0].

Table 4-1: HcDirectAddressLength Register: Bit Allocation

Bit M 3o 28 28 Faa 26 25 24
Symbol DataByteCount]15:8]
Reset a 0 o 1] 0 a 1] o
Access R R RivW R R R Rw R
Bit 23 22 21 20 18 18 17 16
Symbol DataByteCount[7:0]
Reset a [} o 1] i a 1] o
Access AW RAwW R RAW R AW RAW RiwW
Bit 15 14 13 12 11 10 9 8
Symbol IncDecBuff BulterStartiddress[14:8]

arfddrass
Reset a [} o 1] i a 1] o
Access AW RAwW R RAW R AW RAW RiwW
Bit T i} 5 4 3 2 1 o
Symbol BufferStartAddress(7:0]
Reset a 0 o 1] 0 a 1] o
Access R R R R R R Rw R

Table 4-2: HcDirectAddressLength Register: Bit Description

Bit Description

BufferStartAddress[14:0] | This field specifies the exact location where data would be written to or read from.
Inc/DecBufferAddress This bit determines whether the access would be done in auto increasing or auto
decreasing manner.

DataByteCount[15:0] This 16-bit value takes the higher word of the HeDirectAddressLength register i.e.
[31:16]. It specifies the exact number of bytes to be accessed.

HcDirectAddressData is a data access register.

4.2.1. Setting Up the HcDirectAddressLength Register

The sample code in Figure 4-3 sets up the HeDirectAddressLength register according to the three parameters passed
from the calling function:

count number of bytes of data to access
flow 0 for incremental address and 1 for decremental address
addr starting address for data access.

voi d Set_Dir Addr Len(unsi gned int count, unsigned char flow, unsigned int addr)
unsi gned | ong addr 2ret urn;
addr 2return =(1 ong) (addr &x7FFF) ;
addr 2return| =((1 ong) f | ow) <<15;
addr 2return| =(((1 ong) count) <<16) ;

hc_write32(HcDi r Addr Len, addr 2ret urn);

Figure 4-3: Code Example for Setting Up the HcDirectAddressLength Register

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 19 0£ 99

ISP1362 Embedded Programming Guide Rev. 0.9

4.2.2. Accessing Memory Using the Direct Addressing Mode

Figure 4-4 shows a sample code to read the ISP1362 Host Controller memory and store data in an array pointed to by
the “*a_ptr” pointer. It reads a total of “data_size” words from the byte address “start_addr”.

voi d random read(unsigned int *a_ptr,unsigned int start_addr,unsigned int data_size)

unsi gned int test_size=data_size*2;
unsi gned | ong cnt =0;

Set _Di r Addr Len(test _size,0,start_addr);
out port (hc_com HcDi r Addr _Port);
do

*(a_ptr+cnt) =i nport (hc_data);
cnt ++;

whi | e(cnt <dat a_si ze);

Figure 4-4: Code Example for a Direct Address Read

Note that HcTransferCounter is not used in the direct addressing mode.

5. Setting Up the ISP1362 Host Controller for USB
Operations

5.1. Setting Up the Built-In Host Controller Buffer

The ISP1362 has a built-in buffer of 4096 bytes. By writing the desired buffer sizes into the HcATLBufferSize,
HcISTLBufferSize and HcINTLBufferSize registers, this 4096 bytes will be divided into four areas of sizes specified by
the corresponding registers.

For typical applications, the recommended buffer sizes are:

* ATL 1536 bytes
« INTL 512 bytes
« ISTL 1024 bytes.

ISTL is made up of ISTLO and ISTL1. The value written into the HcISTLBufferSize register specifies the individual
buffer size of both ISTLO and ISTL1. Therefore, in this case, the total amount of buffer used is 4096 bytes (1536 + 512
+ 1024 + 1024 = 4096).

The buffer size can be configured in any sequence. It is re-allocated whenever any of the Host Controller buffer size
register is updated. Allocation of buffer memory follows the fixed sequence of ISTLO, ISTL1, INTL and ATL,
irrespective of the sequence of in which values are written to Host Controller buffer size registers. For details on how
the ISP1362 Host Controller allocates the buffer memory, refer to the ISP1362 datasheet.

5.2. Setting Up Registers

This section describes a number of registers, which must be initialized after powering on and before any USB transfer.
At the end of the initialization process, the Host Controller will be ready to process PTDs in buffers. The initialization
process can be sub-divided into a number of steps:

* Control and Status Setup
* Frame Counter Setup

* Root Hub Setup

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

¢ Interrupt Setup

¢ Hardware Configuration Setup.

20 of 99

Rev. 0.9

Each section corresponds to a group of registers in the ISP1362 datasheet. This section does not provide complete
information on all these registers. It covers the minimal information that is necessary to prepare the ISP1362 for USB

operations.

5.2.1. Control and Status Setup

The register involved in this step of the set up is:
¢ HcControl register (see Table 5-1).

Table 5-1: HcControl Register: Bit Allocation

Bit 31 30 29 28 27 26
Symbol reserved

Reset - - - - - -
Access - - - - - -

Bit 23 22 21 20 19 18
Symbol reserved

Reset - - - - - -
Access - - - - - -

Bit 15 14 13 12 11 10
Symbol reserved RWE
Reset - - - - - 0
Access - - - - - RwW

8
reserved

Bit 7 6 5 4 3 2
Symbol HCFES[1:0] reserved

Reset 0 0 - - - -
Access RV R - - - -

0

The RWE and RWC bits must be set to logic 1. The HCES field controls the state of the USB Host Controller. In this
programming guide, only two states are used: reset and operational. To enter the operational state, HCFS must be set to

“10B”. To enter the reset state, HCFS must be set to “00B”.
Summary:
To start the USB operation, write 0x0680 to the HcControl register.

To reset the USB operation, write 0x0600 to the HcControl register.

5.2.2. Frame Counter Setup

The register involved in this step of the set up is:

* HcFmlnterval register (see Table 5-2).

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 21 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Table 5-2: HcFmlInterval Register: Bit Allocation

Bit 3 30 29 28 27 26 25 24
Symbol FIT FSMPS[14:8]

Reset 0 0 0 o] 0 0 1] 0
Access RW RwW R/wW RAW R/W Rw RW RW
Bit 23 22 21 20 19 18 17 16
Symbol FSMPS[7:0]

Reset 0 0 0 o] 0 0 1] 0
Access RW RwW R/wW RAW R/W Rw RW RW
Bit 15 14 13 12 11 10 9 8
Symbol reserved FI[13:8]

Reset - - 1 1] 1 1 1 0
Access - - R/W RAW RW RwW RAW R
Bit 7 & 5 4 3 2 1 0
Symbol FI[7:0]

Reset 1 1 0 1 1 1 1 1
Access RN R R/W RAW RAW RwW RAW R

Write the value 0x27782EDF to this register. The Framelnterval field (FI[13:0]) specifies the number of bit time
between two SOFs. The nominal value of Framelnterval is 11999. The FSLargestDataPacket field (FSMPS[31:16]
0x2778) specifies the largest amount of data in bits that can be sent or received by the Host Controller in a single frame.
The value of 0x2778 can be derived from the following calculations:

Maximum number of bits in one frame 11999 bits

Bits used in overhead (SOF, EOP, etc.) 210 bits

Remaining available bits 11999 - 210 = 11789
Maximum bit stuffing 11790 x 6/7 = 10104 (0x2778).

5.23. Root Hub Setup

The registers involved in this step of the set up are:
* HcRhDescriptorA

* HcRhDescriptorB

¢ HcRhStatus

* HcRhPortStatus[1]

* HcRhPortStatus[2].

HcRhDescriptorA and HcRhDescriptorB select a number of features of the Host Controller. The details of these
features can be found in the ISP1362 datasheet. The values used in this programming guide are:

HcRhDescriptorA 0x05000B01
HcRhDescriptorB 0x00000000.
HcRhPortStatus[1] and HcRhPortStatus[2] provide the control and status of the two downstream ports of the ISP1362.

The following section explains details how to experiment these two registers.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 22 0of 99

ISP1362 Embedded Programming Guide Rev. 0.9

1. The Host Controller must be set to the operational mode. This step is explained in Section 5.2.1 Control and Status
Setup.

2. Write 0x0000 0100 to both the HcRhPortStatus registers (see Table 5-3 for the bit allocation). This resets both the
ports and sets them ready for operation. At this stage the value in the HcRhPortStatus register will be 0x0001 0100.

3. Connect a USB device to one of the ports. You will see that the bit 0 of the HcRhPortStatus register changes to
logic 1 for the respective port. The LS bit will be set to logic 1, if the connected device is of the low-speed type.

4. Write 0x0000 0002 to HcRhPortStatus of the port that has a device connected to it. This enables the port.
Table 5-3: HcRhPortStatus[1:2] Register: Bit Allocation

Bit k| 30 29 28 27 26 25 24
Symbol reserved
Reset - - - - - - - -
Access - - - - - - - -
Bit 23 22 21 20 19 18 17 16
Symbol reserved PRSC OcCIC PSSC PESC CSC
Reset - - - o 0 0 0 0
Access - - - RAW RAW RW RN RAW
Bit 15 14 13 12 11 10 9 8
Symbol reserved LSDA PPS
Reset - - - - - - 0 0
Access - - - - - - RN RAW
5.24. Interrupt Setup

The registers involved in this step of the set up are:
* HclnterruptStatus

* HclnterruptEnable

* HclnterruptDisable

* HcpPlInterrupt

* HcpPlInterruptEnable.

The HclnterruptStatus register reflects a number of events that are closely related to the root hub operation. Each of
these events may generate a hardware interrupt, if not masked off by using the HcInterruptDisable register. The
OPR_Reg bit (bit 4) in the HepPInterrupt register (see Table 5-4) reflects an interrupt generated by any of these events.

HcpPlInterrupt is one of the most important registers in the ISP1362. It reflects the completion of data transfer, PTD
processing in each of the buffer and the start-of-frame (SOF). These events generate a hardware interrupt unless they are
masked-off by the HepPInterruptEnable register.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 23 0f 99
ISP1362 Embedded Programming Guide Rev. 0.9

Table 5-4: HcpPInterrupt Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved OTG_IRQ ATL_IRGQ
Reset - - - - - - 0 0
Access - - - - - - RwW R
Bit 7 6 5 4 3 2 1 0
Symbol INT_IRQ ClkReady HC OPR_Reg AIEOT ISTL_1_ ISTL_O_ SOFISTL
Suspended Interrupt INT INT It

Reset 0 0 1] 0 0 0 0 0
Access RW RW RW RwW RW RwW R RMW
5.2.5. Hardware Configuration Setup

The HcHardwareConfiguration register controls many aspect of the ISP1362 interface to the external circuitry. The bit

allocation and bit description of the HcHardwareConfiguration register are given in Table 5-5 and Table 5-6.

Table 5-5: HcHardwareConfiguration Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved Connect Connect Suspend | AnalogOC OnelNT | DACKMode
PullDown PullDown | ClkNotStop Enable
15K_DS2 | 15K_DS1
Reset - - 0 1] 0 0 0 0
Access - - R/wW RAW RMW R RW RW
Bit T 6 5 4 3 2 1 0
Symbol OneDMA | DACKInput | DREGOut DataBusWidth(1:0] InterruptOut | Interrupt | InterruptPin
Polarity putPolarity putPclarity | PinTrigger Enable
Reset o] 0 0 o] 1 0 0 0
Access R RW R/W RAW RW R RW RW
Table 5-6: HcHardwareConfiguration Register: Bit Description
Bit Description
15 to 14 reserved
13 to 12 Set to logic 1 if external 15 kQ pull-down resistor is not available
11 Set to logic 1 if you wish to stop system clock in the suspend mode
10 Set to logic 1 for internal overcurrent detection
9 Set to logic 1 if you wish to use only one INT line for both the Host Controller and the Device
Controller
8 Must be set to logic 0
7 Set to logic 1 if you wish to use only one DMA channel for both the Host Controller and the Device
Controller
6to5 DMA setting, depends on the DMA controller requirements
4t03 Data bus width, must use 16-bit, i.e. “01B”
2t00 Controls the interrupt polarity, trigger type and enables or disables the interrupt pin

5.3. Host Controller in the Operational Mode

Once set in the operational mode, the Host Controller goes through a series of steps as shown in the flowchart in Figure
5-1. As can be seen in the figure, the ISTL buffer is the first to be processed, followed by the INTL buffer, and finally,
the ATL buffer. Note that if the EOF timing is not reached by the end of the ATL processing, the Host Controller

loops back to check ATL_Active. This feature allows a single-frame enumeration of USB devices.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

24 of 99

Rev. 0.9

» W ait for SOF |«

YES
YES

rISTLO ISTLll

Process ISTLO Process ISTL1

Schedule Overrun?

N O

YES

h 4

Process INTL
PTDs

- ATL[\

A ctive?

YES

v

N O Process ATL
PTDs

[

Y ES

EOF Timing Reached?

Figure 5-1: Flowchart of the Host Controller in the Operational State

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 25099

ISP1362 Embedded Programming Guide Rev. 0.9

6. Basic USB Transfer

When a USB device is connected to a USB host, “USB transfer” moves information between them. They are four types
of USB transfers: control, bulk, isochronous and interrupt. Each transfer is made up of one or more “USB transactions”.
They are three types of transaction: setup, IN and OUT. Each transaction is in turn made up of several “USB packets”.
The ISP1362 is a transfer/transaction based Host Controller. Depending on the type of transfer involved, the number of
PTDs required ranges from one to three as can be seen in Table 6-1.

Table 6-1: Number of PTDs required for a Transfer

Transfer Type Number of PTD Per Transfer
Control 2-3

Bulk 1

Isochronous 1

Interrupt 1

A PTD is capable of generating more than one transaction. For example, a bulk PTD with 640 bytes of payload and
maximum packet size of 64 bytes will generate 10 transactions of 64 bytes each. This is done without intervention of the
CPU.

A control transfer requires 2-3 PTDs due to its complexity. A control transfer starts with a Setup phase, followed by an
optional Data phase and a Status phase, in which a PTD is required for every phase.

A transaction is made up of two or three USB packets:
* ISO traffic (Direction Token, Data)
* Non-ISO traffic (Direction Token, Data, ACK)

The first packet is the Direction Token, which can be a setup, IN or OUT. The Host Controller sends this packet. The
second packet is the data packet, which can be sent by either the Host Controller or the Device Controller, depending
on the first packet. The last packet is the ACK, which can be sent by either the Host Controller or the Device
Controller, depending on the second packet. Isochronous traffic does not require an ACK in the transaction.

This chapter provides a step-by-step guide to the process of executing a USB transaction using the ISP1362. The five
basic steps are:

1. Preparing or formatting data into PTD
2. Copying data to the ISP1362
3. Activating the ISP1362

4. Checking transfer status

5. Post-transfer processing.

6.1. Preparing or Formatting Data in the PTD

Philips Transfer Descriptor (PTD) is an 8-byte data structure used to provide communication between the USB Host
Controller and the microprocessor. PTD dictates how the Host Controller must handle or process the data in the buffer
memory and reflects the status of the corresponding USB transaction.

A summaty of the fields in PTD is given in Section 6.1.1. For a detailed description of these fields, refer to the ISP1362
datasheet.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 26 of 99
ISP1362 Embedded Programming Guide Rev. 0.9
6.1.1. Generic PTD fields
Table 6-2: Generic PTD: Bit Allocation

Bit 7 6 5 4 3 2 1 0

Byte 0 ActualBytes(7:0]

Byte 1 CompletionCode[3:0] Active Toggle ActualBytes[9:8)

Byte 2 MaxPkitSize[7:0]

Byte 3 EndpointNumber[3:0] B3 3 Speed MaxPktSize[9:8)

Byte 4 TotalBytes([7:0]

Byte 5 B5_7 B5_6 B5_5 B5_4 DirToken([1:0] TotalBytes[9:8)

Byte 6 reserved FunctionAddress[6:0]

Byte 7 B7[7:0]

[1] All reserved bits should be set to logic 0.

Table 6-3: Generic PTD: Bit Description

Name Description

ActualBytes[9:0] Actual amount of data transferred at the moment

MaxPktSize[9:0] Maximum amount of data per packet

TotalBytes[9:0] Total amount of data to be transferred

CompletionCode[3:0] | Reports success or error in a transaction

EndpointNumber[3:0] | Target endpoint number

DirToken[1:0] Specifies setup, IN or OUT token

FunctionAddress[6:0] | Address of the target device

Active Set to logic 1 by the firmware to enable execution of transactions by the Host Controller.
When the transaction associated with this descriptor is completed, the Host Controller sets
this bit to logic 0.

Toggle This bit is used to generate or compare the data PID value (DATAO or DATA1) for IN and
OUT transactions.

Speed Is set to logic 1 for low-speed device and logic 0 for high-speed device

The fields in Table 6-3 are generic PTD fields that are used in all USB transfers.

6.1.2. Traffic Specific Fields

There are a number of traffic specific fields that are specifically designed to enhance the bulk, isochronous and interrupt

transfers as follows:

Bulk Paired (1 bit), Ping-Pong (1 bit)
I1SO StartingFrame (7 bits), Last (1 bit)
INT PollingRate (3 bits), Startingl'rame (5 bits)

6.2. Copying Data to the ISP1362

The data in the ATL buffer is accessed through the HcATLBufferPort or HecDirectAddressData register. Accessing
through the HeDirectAddressData port is more efficient and flexible because it allows access to any location in the
buffer area. However, you must be careful in calculating the address to write, as the direct addressing method allows
writing to anywhere within the buffer. Incorrect address will certainly corrupt the buffer.

The PTD constructed using the method described in Section 5.1 is then copied into the ATL buffer, by PIO or DMA.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 27 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

6.3. Activating the ISP1362 and Checking Transfer Status

After transferring the valid PTD into the ATL buffer, the Host Controller must be informed about whether it must
process data, and also which part of the data is must processed, if it is to process data. There are two levels of buffer
activation control: overall buffer level and block level.

6.3.1. Overall Buffer-Level Activation—HcBufferStatus Register

When the ISP1362 is in the operational mode, it checks the status of the various buffers by using the HcBufferStatus
register. The first four bits of the HcBufferStatus register act as a “switch” that determine whether the Host Controller
will process data in each buffer area.

Table 6-4: Bits in HcBufferStatus to Activate the Buffer Areas

Bit Buffer Area
0 PTLO
1 PTL1
2 INT
3 ATL

When the bits in Table 6-4 are all logic O (inactive), the data in the buffer area will not be processed. When any of the
bits is set to logic 1, the Host Controller will check a number of other registers and depending on the settings in those
registers, it will take appropriate actions. This process will be explained in details in this chapter.

The bit 3 in the HcBufferStatus register must be set to logic 1 for the ISP1362 Host Controller to start processing PTD
in the ATL buffer.

Table 6-5: HcBufferStatus Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved PairedPTD ISTL1 ISTLO
PingPong BufferDone BufferDone

Reset - - - - - 0 0 0

Access - - - - - R R R

Bit 7 6 5 4 3 2 1 0

Symbol reserved ISTL1_ ISTLO_ Reset HW ATL_Active INTL_ ISTL1 ISTLO
Active Active PingPong Active BufferFull Bufferfull
Status Status Reg

Reset - 0 0 1] 0 0 1] 0

Access - R R RAW RW RwW RAW RW

6.3.2. Block-Level Activation—HcATLSkipMap and HcATLLastPTD

The ATL buffer is separated into blocks of equal size (up to 32 blocks), as specified by the HcATLBlockSize register. If
two blocks of 1000 bytes ATL buffers are required in an application, HcATLBufferSize must be at least 2016 bytes
(1000 + 1000 + 8 + 8), due to the additional 8 bytes of header per PTD.

Each of these blocks can be individually activated or de-activated using HcATLSkipMap and HcATLLastPTD.

HcATLSkipMap allows the programmer to mask out any particular PTD in the ATL buffer. This 32-bit register is a
bitmap representation of up to 32 blocks in the ATL buffer. If the ATL buffer has less than 32 blocks, the
corresponding bits will be ignored. Logic 1 in the bit 7 of the HcATLSkipMap register, for example, will mask out the
block 7 in the ATL buffer. (The first block in the ATL buffer is the block 0.)

HcATLLastPTD tells the Host Controller when to stop searching for active PTDs. This register is a bitmap
representation to up to 32 blocks in the ATL buffer. Starting from bit 0, the Host Controller checks the register bits
upward. When it encounters the first bit that is set to logic 1, it will be considered as the “LastPTD”.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 28 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

For example: Consider that HcATLLastPTD = 0x00300000.
Its binary equivalent is 0000 0000 0011 0000 0000 0000 0000 0000.

The first occurrence of 1 is at location 20. The Host Controller will search for active PTD from block 0 to block 20.

6.4. Checking Status of the ATL Transfer

After a PTD has been processed, the Host Controller will update the PTD and a number of registers. An interrupt may
or may not be generated, depending on the setting that you have chosen.

6.4.1. Checking the PTD (Polling)
The Host Controller on processing the PTD updates a number of fields. These fields are given in Table 6-6.

Table 6-6: Fields Updated After PTD Processing

Name Description

Active Set to logic 0 upon completion of transfer
CompletionCode[3:0] Reflects completion status
ActualBytes[9:0] Actual amount of data transferred

Toggle Is toggled by the Host Controller

6.4.2. Checking HcATLDoneMap (Polling)

The HcATLDoneMap register provides a complete and real-time status report of the PTDs in the ATL buffer. Each bit
in the register represents the status of one of the blocks in the ATL buffer. If a block is processed, its corresponding bit
in the HcATLDoneMap register will be set.

Note that this register is cleared on reading. It is recommended that you do not read this register, unless the ATL_IRQ
interrupt has been received.

6.4.3. Interrupt Driven Checking

The ISP1362 can be programmed to generate an interrupt on completion of a number of ATL PTDs. This flexible
interrupt generation method allows you to choose the optimum reaction time or system efficiency in the USB host stack.

The HcCATLPTDDoneThresholdCount register controls a number of PTDs that must be processed before an interrupt
can be generated. This register can be set to “1” if an interrupt must be generated for every PTD processed.

6.5. Not Acknowledge (NAK)

HcATLPTDDoneThresholdTimeout determines when an interrupt must be generated when the target device returns a
Not Acknowledge (NAK). This register specifies the number of milliseconds of NAKs the Host Controller will get.

6.6. Post-Transfer Processing

Once the PTD is processed, the host software must check CompletionCode to see if there is any error. If
CompletionCode is 0 (no error), 8 (Data Overrun) or 9 (Data Underrun), it will proceed to retrieve data if it is an IN
data stage, or proceed to the next if it is an OUT data stage.

6.7. Example: Sending OUT a Setup Token

One of the basic transfers in the USB device enumeration is to get a device descriptor from the target device. In this
example, a PTD will be constructed and the procedure of using the ISP1362 will be explained in detail.

Note: This in a case in which a PTD generates just one transaction in a Control Transfer.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 29 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
6.7.1. Constructing the PTD

To get a device descriptor from the connected USB device, a “USB Device Request” must be constructed first. Format
of the USB Device Request can be found in USB Specification 2.0 (Chapter 9.3.1). In this case, the 8-bytes request will
be 0x80, 0x06, 0x00, 0x02, 0x00, 0x00, 0x08, 0x00 from byte O to byte 7, respectively. Since the ISP1362 uses 16-bit
access, the four words to be written to the ATL buffer must be 0x0680, 0x0200, 0x0000 and 0x0008. Note that this is
not the PTD, but the PTD payload.

For a payload size of 8 bytes, Table 6-7 shows the bit description of the PTD structure.

Table 6-7: PTD Bit Description

Name Description

TotalBytes[9:0] Must be set to 8; status field to be updated by the Host Controller
MaxPktSize[9:0] Must be set 8 because all control endpoints support at least 8 bytes in a packet
EndpointNumber[3:0] Is 0x00 (control endpoint)

DirToken[1:0] Is 00B (setup)

FunctionAddress[6:0] Is 0x00 because all un-enumerated devices respond to request on address 0
Active Is set to logic 1 to indicate that this field is now active

Toggle Is set to logic 0

Speed Is set to logic 1 for low-speed device, or logic 0 for high-speed device
CompletionCode|[3:0] Status field to be updated by the Host Controller

Last Is not used in the ATL and INT transactions

In this example the target device is a mouse. Therefore, “Speed” must be logic 1 (for low-speed).
The PTD will be 0x00, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00 from byte 0 to byte 7, respectively.

Now that both the PTD and the PTD payload are ready, they will be combined (PTD followed by the PTD payload)
and copied into the ATL buffer. The write_atl() function developed in Section 3 can be used for this purpose.

6.7.2. Activating the PTD

Assuming that the Host Controller is in the operational mode, it must now be informed that data in the ATL buffer is
ready for processing, i.c. the ATL_Active bit in HcBufferStatus must be set to logic 1.

Now that the ATL buffer is active, the block that you copied the PTD to must also be activated. This step involves the
HcATLSkipMap and HcATLLastPTD registers. Once it is activated, the Host Controller will send out the setup token
as specified by the PTD.

6.7.3. Looking at the Result

Once the PTD has been processed, it is then read back from the ATL buffer. You will notice that the fields given in
Table 6-8 have been updated.

Table 6-8: Fields Updated after PTD Processing

Name Modification

Active Set to logic 0 on completion
CompletionCode[3:0] | Reflects completion status
ActualBytes[9:0] Actual amount of data transferred
Toggle Will be toggled by the Host Controller

Example: The PTD header before and after the transaction is 0x00, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00 from byte
0 to byte 7, respectively.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 30 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Table 6-9: Changes after the Transaction

Before After Remarks

0x00 0x08 First 8 bits of ActualBytes

0x08 0x0C CompletionCode[7:4], Active[3], Toggle[2], Last 2 bits of ActualBytes
0x08 0x08 First 8 bits of MaxPktSize

0x08 0x08 EndpointNumber|7:4], Last[3], Speed|2], Last 2 bits of MaxPktSize
0x08 0x08 First 8 bits of TotalBytes

0x00 0x00 Special Bits[7:4], DirToken[3:2], Last 2 bits of TotalBytes

0x00 0x00 Special Bit[7], FunctionAddress[6:0]

0x00 0x00 Special Bits|7:0]

Note: The fields in blue changes after the transaction.

For actual meaning of the CompletionCode field, refer to the ISP1362 datasheet.

6.8. Error Handling

The Host Controller hardwate reports any error occurred during execution of a PTD via the CompletionCode[3:0] field
in the PTD. There are a total of 11 possible errors that can occur. Of the 11 possible errors, all except one error—data
underrun error—are fatal errors that cause the USB transaction to fail. Table 6-10 lists the errors and the causes for the
errors in the case of an OUT transaction and the treatment of the errors by the Host Controller in the case of an IN
transaction.

Table 6-10: USB Transaction Error Codes

Fatal Errors Error Code | IN Token OUT Token

ERROR_CRC, 01 No ACK sent Not applicable

ERROR_Bitstuffing 02 No ACK sent Not applicable

ERROR_DatatTogglingMismatch | 03 ACK sent Not applicable

ERROR_Stall 04 No ACK sent Host received Stall from device

ERROR_DeviceNotResponding 05 No ACK sent | Host did not received a hand shake reply
within 18Bit time, or bad SYNC pulse.

ERROR_PIDCheckFailure 06 No ACK sent | Not applicable

ERROR_UnExpectedPID 07 No ACK sent | Corrupted ACK, STALL, or NAK

ERROR_DataOverRun 08 NAK sent Not applicable

Non-Fatal Error (warning)

ERROR_DataUnderRun [09 | ACK send | Not applicable

For all errors, the data toggle bit is still toggled and updated by the Host Controller hardware. The HCD must take the
state of the data toggle bit if and when it retries the failed PTD. This is because the data toggle bit is changed in spite of
an errof.

7. Case Study: USB Mouse

In this chapter, a complete program that enables the ISP1362 DOS evaluation kit to enumerate or use a standard USB
mouse is presented. If you wish to get familiarized with the basic USB host programming technique, you can use this as
a reference. The code is written entirely in C for IBM PC, using Turbo C ver. 3.0 and all header files are included. No
special operating system support is required for this, and it will be fairly easy to port this program to any other platform.

The steps involved in this program are:

1. Configuring the ISP1362

2. Setting the Host Controller to the operational state
3. Enabling the port on detecting a connection
4

Assigning an address to the connected device

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 31 0f 99

ISP1362 Embedded Programming Guide Rev. 0.9

5. Getting the required descriptors
6. Setting configuration
7. Polling for mouse movement data.

The method given here is as simple as possible. It might not be the optimal way to enumerate a general USB device but
it does illustrate the way in which the ISP1362 Host Controller can be used.

Four important functions that are widely used here are:

w16() Witing to a 16-bit Host Controller register
r16() Reading froma 16-bit Host Controller register
w32() Witing to a 32-bit Host Controller register
r32() Reading froma 32-bit Host Controller register
7.1.1. Configuring the ISP1362

First, the following three buffers must be configured to suitable sizes:
w16(HcATLBuUf f er Si ze, 1536) ;

w16(Hcl NTLBuf f er Si ze, 1024);

w1l6(Hcl STLBuf f er Si ze, 512);

As this program will not use any interrupts, all interrupts are disabled:

WL6(HcuPI nt er r upt Enabl e, 0);
w32(Hcl nt errupt Di sabl e, O0xFFFFFFFF) ;

Note that disabling the interrupt does not stop the corresponding bit in the Interrupt register to be set when the event
occurs. Disabling the interrupt stops the interrupt pin from being asserted when the event occurs.

This program uses the bit in HecpPInterrupt to check for completion of transfer. It does not require the actual interrupt
signal from the chip to activate an ISR.

Setting up the controls of the ATL buffer:

W32(HcATLSKi p, OxFFFF FFFE) /1 Disable all but the first ATL PTD

wW32(HcATLLast , 1) /1 First PTDis the |ast

w16(HCATLBI kSi ze, 64); /1 Block size of 64 bytes

WL6(HCATLThr sCnt , 1) /'l Generates interrupt for every PTD Done
w16(HCATLTi neCut , 5); /1 5 ms before giving up on NAKs

Disable processing of all buffers:

wl6(HcBuf f er Status, 0);

7.1.2. Setting the Host Controller to the Operational State and Enabling the Port

In this step, two functions are used: set_operational() (see Figure 7-1) and enable_port() (see Figure 7-2). As the name
suggests, the enable_port() function enables a port if a USB device is found to be connected to it. The set_operational
function sets the Host Controller to the operational mode. Once in the operational mode, the bits in the HcBufferStatus
register can request the Host Controller to start processing the data in buffers.

voi d set_operational (voi d)

{
WL6(HcHWCE g , 0x002D);
W32(HcFm tv , O0x25002EDF) ;
w32(HcCont r ol , 0x00000680) ;
}

Figure 7-1: set_operational() Subroutine

voi d enabl e_port (void)
unsi gned | ong dat 32;

w32(HcRhP1, 0x00000102) ;
w32(HcRhP2, 0x00000102) ;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 32 0f99

ISP1362 Embedded Programming Guide Rev. 0.9

W32(HcRhA, 0x05000B01) ;
w32(HcRhB, 0x00000000) :

w32(HcRhP1, 0x00000102) ;
w32(HcRhP2, 0x00000102) ;

dat 32=r 32(HCRhP2) ;
i f((dat32&0x00000001)==1)
{

set _port_speed(2,0);

i f (((dat 32) & 0x00000200)) ! =0)
set _port_speed(2,1);
}}
dat 32=r 32(HCRhP1) ;
i f((dat32&0x00000001) ==1)

set _port_speed(1,0);
i f(((dat32)&(0x00000200))!=0)

set _port_speed(1,1);

Figure 7-2: enable_port() Subroutine

7.1.3. Some Backgrounds

Before you proceed to the next step, which is assigning an address, you will learn about the two basic routines—
make_ptd() (see Figure 7-3) and send_control() (see Figure 7-4)—used in this section to construct and process a PTD.

The make_ptd() routine is used to construct a data structure that conforms to the PTD. To call this function, the calling
function must provide the following parameters:

*rptr a pointer pointing to the array in which resultant PTD must be stored
token direction token, can be IN, OUT or setup

ep the target endpoint

max maximum packet size

tog toggle bit

addr function address

port which port is the target device connected to.

voi d make_ptd(int *rptr,char token,char ep,int nmax, char tog,char addr, char port)

{
pt d2send. c_code=0x0F;
pt d2send. acti ve_bit =1;
pt d2send. t oggl e=t og;
pt d2send. act ual _si ze=0;
pt d2send. endpoi nt =ep;
pt d2send. | ast _pt d=0;

pt d2send. speed=port _speed;
I f(port==1) {ptd2send. speed=port lspeed;}
i f(port==2) {ptd2send. speed=port 2speed;}

pt d2send. max_si ze=nax;
pt d2send. t ot al _si ze=nmx;
pt d2send. pi d= t oken;

pt d2send. f or mat =0;

pt d2send. f ne0;

pt d2send. f unc_addr =addr ;

*(rptr+0)= (pt d2send. c_code &0x0000) <<12
| (ptd2send. active_bit &0x0001) <<11

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Rev. 0.9

33 0f 99

| (pt d2send. t oggl e &0x0001) <<10

| (ptd2send. actual _si ze &XxO03FF) ;
*(rptr+1l)= (ptd2send. endpoi nt &0x000F) <<12

| (ptd2send. | ast _ptd &0x0001) <<11

| (pt d2send. speed &0x0001) <<10

| (pt d2send. max_si ze &0Ox03FF)
*(rptr+2)= (0x0000 &0x000F) <<12

| (ptd2send. pi d &0x0003) <<10

| (pt d2send. tot al _si ze &OX03FF) ;
*(rptr+3)= (ptd2send.fm &0OX00FF) <<8

| (pt d2send. f or mat &0x0001) <<7

| (ptd2send. f unc_addr &0x007F)

Figure 7-3: make_ptd() Subroutine

The send_control() routine copies the PTD and payload (if any) into the ATL buffer and activates the buffer. It then
waits for it to be completed. Once the PTD has been processed (i.e. the transaction is completed), the routine terminates

and returns a number greater than zero together with the processed PTD to the calling function.

If the target device NAKSs continuously, this routine will return a “0” because of a time out in the polling loop.

unsigned int send_control (unsigned int *a_ptr,unsigned int *r_ptr)

unsigned int cnt=retry;
unsigned int active_bit;
unsi gned i nt abuf[128];
unsi gned int Uplnt;
unsi gned i nt ccode;
unsi gned int tinmeout=9;
do

cnt=retry,;

wite atl(a_ptr,8); [// Wite 16 bytes
wl6(HcUpl nt, 0x100) ;

r 32(HcATLDone) ; /! Read and cl ear done map, enables ATL interrupt

w16(HcBuf St at us, 0x08) ;
do
{
Upl nt=r 16(HcUpl nt) ;
if((Uplnt&x100)!=0) {active_bit=0;}
el se {active_bit=1;}

pol | (50);
cnt--;

}
whi | e((cnt!=0) &% (active_bit!=0));
w16(HcBuf St at us, 0x00) ;
read_at! (r_ptr, 72);
ccode=((*r_ptr) & 0xF000)) >>12;
timeout--;
}
while((ccode!=0) && (tineout!=0));

return(cnt);

Figure 7-4: send_control() Subroutine

This routine polls the ATT_IRQ bit in the HecpPInterrupt register (see

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

34 of 99

Rev. 0.9

Table 5-4) for the status of the PTD. Since there is only one PTD in the ATL buffer, you can be sure that a bit set at
ATL_IRQ indicates that the PTD is done. If there is more than one PTD in the buffer, HCATLPTDDoneMap is used
to determine which PTD is done. Note that even though there is only one PTD in the ATL buffer,
HcATLPTDDoneMap must be read (by the Host Controller Driver) and cleared (by the hardware).

Enumeration:

Figure 7-5 shows the USB traffic in the enumeration stage and some mouse movement data transfers.

Transfer |

0 1 GET | DEWICE descriptor

24,926 ms

Transfer |0

1 5) SET 14,995 ms
Tramsfer |0 wialie | ERIE

Z =l GET DEYICE descriptor || 5999 ms
Transfer |

] = GET 999,833 ps
Transfer |0

4 =i GET COMFIGIRATION descriptor || 4,992 ms
Tramsfer |0

=] GET CONFIGLIRATION type DxUUUU 4 descriptors || 76,988 ms
Transfer | . bBRequest whialue

5] & GET 0 GET DESCRIPTOR DEVICE tg,pr OXDDDD DEVICE descriptor || 40,933 ms
Transfer |1 ENDF wivalue

7 5 GET 0 CONFIGURATION type |0:00 0 4 descriptors || 49,992 ms
Transfer |0

5 S| GET 999,833 Y=
Transfer |

= GET 4 descriptors || 53.991 ms
Tramsfer |0

10 S| SET 1.000 ms
Transfer |°

11 =l sET 2,999 ms
Transfer

12 SET
Transter |°

HEG GET HID Report descriptor | |870.862 ms
Transfer |°

14 = Ji 0,023 sec
Transfer |0

15 =1 N 7,999 ms
Tramsfer |0 Bytes Transferred

16 = 1 G71.862 m=

Figure 7-5: Enumeration Capture

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

7.1.4.

First Contact

Rev. 0.9

35 0f 99

Assuming that a mouse (and only one mouse) is connected to the ISP1362, after the set_operational() and enable_port()
routines are run. This USB mouse must be connected and in the powered mode. In the very first contact with the USB

mouse, you do a partial Get_Descriptor (device) to find out the MaxPktSize of the device. The traffic flow of the partial
Get_Descriptor is shown in Figure 7-6.

Transfer

Il Control
0 5 GET 1]

ADDR [=fn:A0E

0 GET_DESCRIPTOR |DEVICE type | 0x0000

w¥alue

wlndex

DEVYICE descriptor || 0 ns

SETUP | ADDR |S§[e

0)(B4|0|0

TR |

[it wvalue
D-=H|5|D|GET_DESCRIPTOR | DEVICE type | 0x0000

windex| wlLength
64

ACK

0x4E

Packet # Sync
106 |=|| noooooo1
Packet # Sync
107 00000001 | OxC3
Packet # Sync | ACK p
108 |=|| ooooooo1 | ox4B [3.00([1331
' IN ADDR [S)[2 ACK
S| ox9e | 0 o |[1]1200100100000008 || oxae
Packet # || Sync
110 00000001
Packet # ||£ Sync
111 |=|| noooooo1
Packet # Sync ACK
112 00000001 | Ox4B |3.00|[1330
Ul out FBCEENDP ACK
| oxe7 | O 0 |1 0x4B
Packet # || Sync ouT e BENDP
115 00000001 | Ox87 | ©
Packet # || ST09 DATAL DATA
116 00000001 | OxD2
Packet # || Sync ACK P
117 |=|| ooooooo1 | ox4B [3.00(|1396

Figure 7-6: Get_Descriptor Capture

Three PTDs are required for a control transfer: Setup, Data and Status.

Setup Stage:

Note that the device is not assigned an address yet, and it will respond to any USB traffic directed to function address 0.
Since nothing, except that it is low speed as detected in HcPortStatus[N], is known about the USB mouse at this stage,
the parameters in Table 7-1 are chosen.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Table 7-1: Values of Fields in the PTD

36 of 99

Rev. 0.9

Name Values Chosen
FunctionAddress[6:0] 0
TotalBytes[9:0] 8 bytes
DirToken[1:0] setup
EndpointNumber[3:0] 0

Speed low speed

For the device descriptor, the payload must be 0x0680, 0x0100, 0x0000, 0x8. Details can be found in the USB
Specification Chapter 9.

A code example of the Setup stage is given in Figure 7-7.

make_pt d(cbuf, SETUP, 0, 8, 0, 0, port); /1 Makes the PTD
array_app(cbuf +4, dev_req, 4) ; /1 Adds payl oad to the PTD
tout =send_control (cbuf, rbuf); /1 Sends out the PTD

ccode| =(r buf [0] &0xF000) >>12; /| Checks the conpletion code

Figure 7-7: Code Example of the Setup Stage

The code given in Figure 7-7 will produce the “Transaction 1 of Transfer 0” in the traffic capture as shown in Figure
7-6. You can see that a single PTD written into the ATL buffer has produced three USB data packets (106, 107, 108).
This is done by the ISP1362 Host Controller hardware, without any CPU intervention.

Data Stage:

In this stage, the Host Controller expects 8 bytes of data from the USB mouse that it has just requested in the Setup
stage. Therefore, a data IN is sent out. A pseudo code of the Data stage is given in Figure 7-8.

/1l Makes the PTD
/1 Sends out the PTD
/'l Checks the conpletion code

make_ptd(cbuf,INO0,8,0,0,port);
t out =send_control (cbuf, rbuf);
ccode| =(r buf [0] &xF000) >>12;

Figure 7-8: Code Example of the Data Stage

Again, a single PTD produced three data packets on the USB line. 8 bytes of data are received from the USB mouse:
0x0112, 0x0110, 0x0000, 0x0800.

We can deduce from this that it is a USB 1.1 device, with a MaxPktSize of 8 bytes.

Status Stage:

For a Setup transfer with data IN, the Host Controller must conclude the transaction with an empty data OUT. Figure
7-9 shows a pseudo code of the Status stage.

/ Makes the PTD
/ Sends out the PTD
| Checks the conpl etion code

make_pt d(cbuf, QUT, 0,0, 0, O, port);
tout =send_control (cbuf, rbuf);

/

/

ccode| =(r buf [0] &xF000) >>12; /
Figure 7-9: Code Example of the Status Stage

7.1.5. Reset and SetAddress

Writing a logic 1 to the bit 4 of the HcPortStatus[N] register resets the corresponding port. This is usually done in the
beginning of the enumeration, just after the detection of a connection on the port. After the reset, the Host Controller
must allocate an available address to the newly connected USB device. The routine given in Figure 7-10 can be used for
such a purpose.

unsi gned int set_address(int old_addr, int new addr, int port)

unsi gned int cbuf[128];

unsi gned int rbuf[128];

unsi gned i nt uni _req[4] ={0x0500, 0x0000, 0x0000, 0x0000} ;
unsi gned i nt mycode=0;

unsigned int tcnt;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

37 of 99

Rev. 0.9

ISP1362 Embedded Programming Guide

uni _req[1] =new_addr ;

wl6(HcUpl nt, 0x100) ;

r 32(HcATLDone) ;

make_pt d(cbuf, SETUP, 0, 8, 0, ol d_addr, port);
array_app(chbuf +4, uni _req, 4);

tcnt =send_control (cbuf, rbuf);

mycode=(*r buf &xF000) >>12;

i f(tcnt==0)

nycode| =0xF000;
}

i f (mycode==0)
/1 Send out data I N packet
make_ptd(cbuf,IN, 0,0, 1, ol d_addr, port);
tcnt =send_control (cbuf, rbuf);
mycode=(*r buf &xF000) >>12;
i f(tcnt==0)
{
mycode| =0xF000;
}
r 32(HcATLDone) ;

return(mcode);

/1 SETUP stage

/1 tcnt=0 nmeans tine out

/1 Status stage

Figure 7-10: set_address () Subroutine

Note: Some operating systems perform a partial Get_Descriptor before resetting the device, whereas some operating
systems reset the device on connection and start assigning an address thereafter.

The set_address() routine has only two stages: Setup and Status. If an error is encountered in the Setup stage, it will not
proceed to the Status stage. Figure 7-11 shows the capture of the set_address() routine.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 38 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Transfer || [Neei | BEXw e - M ENDP
1 S| SET 0 0

SETUP ADDR [\l T R | bRequest wValue | Rl | ACK
0xB4 | 0 | 0 ||H>D|5|D|SET_ADDRESS |New address 3|0x0000) 0 0x4B
Packet # | °| M

192 [=| 00000001 | OxB4

Packet # ||| Sync | DATAO
193 |- 00000001 | oxc3

Packet # ||| Syme | ACK

194 [5]| 00000001 | Ox4B [3.00|[1330
IN ADDR [S)[o3 ACK
X6 | 0 | 0 |1 0x4B

Packet # []| Sync
196 |-|[00000001 | 0x06 | 0 | 0 |o0x08 [3.00) 5
Packet # | °|| Sync

197 || oooonool

Packet # ||| Sync ACK
198 |5|| 00000001 | ox4B |3.00(|1394

Figure 7-11: set_address() Capture

7.2. get_control() Function

After assigning an address to the USB device, you are now ready to proceed to find out more about what type of device
is connected. You will get several descriptors from the USB device and from these descriptors you can deduce if a USB
mouse is indeed connected, and then proceed to use the mouse, if it is connected.

You will request the following descriptors:

* Device Descriptor

* Configuration Descriptor

* Endpoint Descriptor

¢ String Descriptor

* Human Interface Device (HID) Descriptor.

The first problem in the above-mentioned requests is that you do not know the size of the descriptor until you receive it.
However, it is required to include the correct value of data size in the TotalBytes field in the PTD. Therefore, to set the
correct value before the transaction, you must request for a partial descriptor by requesting for just 8 bytes of data. The
size of the descriptor is in these 8 bytes of data and you will be able to use the correct data size in the next transfer. The
flowchart of the get_control() function is shown in Figure 7-12.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Rev. 0.9

Get Descriptor
(Total Size = 8)

YES —

ABORT
(CODE = x1xx)

'

NO

v

Determine Actual Data Size

A

Get Descriptor
(TotalSize = Actual Data Size)

YES ——m

ABORT
(CODE = x2xx)

*

NO

Data Out (0 bytes)

YES —

ABORT
(CODE = x3xx)

*

NO
v

RETURN

Figure 7-12: get_control() Flowchart

After getting the HID descriptor, the program checks to see if the device is indeed a mouse. Once the identity is
confirmed, the program polls the mouse every 8 ms by using the following function.

39 of 99

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 40 of 99
ISP1362 Embedded Programming Guide Rev. 0.9
unsi gned int get_control (unsigned int
*rptr,unsigned int addr, char i f(control _type=="C)
control _type,unsigned int extra,int port)
DesSi ze=r buf [5] ;

unsi gned int cbhuf[128];

unsigned int rbuf[128];

unsi gned int cnt=0, | cnt=0; if(control _type!="D)

unsi gned int toggle_cnt=0; {

unsi gned i nt word_si ze; MaxSi ze=addr _i nfo(addr,' R ,' M, MaxSi ze) ;
unsi gned i nt DesSize, MaxSi ze, Renai nSi ze

unsigned int LocalLimt;

unsi gned i nt dev_req[4] ={0x0680, 0x0100
, 0x0000, 0x8};
unsi gned int cfg_req[4] ={0x0680, 0x0200
, 0x0000, 0x8};
unsi gned i nt
, 0x0000, 0x8};
unsi gned int int_req[4]={0x0680, 0x0400
, 0x0000, 0x8};
unsi gned i nt end_req[4] ={0x0680, 0x0500
, 0x0000, 0x8};
unsi gned int hid_req[4] ={0x0681, 0x2100
, 0x0000, 0x8};

tr_req[4] ={0x0680, 0x0300

unsi gned i nt ccode=0
unsi gned int stage=1
unsigned int tout; // Tineout indicator

I/l Stage 1: Send out first setup packet
make_pt d(cbuf, SETUP, 0, 8, 0, addr, port);
if(control _type=="D)
{array_app(cbuf+4,dev_req,4);}
if(control _type=="C
{array_app(cbuf +4, cfg req, 4);}
if(control _type=="S
{array_app(cbuf +4, str req, 4);}
if(control _type==
{array_app(cbuf +4,int_req, 4);}
if(control _type=="FE)
{array_app(cbuf +4, end_req, 4);}
if(control _type==
{array_app(cbuf +4, hid_req, 4);}

v|\./

if(control _type=="S")

{

cbuf [5] =cbuf[5] | extra; /1 This is for
string processing

tout =send_control (cbuf, rbuf);

i f (tout==0) {ccode|=0xF000;} /1 Indicates
timeout in transaction

i f (ccode==0)

toggl e_cnt ++

make_ptd(cbuf,IN, O, 8, toggl e_cnt %, addr, port)
’ t out =send_control (cbuf, rbuf);
ccode| (rbuf[O]&OxFOOO)>>12

i f(ccode==0x09) // Descriptor size is
I ess than 8

ccode=0
i f (tout==0) {ccode|=0xFO000;} /1
I ndicates tinmeout in transaction
if(control _type!="C)
{
DesSi ze=((rbuf [4] &0x00FF)) ;
}

if(control _type=="D)

{
MaxSi ze=(r buf [7] &0xFF00) >>8
i f (MaxSi ze<8) {MaxSi ze==8;}

addr _i nfo(addr,'W,"' M, MaxSi ze) ;

if(control _type=="H)

DesSi ze=(r buf [7] &0xFF00) >>8
i f(DesSi ze<8) {DesSize==8;}

/1 printf("\nDesSize = %d MaxSi ze =
92d", DesSi ze, MaxSi ze) ;
}

i f (ccode==0)
/1 Send out data OUT packet
nake _ptd(cbuf, QUT, 0, O, t oggl e_cnt %2, addr, port

"tout =send _control (cbuf, rbuf);
i f(tout==0) {ccode| OxFOOO;} /1
I ndi cates Tineout in transaction

ccode| =(r buf [0] &xF000) >>12
;/ Stage 1: END

i f (ccode==0)

st age=2

hi d_req[1] =0x2200; // Change H D req into
H D report descriptor

/] Stage 2
make_pt d(cbuf, SETUP, 0, 8, 0, addr, port);
if(control _type=="D)
{array_app(cbuf +4, dev_req, 4);}
if(control _type=="C)
{array_app(cbuf +4, cfg req, 4);}
if(control type=="'S
{array_app(cbuf +4,str_req, 4);}
if(control _type=='1")
{array_app(cbuf+4,int_req, 4);}
if(control _type=="F
{array_app(cbuf +4, end_req, 4);}
i f(control _type=='H)
{array_app(cbuf +4, hid_req, 4);}

if(control _type=="S")
{
cbuf [5] =cbuf[5] | extra
cbuf [7] =DesSi ze
tout =send_control (cbuf, rbuf);
i f(tout==0) {ccode|=0xFO000; } /1
Indicates Tineout in transaction

wor d_si ze=(DesSi ze+1) >>1

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Remai nSi ze=DesSi ze;

t oggl e_cnt =0;
cnt =0;
do

{
/1 Send out data IN packet
toggl e_cnt ++;

/1 The last transaction where renaining
data size < max pac size
i f (Remai nSi ze<MaxSi ze)

make_ptd(cbuf, I N, 0, Remai nSi ze, t oggl e_

cnt %2, addr, port);
}
/1 Nor nal
el se
make_ptd(cbuf, I N, O, MaxSi ze, t oggl e_cnt
9%, addr, port);
}

t out =send_control (cbuf, rbuf);
i f (tout==0) {ccode|=0xF000; } /1
I ndicates Tineout in transaction
ccode| =(rbuf [0] &0xF000) >>12;
Remai nSi ze=Renmai nSi ze- MaxSi ze;
Local Li m t =MaxSi ze>>1;
if(ccode==0)// Data In is successful

I cnt =0;
do

{

/1 Copy the data located right after
the 8 bytes PTD

*(rptr+cnt)=rbuf[4+l cnt];

cnt ++;
| cnt ++;

\}/\hile(lcnt<(LocaI Limt));

whi | e((cnt <wor d_si ze) &&(ccode==0));
/1 Stage 2: END

}

i f (ccode==0)

st age=3;

/1 Stage 3: Send out DATA QUT packet

make_pt d(cbuf, QUT, 0, 0, t oggl e_cnt %2, addr, port

send_control (cbuf, rbuf);

ccode=(rbuf [0] &0xF000) >>12;
/'l Stage 3: END

return((ccode)| (stage<<8));

/1 Byte O indicates the error code

/1 Byte 2 indicates at which stage the error
was encount er ed

/!l Byte 3 is Fif tinme-out, else 0

Rev. 0.9

41 of 99

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 42 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
7.2.1. Getting Descriptors

In this section, the get_control() function is used to get a device descriptor from the mouse. In the code given in Figure
7-13, “status” is a variable returned by a subroutine that assigns address to devices attached to the ISP1362 host by using
the set_address function.

Bit Structure of the “status” variable:
Bit1: Port 1 active
Bit8: Port 2 active.

This routine checks the status of port 1. If port 1 has a device attached and an address (In this case, address is 1 for port
1 and 2 for port 2) has been successfully assigned to it, status &0x0100 becomes TRUE and the routine will be run.

The variable “mycode” provides the result of the get_control() function. The lowest nibble (bits 3-0) shows the
CompletionCode of the last executed transaction. The second highest nibble (bits 11-8) shows the last executed stage.
For a completely successful get_control(), the value of “mycode” must be 0x0300, which means it has completed all the
three stages without any error.

Two pieces of information—iManufacturer and iProduct—are extracted from the returned descriptor. These are
required later in the HID request to obtain the name of the manufacturer and the name of product for this particular
device, respectively. The iManufacturer and iProduct values are stored in a routine named “addr_info” that acts as a
static data bank.

Next, the get_control() function is used to get a HID descriptor from the mouse. It then checks for the identity of the
device by reading the second word of the descriptor. It must be 0x0209, if the connected device is a mouse.

if((status&0x0100)!=0) // Port 1 active

/'l Check port 1 for nouse
printf("\nGetting device descriptor for device at port 1... ");

mycode=get _control (rbuf,1,'D ,0,1);
printf("%4X", mycode);

i f (mycode==0x0300)

i Manuf acturer = rbuf[7] &xFF;
i Product = (rbuf[7] &xFF00) >>8;

addr _info(1,'W,"'O,iMnufacturer);
addr _info(1,'W,"' P ,iProduct);

mycode=get _control (rbuf,1,'H ,addr_info(1,'R ,"P,0),1); // Getting H D descriptor
if(*(rbuf+1)==0x0209)
printf("\nMbuse Detected @ort1!!! ");

mouse01=1,;

Figure 7-13: Code Example for Checking whether a Mouse is Connected

7.3. set_config Function

After confirming that the device connected is indeed a mouse, the host must now choose a configuration on the device.
The set_config() function (see Figure 7-14) allows the host to set a configuration on the mouse and once this is done,
the mouse is ready to transmit movement data.

voi d set_config(int addr, int config)

unsi gned int cbuf[128];

unsi gned int rbuf[128];

unsi gned int uni_req[4] ={0x0900, 0x0000, 0x0000, 0x0000} ;
unsi gned int tcnt;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 43 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

unsi gned int mycode=0;
uni _req[1] =confi g;
wl6(HcUpl nt, 0x100) ;

r 32(HcATLDone) ;
r32(HcATLDone) ;

make_pt d(cbuf, SETUP, 0, 8, 0, addr, addr) ;
array_app(cbuf +4, uni _req, 4);
tcnt=send_control (cbuf, rbuf);

if(tcnt==0) { mycode| =0xF000; }
nycode=nycode | (*rbuf &xF000)>>12;

i f (mycode==0)

/'l Send out DATA | N packet
make_ptd(cbuf,IN, 0,0, 1, addr, addr) ;
tcnt=send_control (cbuf, rbuf);
if(tcnt==0) { mycode| =0xF000; }
nycode=nycode | (*rbuf &xF000) >>12;

r 32(HcATLDone) ;

r 32(HcATLDone) ;

return(mcode);

Figure 7-14: set_config() Function

To call set_config(), the code given in Figure 7-15 must be used.

mycode=set _config(l,1);
printf("\nSetting config of device 1 to config 1... %94X", nycode);

i f (mycode==0)

pl ay_nouse(1);

Figure 7-15: Code for Calling the set_config() Function

If the set_control() function returns a “0”, it means the execution is successful and you can now proceed to get the
movement data from the mouse.

Getting the Mouse Movement Data

Mouse movement data can be obtained by sending a Dataln to the mouse endpoint using an Interrupt transfer. This is
accomplished using the make_int_ptd() and send_int() functions, which are equivalent to make_ptd() and send_control()
used earlier.

The 4 bytes (2 words) of data that the mouse returned follow this format:

Word[0], Upper Byte: signed 8-bit integer for X-direction movement

Word[1], Lower Byte: signed 8-bit integer for Y-direction movement
Word[0], Bit 0: left button pressed

Word[0], Bit 1: right button pressed

Word[0], Bit 2: middle button pressed.

A snapshot consisting of two USB mouse movement data transfer is given in Figure 7-16.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 44 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
Transfer Interrupt ADDR |=Sj[&2
22 I 3 1 4 ons
IN ADDR =3y ACK
0X96 3 1 ([of00 0907 00 || oxae
Packet # Sync IN ADDR [Sye:8 CRES EOP
14228 Q0000001 Ox96
Packet # Sync DATAD
14229 Q0000001 OxC3
Packet # Sync ACK
14230 Q0000001 Ox4B |3.00(/1361
Transfer Interrupt ADDR [S§[m]5
23 M 3 1 4 0Ons
In ADDR [=[mlH ACK
0x06 3 1 [{1]00 06 0300 || oxam
Packet # Sync IN
14234 Q0000001 Ox05 3 1 Ox07 |3.00]| 5
Packet # Sync DATA1
14240 00000001 [oxpz |00 06 03 00 |oxFesa|z.7s|| 7
Packet # Sync ACK
14241 00000001 Ox4B |3.00(||1361

Figure 7-16: Snapshot of the Mouse Movement Data on the USB Bus

8. Advanced Feature |: Multi-frame Buffering of the ISO
Transfer

An isochronous (ISO) transfer is a periodic, fixed-length data stream that is normally used for audio and video data. ISO
transfer requires timely delivery and it tolerates occasionally missed data. ISO transfer requires no acknowledgement.
The sender does not know about the success of the transfer and therefore, it will never be retried.

One major difficulty in using USB to deliver ISO data stream is the stringent requirement of timely delivery. A typical
44.1 kHz stereo 16-bit USB speaker requires 44.1 x 2 x 2 = 176.4 bytes of data to be delivered every millisecond. Failure
in meeting this time limit results in distortion of video or audio. However, many CPUs in embedded system cannot meet
this 1 ms time limit either because of the scheduling of operating system or because the CPU is busy handling other time
critical applications.

The ISP1362 is designed keeping this problem in mind. The “Multi-frame Buffering” mechanism (patent pending)
allows the Host Controller Driver to update the ISO buffer for a relatively longer time period (up to 15 ms) and yet
deliver data to the device at a regular 1 ms interval. This chapter explains this very powerful feature of the ISP1362.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

8.1.

45 of 99

Rev. 0.9

Configuration of the ISO Buffer

The ISP1362 has a total of 4096 bytes of buffer memory. In a typical operation scenario with a mixture of the bulk,
isochronous and interrupt traffic, it is recommended that you set the ISO buffer at 1024 bytes each (i.e. 2048 bytes in

total for ISO).

8.2,

ISO PTD Format

The PTD structure for an ISO transfer is given in Figure 8-1.

Table 8-1: ISO PTD Structure: Bit Allocation

Bytes 1, 3, 5,7 Bytes 0,2,4,6
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit 2 Bitl [Bit0 | Bit7 [Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
CompletionCode Active | Toggle ActualBytes
EndpointNumber Last Speed MaxPktSize
B57 | B5-6 | B55 | B5-4 DirToken TotalBytes
StartingFrame R FunctionAddress

[1] R—denotes reserved.

Table 8-2: ISO PTD Structure: Bit Description

Name Description

ActualBytes[9:0] Actual amount of data transferred at the moment

MaxPktSize[9:0] Maximum amount of data per packet

TotalBytes[9:0] Total amount of data to be transferred

CompletionCode[3:0] | Reports success or errofs in transaction

EndpointNumber[3:0] | Target endpoint number

DirToken[1:0] Specifies IN, OUT or setup token

FunctionAddress[6:0] | Address of target device

Active Set to logic 1 by firmware to enable the execution of transactions by the HC. When the transaction
associated with this descriptor is completed, the HC sets this bit to logic 0.

Toggle This bit is used to generate or compare the data PID value (DATAO or DATA1) for IN and OUT
transactions.

Speed Is set to logic 1 for low-speed device, or logic 0 for high-speed device

Last This indicates that it is the last PTD of a list {TL or ATL).

StartingFrame This field is used specifically for the ISO transfer. It determines when the Host Controller will
process the PTD.

8.3. Multi-Frame Buffering Control Registers

The registers given in Table 8-3 are involved in the control of the ISP1362 multi-frame buffering mechanism.

Table 8-3: Registers Related to the ISO Transfer

Register Remarks

HcISTLLength ISO buffer size
HcISTLToggleRate Controls the ISO buffer toggle rate
HcBufferStatus Bits 0, 1, 5, 6, 8 and 9
HcpPlnterrupt Bits 1 and 2.

HcISTLOBufferPort Data access

HcISTL1BufferPort Data access

8.3.1. Multi-Frame Buffering Mechanism

Once set in the operational mode, the ISP1362 Host Controller checks the bits 0 (ISTLOBufferFull) and 1
(ISTL1BufferFull) in the HcBufferStatus register. The Host Controller Driver sets these two bits once it has completed

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 46 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

writing ISO PTD in the ISO buffer. The Host Controller will start processing the ISO buffer only when
ISTLOBufferFull is set to logic 1.

After detecting that ISTLOBufferFull is logic 1, the Host Controller resets the internal toggle counter to 0 and scans the
ISTLO buffer to check if any of the PTDs has a frame number that matches the current frame number. In case there is a
match, the PTD will be processed and sent out. After sending, the Active bit in the PTD is set to logic 0.

The Host Controller will continue processing the ISTLO buffer for a number of milliseconds, depending on the value in
the HcISTLToggleRate register. The Host Controller keeps track of this by incrementing the internal toggle counter by
one at every SOF. When the internal toggle counter reaches HcISTLToggleRate, the Host Controller toggles to the
ISTL1 buffer, if ISTL1BufferFull is set to logic 1.

Table 8-4 is an example of multi-frame buffering, with HcISTLToggleRate = 3. At frame number < 3, the ISTLO buffer
is filled with three PTDs with the starting frame set to 3, 4 and 5. The ISTL1 buffer is filled with three PTDs with the
starting frame set to 6, 7 and 8. ISTLOBufferFull and ISTL1BufferFull are set to logic 1, when the frame number is 2.

Table 8-4: Isochronous Buffering Mechanism

Frame Number ISTLO ISTL1 Action
3 Send the PTD with SF =3 | Idle, time for refilling Nothing because both buffers are filled
4 Send the PTD with SF = 4 —
5 Send the PTD with SF =5 —
6 Idle, time for refilling Send the PTD with SF = 6 | ISTLOBufferFull is set to logic 0 by the HCD
7 Send the PTD withSF =7 | —
8 Send the PTD with SF = 8 | Must finish refilling ISTL.O (SF =9, 10, 11)
9 Send the PTD with SF =9 | Idle, time for refilling ISTL1BufferFull is set to logic 0 by the HCD
10 Send the PTD with SF = 10 —
11 Send the PTD with SF = 11 Must finish refilling ISTL1 (SF = 12, 13, 14)

By using toggling rate of 15 ms (maximum), the Host Controller Driver will need to refill the ISO buffer at a slow rate
of 15 ms period. This can be easily achieved even in relatively slow embedded systems.

8.4. Trdffic, Host Controller and CPU Activities

Figure 8-1 shows the typical traffic, Host Controller and CPU activities when Toggle is 3 isochronous transfer.

Refill ISTL1 with PTD[33], PTD|[34], PTD[35] Refill ISTL1 with PTD[33], PTD[34], PTD|[35]
and set ISTL1 Full and set ISTL1 Full

A N\ A N\

N V N V

P‘I‘Dr g:lsé,ﬁ)“a‘fh v fiD[ﬁ]S)’l‘I 0 Refill ISTLO with PTD[33], PTD[34], PTD[33] Refill ISTLO with PTD[33], PTD[34], PTD[35]
B34, } 31]1 and set ISt and set ISTLO Full and set ISTLO Full
“ul

o N y N y N

Al v Al v Al v
HC Sets HC Sets HC Sets HC Sets
ISTLO ISTL1 ISTLO ISTLL
DONE DONE DONE DONE

27 28 29 30 31 32 33 34 35 36 37 38

FM =27 ‘ FM =28 ‘ FM =29 ‘ FM =30 ‘ FM =31 ‘ FM = 32 ‘ FM =33

FM = 25 ‘ FM = 26

FM = 34 ‘ FM =35 H FM = 36

FM = 37 ‘ FM =38

Figure 8-1: Traffic, Host Controller and CPU Activities

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 47 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

9. Advanced Feature 2: Paired-PTD for the Bulk Transfer

A bulk transfer is an aperiodic, non-time critical, data-integrity sensitive transfer. It is important that all data is
transferred correctly but the time taken for the transfer is not that important. A typical use of this type of transfer is an
external hard disk drive.

The ISP1362 uses the “paired-PTD” (patent-pending) mechanism to enhance the transfer speed of the bulk data. In an
ideal environment in which there is no other USB device connected to the host, the ISP1362 can transfer 18 x 64 bytes
of data to a single bulk endpoint in 1 ms, giving a data bandwidth of 1.152 Mbyte/s.

9.1. Configuration of the ATL Buffer

The ISP1362 has a total of 4096 bytes of buffer memory. In a typical operation scenario with a mixture of bulk,
isochronous and interrupt traffic, it is recommended that you set the ATL buffer to 1536 bytes.

The ATL buffer in the ISP1362 uses a blocked architecture. The entire ATL buffer area is separated into blocks of equal
sizes. HCATLBlockSize can determine the size of the blocks. Note that value in HcATLBlockSize does not include the 8
bytes taken by the PTD header. Therefore, a block of 128 bytes, for example, actually takes up 136 bytes (128 + 8) in the
ATL buffer.

9.2. PTD Format of Paired PTD
The PTD structure for a paired-PTD transfer is given in Table 9-1.

Table 9-1: Paired-PTD Structure: Bit Allocation

Bytes 1, 3, 5, 7 Bytes 0, 2, 4, 6
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit2 [Bitl | Bit0 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
CompletionCode Active | Toggle ActualBytes
EndpointNumber B5-3 Speed MaxPktSize
Paired Ping B5-5 B5-4 DirToken TotalBytes
Pong
B7 Rl FunctionAddress

[1] R—denotes reserved.

Table 9-2: Paired-PTD Structure: Bit Description

Name Description

ActualBytes[9:0] Actual amount of data transferred at the moment

MaxPktSize[9:0] Maximum amount of data per packet

TotalBytes[9:0] Total amount of data to be transferred

CompletionCode[3:0] Reports success or errors in transaction

EndpointNumber|[3:0] Target endpoint number

DirToken[1:0] Specifies IN, OUT, or setup token

FunctionAddress[6:0] Address of the target device

Active Set to logic 1 by firmware to enable the execution of transactions by the HC. When the
transaction associated with this descriptor is completed, the HC sets this bit to logic 0.

Toggle This bit is used to generate or compare the data PID value (DATAO or DATAT1) for IN and
OUT transactions.

Speed Is set to logic 1 for low-speed device, or logic 0 for high-speed device

Paired (Bit 7 of byte 5) This bit determines whether this PTD is a normal bulk PTD or a paired-PTD.

Ping-Pong (Bit 6 of byte 5) | This bit informs the Host Controller if this PTD is a PingPTD or a PongPTD. Ping and pong

are two buffers in the buffering scheme.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 48 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

9.3. Registers for Paired-PTD Mechanism Control
Table 9-3 provides the registers that are involved in the control of the ISP1362 paired-PTD buffering mechanism.

Table 9-3: Registers Related to the Paired-PTD Bulk Transfer

Register Remarks

HcATLBufferLength ATL buffer size

HcATLBufferPort Data access

HcATLBlockSize Size of each ATL block

HcATLPTDDoneMap Bitmap to show the PTD that is done
HcATLPTDSkipMap Bitmap to determine which PTD to skip
HcATLLastPTD Bitmap to indicate the last valid PTD
HcATLCurrentActivePTD Indicates the PTD that the Host Controller is processing

HcATLPTDDoneThresholdCount Determines how many PTDs are processed per interrupt

HcATLPTDDoneThresholdTimeout | Determines the number of ms to retry if device NAKSs

HcBufferStatus Bit 3 (ATL_Active)—bchaves like a switch to start and stop the Host
Controller from processing the ATL buffer

Bit 4 (Reset_ HWPingPongReg)—allows the HCD to reset the PingPong
toggling sequence, if required

Bit 10 (PairedPTDPingPong)—indicates whether the Host Controller is
processing the ping buffer or the pong buffer

HcpPlnterrupt Bit 8 (ATL_IRQ)—determines if an interrupt is to be generated

9.4. Done, Skip, Last

HcATLPTDDoneMap, HcATLPTDSkipMap and HcATLLastPTD are used with the blocked memory architecture for
the bulk and interrupt transfers. These registers make the control and monitoring of PTDs much simpler and efficient.

SkipMap is used to individually enable or disable the PTDs in the ATL buffer. If the corresponding bit in SkipMap is
skipped, the Host Controller will ignore this PTD and proceed to the next. For example, if the value 0x3301 (binary:
0011 0011 0000 0001) is written into HCATLPTDSkipMap, the 1st, 9%, 10t 13t 14t PTDs will be ignored.

HcATLLastPTD is used to notify the Host Controller about the location of the last valid PTD in the buffer. This
increases the Host Controller processing speed because it does not have to check the whole buffer.

The HcCATLPTDDone register is a 32-bit bitmap representation of the status of the ATL buffer blocks, in which each
block may contain one PTD. For every ATL PTD done, the Host Controller sets the corresponding bit to logic 1. This
block is disabled until HCATLPTDDone is read, and is therefore, cleared automatically by the Host Controller. If a bit in
HcATLPTDDone is set to logic 1 and is not cleared by reading, the corresponding block will not be processed, even if it
is not skipped and is set active.

9.5. Paired-PTD Buffering Mechanism

In the bulk transfer, the maximum packet size is 64 bytes as defined in the USB specification. The ISP1362 uses a single
PTD to execute a transfer of up to 1023 bytes of data by splitting the data into chunks of 64 bytes and sending them out
in sequence, all without the intervention of the Host Controller Driver. However, the ATL buffer is not double-buffered
and there will be a gap between streams of bulk data because of the time required to refill the ATL buffer. Making the
ATL buffer a double-buffered system will increase the hardware required and reduces memory usage efficiency because
not all aperiodic transfers require high speed.

The ISP1362 strikes a balance between the two options by providing a mechanism to execute double buffering in a
single buffer environment. This method uses two PTDs to serve the same endpoint alternatively. Therefore, one PTD
can be refilled while the Host Controller is processing the other.

In the example in Table 9-4, the ISP1362 uses the paired-PTD mechanism to send out a stream of bulk data.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

49 of 99

Rev. 0.9

Table 9-4: Example of Register Values in a Bulk Transfer

Register Remarks

HcATLBufferLength 1536 bytes

HcATLBufferPort Not applicable

HcATLBlockSize 640 (for 10 x 64 bytes packet)
HcATLPTDDoneMap For status monitoring

HcATLPTDSkipMap O0xFFFF FFFC (only the first two PTD are valid)
HcATLLastPTD 0x0000 0002 (The second PTD is the last PTD)
HcATLCurrentActivePTD For status monitoring

HcATLPTDDoneThresholdCount

1 (generates an interrupt for every PTD done)

HcATLPTDDoneThresholdTimeout

3 (optional)

HcBufferStatus

HcpPlnterrupt

For a block size of 640, the two PTDs must be copied into address of offset
0 and 648 from the ATL buffer starting address.

A simplified flow chart of the paired-PTD mechanism is given in Figure 9-1.

<START>
Fill Ping

Fill Ping

Check Pong
Done

Fill Pong

Check Ping
Done

Figure 9-1: Paired-PTD Flowchart

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

50 of 99

Rev. 0.9

10. Advanced Feature 3: Automatic Polling for the Interrupt

Endpoint

In the USB protocol, interrupt endpoints are usually polled at a regular interval of time. The most commonly used
interrupt device is the mouse. A mouse is usually polled every 8 ms for the movement data. It returns data if there has
been any movements in the past 8 ms. If there has not been any movements, it NAKs. While not a major issue in most
systems to handle this regular polling requirement, it will be helpful if the USB hardware takes over this responsibility.
The ISP1362 uses a unique scheduling method to handle this regular polling requirement. The method will be described

in details in this section.

10.1. Configuring the INTL Buffer

The ISP1362 has a total of 4096 bytes of buffer memory. In a typical operation scenatio with a mixture of bulk,

isochronous and interrupt traffic, it is recommended that you set the INTL buffer to 512 bytes.

The INTL buffer in the ISP1362 uses a blocked architecture. The entire INTL buffer area is separated into blocks of
equal sizes. The size of the blocks can be determined by using HcINTLBlockSize. Note that value in HcINTLBlockSize
does not include the 8 bytes taken by the PTD header. Therefore, a block of 64 bytes, for example, actually will take up

72 bytes (64 + 8) in the INTL buffer.

10.2. Interrupt PTD Format
Table 10-1: Interrupt PTD Structure: Bit Allocation
Bytes 1, 3, 5, 7 Bytes 0, 2, 4, 6
Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit 2 Bitl | Bit0 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 [Bit2 | Bitl | Bit0
CompletionCode Active | Toggle ActualBytes
EndpointNumber B5-3 Spd MaxPktSize
B5-7 [B5-6 | B55 [B54 DirToken TotalBytes
Polling Rate Starting Frame R FunctionAddress

[1] R—denotes reserved.

Table 10-2: Interrupt PTD Structure: Bit Description

Name Description

ActualBytes[9:0] Actual amount of data transferred at the moment

MaxPktSize[9:0] Maximum amount of data per packet

TotalBytes[9:0] Total amount of data to be transferred

CompletionCode[3:0] Reports success or errors in a transaction

EndpointNumber([3:0] Target endpoint number

DirToken[1:0] Specifies IN, OUT or setup token

FunctionAddress[6:0] Address of target device

Active Set to logic 1 by firmware to enable the execution of transactions by the HC. When the
transaction associated with this descriptor is completed, the HC sets this bit to logic 0.

Toggle This bit is used to generate or compare the data PID value (DATAO or DATAL1) for IN
and OUT transactions.

Speed Is set to logic 1 for low-speed device, or logic 0 for high-speed device

Polling Rate Special fields used to control the automatic polling. These fields will be explained in the

Starting Frame next section.

10.3. Registers for the Interrupt Automatic Polling Control

The registers involved in the control of the ISP1362 interrupt automatic polling control are given in Table 10-3.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 51 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Table 10-3: Registers Related to the Interrupt Automatic Polling Control

Register Remarks

HcINTLBufferSize INTL buffer size

HcINTLBufferPort Data access

HcINTLBIlockSize Size of each INTL block

HcINTLPTDDoneMap Bitmap to show the PTD that is done

HcINTLPTDSkipMap Bitmap to determine which PTD to skip

HcINTLLastPTD Bitmap to indicate the last valid PTD

HcINTLCurrentActivePTD Indicates the PTD that the Host Controller is processing

HcBufferStatus Bit 2 (INTL_Active)—bchaves like a switch to start or stop the Host
Controller from processing the INTL buffer.

HcpPlnterrupt Bit 7 (INT_IRQ)—determines if an interrupt is to be generated

10.4. Done, Skip, Last

HcINTLPTDDoneMap, HAINTLPTDSkipMap, HcINTLLastPTD are used in conjunction with the blocked memory
architecture for the bulk and interrupt transfers. These registers make the control and monitoring of the PTDs much
simpler and efficient.

SkipMap is used to individually enable or disable the PTDs in the INTL buffer. If the corresponding bit in SkipMap is
skipped, the Host Controller will ignore this PTD and proceed to the next. For example, if the value 0x3301 (binary:
0011 0011 0000 0001) is written into HIINTLPTDSkipMap, the 15, 9, 10%, 13th, 14® PTDs will be ignored.

HcINTLLastPTD is used to notify the Host Controller about the location of the last valid PTD in the buffer. This
increases the Host Controller processing speed because it does not have to check the whole buffer.

The HcINTLPTDDone register is a 32-bit bitmap representation of the status of ATL buffer blocks. For every INTL
PTD done, the Host Controller sets the corresponding bit to logic 1 and this block is disabled until HcATLPTDDone is
read, and is therefore, cleared automatically by the Host Controller. If a bit in HAINTLPTDDone is set to logic 1 and is
not cleared by reading, the corresponding block will not be processed, even if it is not skipped and is set active.

10.5. Interrupt Automatic Polling Control

In the interrupt PTD, there are two special fields to control the automatic polling mechanism: Starting Frame (SF) and
Polling Rate (PR). The Host Controller sends out the PTD based on these two parameters, as well as the current frame
number (Fm).

Algorithm:

The byte 7 of the interrupt PTD is used as the Reference Byte (RB). If the Polling Rate is N, the Host Controller
compatres the first N bits of RB and the first N bits of Fm. If the result is TRUE, the PTD is sent. If the result is
FALSE, the PTD will be ignored until the next frame, in which the comparison will be done again.

For example, two interrupt PTDs atre put into the interrupt buffer.
An example of the automatic polling scheduling is given in Table 10-4.

Table 10-4: Example of Automatic Polling Scheduling

Interrupt PTD Polling Rate Polling Interval Starting Frame
1 2 4 6
2 2 4 5
3 4 16 6

The PTDs are copied into the Host Controller interrupt buffer at Fm = 4.
PTD 1 will be sent out at Fm = 10
PTD 2 will be sent out at Fm =9

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 52 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

PTD 3 will be sent out at Fm = 22.

11. On-The-Go—HNP and SRP

I1.1. Introduction

The ISP1362 is a single-chip On-The-Go (OTG) Controller when used in the OTG mode. It is designed to meet all the
requirements defined in the On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0. It supports Host Negotiation
Protocol (HNP) and Session Request Protocol (SRP) for dual-role devices. This section describes how to implement
HNP and SRP in software by using proper hardware resources support (OTG registers, interrupts, etc.).

11.2. OTG Registers

11.2.1. Register Sets

The ISP1362 defines a set of OTG related registers that allow you to implement HNP and SRP by means of software.
Table 11-1 is a summary of OTG registers.

Table 11-1: OTG Registers

Register Width | Description

OtgControl 16 Provides control to Vpys driving and charging, data line pull-up and pull-down, SRP
detection method, the Host Controller and Device Controller switching, etc.

OtgStatus 16 Provides status of the ID pin, Vpus voltage levels, rmt_conn, etc.

Otglnterrupt 16 Provides interrupt on the OTG status change, bus events (suspend, resume, se0), SRP
detection and OtgTimer timeout

OtglnterruptEnable 16 Provides interrupt enable and disable

OtgTimer 32 Provides 0.01 ms base programmable timer for use in the OTG state machine (timer
range is 0.01 to 167772.15 ms)

OtgAltTimer 32 Provides 0.01 ms base hardware timer to measure the response time of remote device
(timer range is 0.01 to 167772.15 ms)

11.2.2. Register Access

OTG registers use the same access method as that of Host Controller registers. For details, see Section 3.3.

11.3. Programming SRP

In the OTG system, only the A-device is allowed to drive Vpus. To conserve power, the A-device can drop Vsus when
the bus is not in use. In this case, if the B-device wants to use the bus, it must initiate SRP to wake-up the A-device.
Meanwhile, the A-device must be ready to detect and respond to the SRP event. With the help of SRP, any one of the
two connected OTG devices can start the session when Vgys is down.

[1.3.1. B-Device Initiating SRP
The B-device initiates SRP by using dataline pulsing and Vpus pulsing. When the ISP1362 is used as the B-device, the
following steps are used to generate SRP:

1. Detect initial conditions (ID_REG, B_SESS_END and SE0_2MS (bits 0, 2 and 9) of the OtgStatus register (see
Table 11-2) are logic 1).

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

53 0of 99

ISP1362 Embedded Programming Guide Rev. 0.9
Table 11-2: OtgStatus Register: Bit Allocation
Bit 15 14 13 12 11 10 9 8
Symbol | reserved SEO_ZMS reserved
Reset | - - - - - - 0 -
Access | - - - - - - R -
Bit 7 6 5 4 3 2 1 0
Symbol reserved RMT B SESS_ | A SESS_ | B SESS_ | A Vpus. | ID_REG
CONMN VLD VLD END VLD
Reset | - - 0 0 0 1 0 1
Access | - - R R R R R R

2.

Start data line pulsing (set LOC_CONN (bit 4) of the OtgControl register to logic 1; see Table 11-3)

Table 11-3: OtgControl Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved OTG_SED_ | A_SRP_ A_SEL_ SEL_HC_
EN DET_EN SRP bC
Reset - - - - 0 0 0 1
Access - - - - RAW R RAN R
Bit 7 6 5 4 3 2 1 0
Symbol LOC_PULL | LOC_PULL | A_RDIS_ LOC_ SEL_CP_ | DISCHRG_ | CHRG_ CRY_Vgug
DN_DM DN.DP LCON_EN CONN EXT Vaus Vaus
Reset | 1 1 0 0 0 0 0 0
Access | RN RAN RAwW RV RAW R RAN R
3. Wait for 5 to 10 ms (recommended 8 ms, you can use OtgTimer; see Table 11-4)
Table 11-4: OtgTimer Register: Bit Allocation
Bit 31 30 29 28 27 26 25 24
Symbal START reservad
TMR
Reset | 0O - - - - - - -
Access [Rw - - - - - - -
Bit 23 22 21 20 19 18 17 16
symbol | TMR_INIT_VALUE[23:16]
Reset | o 0 0 0 0 0 0 0
Access | RAN RAW RN RAY RAW RAN RAW RAW
Bit 15 14 13 12 11 10 9 8
Symbol | TMR_INIT_VALUE[15:8]
Reset | O 0 0 0 0 0 0 0
Access | RN R RAN RV RAW RANV RAwW RAwW
4. Stop dataline pulsing (set LOC_CONN (bit 4) of the OtgControl register to logic 0; see Table 11-3)
5. Start Vpys pulsing (set CHRG_Vpus (bit 1) of the OtgControl register to logic 1; see Table 11-3)
6. Wait for 20 to 60 ms (recommended 30 ms, you can use OtgTimer; see Table 11-4)

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 54 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

7. Stop Vpus pulsing (set CHRG_Vgus (bit 1) of the OtgControl register to logic 0; see Table 11-3).
8. Discharge Vpus for about 30 ms (using DISCHRG_Vgus (bit 2) of the OtgControl register). This step is optional.

11.3.2. A-Device Detecting SRP

When the ISP1362 is used as the A-device, it can choose to detect either Vpys pulsing SRP or dataline pulsing SRP. For
Vgus pulsing SRP, if voltage on Vpus is more than VA_SESS_VLD, the a_srp_det bit will be set. For dataline pulsing
SRP, if either the DP line or the DM line goes high, the a_srp_det bit will be set. In both cases, an interrupt will generate
on INTT.

If the ISP1362 is in the idle state and does not want to respond to SRP, the SRP detection function can be disabled.

Steps for enabling the SRP detection by the V,s-pulsin

1. Set A_SEL_SRP (bit 9) of the OtgControl register (see Table 11-3) to logic 0

2. Set A_SRP_DET_EN (bit 10) of the OtgControl register (see Table 11-3) to logic 1.

Steps for enabling the SRP detection by the dataline pulsing
1. Set A_SEL_SRP (bit 9) of the OtgControl register (see Table 11-3) to logic 1

2. Set A_SRP_DET_EN (bit 10) of the OtgControl register (see Table 11-3) to logic 1.

Steps for disabling the SRP detection
1. Set A_SRP_DET_EN (bit 10) of the OtgControl register (see Table 11-3) to logic 0.

11.4. Programming HNP State Machine

HNP allows two connected dual-role devices to exchange the host role back and forth without exchanging the two ends
of the cable. The state diagram for dual-role device given in the OT'G supplement offers one possible implementation of
HNP. Not all of the state transitions are mandatory. Any other implementation that exhibits an equivalent behavior as
observed at USB connector pins is considered as compliant to OTG specification. The ISP1362 allows software
implementation of HNP, which gives the flexibility to meet different requirements from various applications. The
ISP1362 OTG registers provide necessary inputs, outputs and timers for the HNP state machine.

11.4.1. HNP State Machine (OTG_FSM)

An example of the OTG_FSM is given in Section 11.5. This code is derived from the dual-role state diagram in the
OTG supplement.

11.4.2. Procedures for Handling HNP

When there is an HNP event (OTG interrupt or application request), OTG_FSM is called. The result (id, current state,
error codes) will pass to the application program.

For the purpose of illustration of HNP procedures, assume that there are two dual-role devices built with the ISP1362.
The two devices are connected by a mini-A to mini-B cable. The application running on the device wants to send a file
to the remote device, neglecting it is an A-device or a B-device. Both devices have the proper driver to support the file
transfer.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 55 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Application initiating session on the A-device

Initially, Vpus is off and both devices are in the Idle state. The application sends a bus_request to the ISP1362 OTG
driver. The OTG driver calls OTG_FSM and finally, goes to the A_HOST state. The remote device goes to the
B_PERIPHERAL state.

For A-device: A_IDLE -> (application asserts bus_request) -> A_WAIT _VVRISE -> A_WAIT_BCON ->_A4_HOST ->
For B-device: B_IDI.E -> B_PERIPHERAL

The application knows that it is in the A_HOST state. Therefore, it enumerates the B-device and starts to send the file.
On completion, the application will de-assert the bus_request and the device will go back to the A_IDLE state.

For A-device: A_HOST -> (application de-asserts bus_request) -> A_SUSPEND ->A_WAIT_VFALL -> A_IDLE
For B-device: B_PERIPHERAI. -> B-IDLE

Application initiating session on the B-device

Initially, Vus is off and both devices are in the Idle state. The application sends a bus_request to the ISP1362 OTG
driver. The OTG driver calls OTG_FSM and goes to the B_PERIPHERAL state. The remote device goes to the
A_HOST state.

For B-device: B_IDLE -> (application asserts bus_request) -> B_SRP_INIT -> B_IDLE -> B_PERIPHERAL
For A-device: A_IDLE -> (detection SRP) -> A_WAIT_VVRISE -> A_WAIT_BCON ->_A_HOST ->

The A-device enumerates the B-device, enables the HNP handoff by set_feature (b_hnp_en) and goes to the A-
SUSPEND state. The B-device acknowledges and goes to the B_HOST state.

For B-device: B_PERIPHERAL -> (b_hnp_en & bus_suspend) -> B_WAIT _ACON -> B_HOST
For A-device: A_HOST -> A_SUSPEND -> A _PERIPHERAL

The application knows that it is in the B_HOST state. Therefore, it enumerates the A-device and starts to send the file.
On completion, the application will de-assert the bus_request and the device will go back to the B_IDLE state.

For B-device: B_HOST -> (application de-asserts bus_request) -> B_PERIPHERAI. -> B_IDLE
For A-device: A_PERIPHERAL -> A WAIT VFALL -> A_IDLE

[Alternatively, the A-device can transit by .4_PERIPHERAL. -> A_WAIT _BCON -> A_HOST -> A_SUSPEND ->
A WAIT VEALL -> A IDLE)]

11.4.3. OTG Interrupt

The OTG interrupt is generated on the INT1 pin. It is shared with the Host Controller interrupt.

Enabling the OTG interrupt

The procedure to enable the OTG interrupts is as follows:

1. Set InterruptPinTrigger and InterruptOutputPolarity (bits 1 and 2) in the HcHardwareConfiguration register
(see Table 5-5)

2. Program the OtglnterruptEnable register (see Table 11-5) depending on your application.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 56 of 99
ISP1362 Embedded Programming Guide Rev. 0.9
Table 11-5: OtgInterruptEnable Register: Bit Allocation
Bit 15 14 13 12 11 10 9 8
Symbaol | reserved OTG TMR B SED A _SRF
IE SRP_IE DET_IE
Reset | - - - - - 0 0 0
Access | - - - - - R R R
Bit 7 6 5 4 3 2 1 0
Symbol | oTG OTG_ 505 RMT B _SESS A_SESS B_SESS A VBus ID_REG
RESUME FND_IE COMM_IE YLD IE YLD IE END_IE YLD IE IE
Reset | o 0 0 0 0 0 0 0
Access | R R R R R RwW R RW
3. Set OTG_IRQ_InterruptEnable (bit 9) in the HeuPlnterruptEnable register (see Table 11-6)
Table 11-6: HcpPInterruptEnable Register: Bit Allocation
Bit 15 14 13 12 11 10 9 8
Symbol reserved OTG_IRQ_ | ATL IRCQ_
Interrupt Interrupt
Enable Enable
Reset - - - - - - 0 0
Access - - - - - - RN RAN
Bit 7 6 5 4 3 2 1 0
Symbol INT_IRG_ | ClkReady HC OFR ECT ISTL_1 ISTL_O SOF
Interrupt Suspended Interrupt Interrupt Interrupt Interrupt Interrupt
Enable Enable Enable Enable Enable Enable Enable
Reset | o 0 0 0 0 0 0 0
Access | RAN RAY RAN R AW RAN RAN RAY

4. Set InterruptPinEnable (bit 0) in the HcHardwareConfiguration register (see Table 5-5).

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 57 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Servicing the OTG interrupt

The interrupt service routine for INT1 will check if the interrupt is caused by an OTG event. The procedure is:
1. Hardware interrupt is generated on the INT1 pin
2. Read the HepPlnterrupt register (see Table 5-4). If the bit OTG_IRQ (bit 9) is logic 1, then

3. Read the Otglnterrupt register (see Table 11-7). If one of the bits ID_REG_C, A_Vpus_VLD_C,
B_SESS_END_C, A_SESS_VLD_C ot B_SESS_VLD_C (bits 0 to 4) is set, then

Table 11-7: OtgInterrupt Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol reserved OTG_TMR B_SEO_ A_SRP_
_IE SRP_IE DET_IE
Reset - - - - - 0 0 0
Access - - - - - RN RAN RAN
Bit 7 6 5 4 3 2 1 0
Symbol OTG_ OTG_sUs RMT_ B_SESS_ | A_SESS_ | B_SESS_ A Mpus_ ID_REG_
RESUME FND_IE CONN_IE VLD_IE YLD_IE END_IE VLD_IE IE
Reset 0 0 0 0 0 0 0 0
Access RAN R RAW RAW RN RAN RN RN

4. Read the OtgStatus register (see Table 11-2).

11.4.4. Using OtgTimer and OtgAltTimer

The ISP1362 OtgTimer and OtgAltTimer registers are used to program the on-chip timer. The timer resolution is 0.01
ms and the timer range is 0.01 to 167772.15 ms.

The OtgTimer register is used to program the timeout value for the HNP timers, such as TA_WAIT_VRISE,
TA_WAIT_BCON, TA_BDIS_ACON, TB_ASEO_BRST and TB_SRP_FAIL. It can also be used to timer the pulse
width of dataline pulsing and Vpus pulsing SRP. The timer is started by software and can be stopped either by using
software or when the timeout value is reached. If the timeout value is reached, the OTG_TMR_TMOUT bit in the
Otglnterrupt register will be set and a hardware interrupt will be generated, if enabled.

The OtgAltTimer register is for debugging purposes. It can be started when the device transitions to a specific HNP
state. It can be stopped by software or by any OTG related interrupt (such as, connect and disconnect).

11.4.5. Using Auto Connect

When the A-device is in the A_SUSPEND state and detects a disconnect event, the ISP1362 is required to enable its
pull-up resistor on the DP line within 3 ms. Some systems may have problems to meet this requirement. To resolve this,
the ISP1362 has a feature that allows automatic connection of the pull-up resistor on the DP line on detecting a remote
disconnected event. Setting the A_RDIS_LCON_EN bit in the OtgControl register can enable this feature. Note that
this bit can only be set when the device enters the A_SUSPEND state and must be cleared when the device leaves the
A_PERIPHERAL state.

I1.4.6. Using Auto Bus Reset

When the B-device is in the B_WAIT_ACON state and detects a connect event, the ISP1362 is required to send a bus
reset (SEO0) within 1 ms. Some systems may have problems to meet this requirement. To resolve this, the ISP1362 has a
feature that allows automatic bus reset on detecting a connect event. This feature can be enabled by set the

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 58 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

OTG_SEO_EN bit of the OtgControl register. Note that this bit can only be set when the device enters the
B_WAIT_ACON state and must be cleared after the device enters the B_HOST state.

11.4.7. Using Otglnterrupt to Wake-up the Chip

When the ISP1362 is in the Idle state (A_IDLE or B_IDLE), the chip can be put in power saving mode in which the
Host Controller and the Device Controller are suspended and the PLL and oscillator are stopped. However, as a dual-
role device, the ISP1362 is required to wake-up and respond to some bus events, such as ID change and SRP detection.
To do this, the OtglnterruptEnable register must be programmed properly before the chip is put in the power save
mode. Three interrupt events that are allowed to wake-up the chip are:

* ID_REG_C
* A_SRP_DET
* B_SESS_VLD_C.

11.5. OTG HNP State Machine Pseudo Code

11.5.1. Dual-Role A-Device State Machine

STATE a_idle
I nput s
id
a_srp_det
a_bus_req
a_bus_drop/
CQut put s
drv_vbus/
| oc_conn/
| oc_sof/
IF (a_srp_det | a_bus_req) & a_bus_drop/ THEN
drv_vbus
goto a_wait_vrise
ELSE IF id THEN

goto b_idle
END | F
END a_idle
STATE a_wait_vrise
I nput s
I d
a_bus_drop
a_vbus_vld
Timers
a_wait_vrise_tnr
CQut put s
drv_vbus
| oc_conn/
| oc_sof/
On Entry

start a_wait_vrise_tnr
IFid | a_bus_drop | a_vbus_vlid | a_wait_vrise_tmut THEN
goto a_wait_bcon
END | F
END a_wait_vrise

STATE a_wai t _bcon

I nput s
id
a_bus_drop
a_vbus_vl d/
b_conn
Timers
a_wait_bcon_tnr
CQut put s
drv_vbus
I oc_conn/

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

59 of 99

Rev. 0.9

| oc_sof/
On Entry
start a_wait_bcon_tnr
On Exit
stop a_wait_bcon_tnr
IFid | bus_drop | a_wait_bcon_tnmout THEN
drv_vbus/
goto a_wait_vfal
ELSE IF b_conn THEN
| oc_sof
oto a_host
ELSE I F a_vbus_vld/ THEN
drv_vbus/
goto a_vbus_err
END | F
END a_wai t _bcon

STATE a_host
I nput s
id
a_bus_drop
b_conn/
a_bus_req/
a_suspend_req
a_vbus_vl d/
CQut put s
drv_vbus
| oc_conn/
| oc_sof
IFid | bus_drop | b_conn/ THEN
| oc_sof/
goto a_wait_bcon
ELSE | F a_bus_req/ | a_suspend_req THEN
| oc_sof/
oto a_suspend
ELSE I F a_vbus_vld/ THEN
| oc_sof/
drv_vbus/
goto a_vbus_err
END | F
END a_host

STATE a_suspend
I nput s
id
a_bus_drop
b_conn/
a_bus_req
b_bus_resune
a_vbus_vl d/
Tinmers
a_aidl _bdis_tnr
Cut put s
drv_vbus
| oc_conn/
| oc_sof/
On Entry:
start a_aidl _bdis_tnr
On Exit
stop a_aidl _bdis_tnr

IFid | bus_drop | a_aidl_bdis_tmout THEN
drv_vbus/
goto a_wait_vfal

ELSE I F b_conn/ & a_set_b_hnp_en THEN
| oc_conn
goto a_periphera

ELSE I F b_conn/ & a_set_b_hnp_en/ THEN
goto a_wait_bcon

ELSE | F a_bus_req | b_bus_resume THEN
| oc_sof
goto a_host

ELSE I F a_vbus_vld/ THEN
drv_vbus/
goto a_vbus_err

END | F

END a_suspend

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 60 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
e
STATE a_peri phera
I nputs
id
a_bus_drop
b_bus_suspend
a_vbus_vl d/
Cut put s
drv_vbus
| oc_conn
| oc_sof/
IFid | a_bus_drop THEN
drv_vbus/
| oc_conn/

goto a_wait_vfal
ELSE | F b_bus_suspend THEN

| oc_conn/

oto a_wait_bcon
ELSE I F a_vbus_vld/ THEN

| oc_conn/

drv_vbus/

goto a_vbus_err
END | F

END a_peri phera

STATE a_vbus_err
I nput s
id
a_bus_drop
Cut put s
drv_vbus/
| oc_conn/
| oc_sof/
IFid | a_bus_drop THEN
goto a_wait_vfal
END | F
END a_vbus_err

STATE a_wai t _vfal
| nput s
id
a_bus_req
a_sess_vl d/
b_conn/
Cut put s
drv_vbus/
| oc_conn/
| oc_sof/
IFid | a_bus_req | (a_sess_vld/ & b_conn/ THEN
goto a_idle
END | F
END a_wai t _vfal

11.5.2. Dual-Role B-Device State Machine

STATE b_idl e
I nput s
id/
b_bus_req
b_sess_end
b_seO_srp
b_sess_vld
CQut put s
drv_vbus/
chrg_vbus/
| oc_conn/
| oc_sof/

IF b_bus_req & b_sess_end & b_seO_srp THEN
goto b_srp_init

ELSE I F id/ THEN
goto a_idle

ELSE IF b_sess_vld THEN
| oc_conn
goto b_periphera

END | F

END b_idle

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 61 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
STATE b_srp_init
I nputs
idf
b_srp_done
CQut put s
chrg_vbus (pul se)
| oc_conn (pul se)
| oc_sof/
IF (id/ | b_srp_done) THEN
chrg_vbus/
I oc_conn/
goto b_idle
END | F
END b_srp_init
STATE b_peri phera
I nput s
id/
b_bus_req
a_bus_suspend
b_sess_vld/
Cut put s
chrg_vbus/
| oc_conn/
| oc_sof/
IF (id/ | b_sess_vld/) THEN
I oc_conn/
goto b_idle
ELSE I F (b_bus_req & a_bus_suspend & b_hnp_en) THEN
| oc_conn/
goto b_wait_acon
END | F

END b_peri phera
STATE b_wait _acon

| nput s
id/
b_sess_vld/
a_conn
a_bus_resune
Ti ners
b_aseO_brst_tnr
CQut put s
chrg_vbus/
| oc_conn/
| oc_sof/
on entry
start b_aseO _brst_tnr
on exit

stop b_aseO_brst_tnr
IF (id/ | b_sess_vld/) THEN
goto b_idle
ELSE I F a_conn THEN
| oc_sof
goto b_host
ELSE | F b_aseO_brst_tnout | a_bus_resume THEN
| oc_conn
goto b_periphera
END | F
END b_wai t _acon

STATE b_host

I nput s
id/
b_sess_vld/
b_bus_req/
a_conn/

Cut put s
chrg_vbus/
| oc_conn/
| oc_sof

IF (id/ | b_sess_vld/) THEN
I oc_sof/
goto b_idle

ELSE IF (b_bus_req/ | a_conn/) THEN
| oc_sof/
| oc_conn
goto b_periphera

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 62 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
END | F
END b_host

11.6. Power Saving and Chip Wake-up

To save power when no session is active, the ISP1362 can be put in the power saving mode. In the power saving mode,
the Host Controller and the Device Controller are suspended. The internal PLL and oscillator can be stopped. The
charge-pump can be disabled and USB transceivers can be suspended. Typically, the power current can be reduced to
below 100 pA when the whole chip is in the power saving-mode.

During a session, it is possible to suspend the Host Controller and the Device Controller individually. When the chip
acts as a host, the Device Controller can be suspended. When the chip acts as a peripheral, the Host Controller can be
suspended (if the port 2 is not in use).

This section will discuss suspend and wake-up issues when the ISP1362 is configured in the OT'G mode. For the Host
Controller only or the Device Controller mode, similar steps can be used.

1.6.1. Suspending the Host Controller

If the system does not need the USB host function (no session or no device connected or low power), you can suspend
the Host Controller, i.e., put the Host Controller in the USB SUSPEND state.

The steps to suspend the Host Controller are:
1. Set the SuspendClkNotStop bit to logic 0 (bit 11 of the HcHardwareConfiguration register; see Table 5-5)
2. Enable OTG wake-up event (bits 0, 4, 8 of the OtglnterruptEnable register; see Table 11-5)

3. Enable interrupt on ClkReady, if you want to wake-up the chip after the clock is stopped (bit 6 of the
HcpPlnterruptEnable register; see Table 11-6)

4. Enable interrupt on the INT1 pin (bit 0 of the HcHardwareConfiguration register; see Table 5-5)
5. Set the Host Controller to the USB SUSPEND state (bits 7 and 6 of the HcControl register; see Table 5-1).

Note that steps 1 through 4 are application dependent. Some application may wish to keep the clock running while
others may not want to respond to the OTG event when the ISP1362 is in the suspend state.

After performing step 5, the Host Controller will stop generating SOF immediately and go to suspend within 5 ms. The
H_SUSPEND/H WAKEUP pin will go HIGH, indicating that the Host Controller is currently in the USB suspend
state. If the Device Controller is also in suspend then the PLL and oscillator will stop running,

When the Host Controller is in the suspend state and the clock is stopped, the Host Controller and OTG registers are
not accessible. If the clock is not stopped (Device Controller is not suspended or the SuspendClkNotStop bit is set to
logic 1 in step 1), all the Host Controller and OTG registers can be accessed.

11.6.2. Suspending the Device Controller

When the Device Controller detects any of the following events, an interrupt will be generated indicating that the Device
Controller will go to suspend.

* DP and DM have been idle for 3 ms

* Vpus low (b_sess_vld bit in the OtgStatus register is logic 0)

* Device Controller is disconnected from DP and DM of the OTG port (i.e., the Host Controller is connected).
However, the hardware will not go to suspend automatically until software issues the GoSuspend command.

The steps to suspend the Device Controller are:

1. Detect the suspend interrupt (bit 2 of the Dclnterrupt register; see Table 12-2)

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 63 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

2. Set the WKUPCS (0/1) and CLKRUN (0) bits propetly (bits 3 and 12 of the DcHardwareConfiguration registet;
see Table 11-8).

Table 11-8: DcHardwareConfiguration Register: Bit Allocation

Bit 15 14 13 12 11 10 9 8
Symbol | reserved EXTPUL NOLAZY CLKRUN CKDIV[3:0]

Reset | - 0 1 0 0 0 1 1
Access | - RAW RN R R/W RMW RV RN
Bit 7 6 5 4 3 2 1 0
Symbol | DAKOLY DRQPOL DAKPOL reserved WEUPCS reserved INTLVL INTPOL
Reset | 0 1 0 0 0 1 0 0
Access | R RAW RAW - R/W RW R R

3. Write logic 1 followed by logic 0 to the GOSUSP bit of the DcMode register (bit 5 of the DcMode register; see
Table 12-9).

After Device Controller has gone into suspend, none of the Device Controller registers can be accessed, irrespective of
whether the clock is running or not. A wake-up event is expected before reading or writing to any Device Controller
register.

11.6.3. Resuming the Host Controller

If the Host Controller is suspended and the clock is stopped, it can be resumed by any of the following ways:

* Alow pulse on the H_SUSPEND/H WAKEUP pin

e Alow pulse on the CS pin
* Remote wake-up (resume) signal on the USB bus, if the Host Controller is connected to the transceiver

* An OTG event (i.e., ID change, a_stp_det and/or b_sess_vld), if enabled.

The above resume event will trig the oscillator to start. After clock is stable, an interrupt will be generated on INT1 pin,
indicating ClkReady. The software must write to set the Host Controller in USB OPERATION mode within 5ms,
otherwise the oscillator will stop again.

11.6.4. Resuming the Device Controller

If the Device Controller is suspended and the clock is stopped, it can be resumed by any of the following ways:

* Alow pulse on the D_SUSPEND/D WAKEUP pin

* Alow pulse on the CS pin, if enabled

* A resume or SEO signal on the USB bus, if the Device Controller is connected to the transceivet.

After resume, an Unlock command must be issued before any register read/write.

[1.6.5. ISP1362 in Minimum Power Current State and Wake-Up Method

To put the whole chip in minimum power current state, all of the following must be done:
1. Make sure no session is running (i.e., the device is in the A-IDLE or B-IDLE state)

2. Disable the charge pump (bit 0 of the OtgControl register; see Table 11-3)

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 64 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

3. Disable the on-chip overcurrent (OC) detection module (bit 14 of the HcHardwareConfiguration register;
see Table 5-5)

4. Suspend the Device Controller with clock stop option
5. Suspend the Host Controller with clock stop option.

The wake-up event can come from either hardware or software. The typical wake-up scenatios for an OTG dual-role
device are discussed here.

1. Inthe A_IDLE or B_IDLE state, the application asserts bus_req, indicating it wants to use the USB bus.

1. Software accesses any ISP1362 register (assert CS)

Wiait for the ClkReady interrupt on the INT1 pin

2
3. Get the ClkReady interrupt (typically within 1 ms from asserting CS)
4. Set the Host Controller to the USB OPERATION mode
5. Go to A_WAIT_VRISE (for the A-Device) or B_SRP_INIT (for the B-Device) state.
2. Inthe A_IDLE state, the remote device initiates SRP.
1. Get the ClkReady interrupt
2. Set the Host Controller to the USB OPERATION mode
3. Read the HepPlnterrupt and Otglnterrupt registers and get the A_SRP_DET bit set
4. Go to the A_WAIT_VRISE state.
3. In the B_IDLE state, the remote device drives Vpus,
1. Get the ClkReady interrupt
Set the Host Controller to the USB OPERATION mode
Read the HepPlnterrupt and Otglnterrupt registers and get the B_SESS_VLD bit set

2

3

4. Resume the Device Controller

5. Go to the B_PERIPHERAL state.

12. Device Controller of the ISP1362

The Device Controller (DC) of the ISP1362 is a core based on Philips ISP1181 Device Controller, which is a full-speed
USB interface device with up to 14 configurable endpoints. You can access the Device Controller of the ISP1362 via the
PIO mode or DMA transfer with up to 16-bytes per cycle. It has 2462 bytes of dedicated internal FIFO memory. The
type and FIFO size of each endpoint can be individually configured, depending on the required packet size. The
isochronous and bulk endpoints are double-buffered for increased data throughput.

The Device Controller of the ISP1362 can implement peripheral functions, such as printers, scanners, external mass
storage (zip drive) devices and digital still cameras, to transfer data to and from the PC host. The system CPUs in these
peripherals are extremely busy handling many tasks, such as device control, data and image processing. The firmware of
the Device Controller is designed to be fully interrupt-driven. While the system CPU is doing its foreground task, the
USB transfer is handled in the background. This assures best transfer rate and better software structure, and also
simplifies programming and debugging.

The description on programming the Device Controller of the ISP1362 is based on the firmware code of the ISP1362
ISA evaluation kit. The operating system used is DOS. Therefore, the Hardware Abstraction layer focuses on the ISA
bus access.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 65 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.1. Firmware Structure of the Device Controller

The firmware for the evaluation board consists of two major portions: the processing of information and the interrupt
service routine. The Hardware Abstraction layer just moves data from hardware to memory space to be processed by the
Main Loop as shown in Figure 12-1.

Processing of flags, handling of USB
requests and initialization of the
device, as well as transfer of data.
(MAINLOOP.C, CHAP_9.C,
D13BUS.C, HAL4SYS.C)

- T

Hardware
Abstraction layer.
(HAL4D13.C

Interrupt handling and setting of
flags. (ISR.C)

Figure 12-1: Firmware Structure of the Device Controller of the ISP1362

As can be seen in Figure 12-1, the firmware structure can be divided into the following six building blocks:

* Hardware Abstraction Layer—HAILA4SYS.C

* Hardware Abstraction Layer—HAIL4D13.C

* Interrupt Service Routine—ISR.C
* Protocol Layer—CHAP_9.C

* Protocol Layer—D13BUS.C

e Main Loop—MAINLOOP.C.

12.1.1. Hardware Abstraction Layer—HAL4SYS.C

This is the lowest-layer code in the firmware that performs hardwate-dependent I/O access of the Device Controllet of
the ISP1362, as well as the evaluation board hardware. When porting the firmware to other CPU platforms, this part of
the code always needs modifications or additions.

12.1.2. Hardware Abstraction Layer—HAL4D13.C

To further simplify programming with the Device Controller of the ISP1362, the firmware defines a set of command
interfaces that encapsulate all the functions used to access the Device Controller of the ISP1362. When porting the
firmware to other operation systems, this portion of the code must be modified.

12.1.3. Interrupt Service Routine—ISR.C

This part of the code handles interrupt generated by the Device Controller of the ISP1362. It retrieves data from the
ISP1362 Device Controllet's internal FIFO to CPU memory and sets up proper event flags to inform the Main Loop
program to process.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 66 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.1.4. Protocol Layer—CHAP_9.C

This Protocol layer handles standard USB device request, which is defined in the Chapter 9 of USB Specification Rev.
2.0. The firmware implementation of the USB device request is described in more details in Section 12.7.

12.1.5. Protocol Layer—D 13BUS.C

This Protocol layer handles specific vendor requests. Examples ate the bulk transfer and the isochronous (ISO) transfer.

12.1.6. Main Loop—MAINLOOP.C

The Main Loop checks event flags and passes to appropriate subroutine for further processing. It also contains the code
for human interface, such as the keyboard scan.

12.2. Porting the Firmware to Other CPU Platform

Table 12-1 shows the modifications to building blocks that must be done. There are two levels of porting. The first level
is the Standard Device Request, i.e. USB Chapter 9 only, which is just to make the firmware pass enumeration by
supporting standard USB requests. The second level is the full product development. This involves product specific
firmware code, i.e. Vendor Request.

Table 12-1: Building Blocks Modifications

File Name Chapter 9 Only Product Level
HAIASYS.C Port to hardware specific. Port to hardware specific.
HAIL4D13.C Port to hardware specific. No change.
ISR.C No change. Add product specific processing to the
Generic and Main endpoints.
CHAP_9.C No change. Product specific USB descriptors.
D13BUS.C No change. Add vendor request supports, if necessary.
MAINLOOP.C | Depending on the CPU and the system, ports, timer | Add product specific Main Loop
and interrupt initialization must be rewritten. processing.

12.3. Developing the Firmware in the Polling Mode
To develop the firmware in the polling mode, add the following lines of code to the Main Loop:

if(interrupt_pin_low
fn_usb_isr();

Normally, Interrupt Service Routine (ISR) is initiated by the hardware. In the polling mode, the Main Loop detects the
status of the interrupt pin, and invokes ISR, if necessary.

12.4. Hardware Abstraction Layer

12.4.1. Hardware Abstraction Layer for the System

This layer contains the lowest-layer functions that must be changed on different CPU platforms. The function
prototypes present in the Hardware Abstraction layer for the system are as follows:

Hal 4Sys_Acqui r eTi ner O(voi d) ;
Hal 4Sys_Rel easeTi mer O(voi d) ;
interrupt Hal 4Sys_|sr4Ti mer(void);

voi d Hal 4Sys_Acqui r eKeypad(voi d);
voi d Hal 4Sys_Rel easeKeypad(voi d);

voi d Hal 4Sys_WAitinUS(I N QUT ULONG ti ne);
voi d Hal 4Sys_WaitinM5(I N OQUT ULONG tine);

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

67 of 99

Rev. 0.9

voi d Hal 4Sys_Control LEDPattern(UCHAR LEDpattern);
voi d Hal 4Sys_Control D13l nterrupt (BOOLEAN | nterrupt EN);

For example, the subroutine to acquire the system timer is as follows:

voi d Hal 4Sys_Acqui reTi mer O(voi d)
{

i f(bD1l3fl ags. bits. verbose)
printf("enter Hal 4Sys_AcquireTi merO\n");

Hal 4Sys_d dl sr4Ti mer = getvect (0x8);
setvect (0x8, Hal 4Sys_ I sr4Ti mer) ;

i f(bD13fl ags. bits. verbose)
printf("exit Hal 4Sys_AcquireTi ner0\n");

12.4.2. Hardware Abstraction Layer for the Device Controller of the ISP1362

The following functions are defined as the Device Controller command interface of the ISP1362 to simplify the device

programming. These are implementations of the ISP1362 Device Controller command set, which is defined in the

ISP1362 datasheet.

Hal 4D13_Set Endpoi nt Conf i g(UCHAR bEPConfi g, UCHAR bEPI ndex) ;

Hal 4D13_Get Endpoi nt Conf i g(UCHAR bEPI ndex) ;

Hal 4D13_Set Addr essEnabl e(UCHAR bAddr ess, UCHAR bEnabl e);
Hal 4D13_Get Addr ess(voi d);

Hal 4D13_Set Mbde(UCHAR bMode) ;
Hal 4D13_Get Mode(voi d) ;

Hal 4D13_Set DevConf i g(USHORT wDevCnf g) ;
Hal 4D13_Get DevConf i g(voi d) ;

Hal 4D13_Set | nt Enabl e(ULONG dI nt En) ;
Hal 4D13_GCet | nt Enabl e(voi d) ;

Hal 4D13_Set DMAConf i g(USHORT wDMAConfi g) ;
Hal 4D13_Get DMAConf i g(voi d) ;

Hal 4D13_Set DlVAOounter(USH(RT wDMACount er) ;
Hal 4D13_Get DMACount er (voi d) ;

Hal 4D13_Reset Devi ce(voi d);

Hal4D13_WriteEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);
Hal4D13_ReadEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);

Hal 4D13_Set Endpoi nt St at us(UCHAR bEPI ndex, UCHAR bStal | ed) ;

Hal 4D13_Get Endpoi nt St at usW nt er upt Cl ear (UCHAR bEPI ndex) ;
Hal 4D13_Val i dBuf f er (UCHAR bEPI ndex) ;

Hal 4D13_C ear Buf f er (UCHAR bEPI ndex) ;

Hal 4D13_Acknow edgeSETUP(void);

Hal 4D13_Get Err or Code(UCHAR bEPI ndex) ;
Hal 4D13_LockDevi ce(UCHAR bTr ue);

Hal 4D13_ReadChi pl D(voi d) ;
Hal 4D13_ReadCur r ent Fr amaNunber(vm d);

Hal 4D13_ReadlI nt er r upt Regi st er (voi d) ;

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 68 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.5. Interrupt Service Routine

The Device Controller of the ISP1362 firmware is fully interrupt-driven. The flowchart of Interrupt Service Routine
(ISR) is given in Figure 12-2.

ISR Entry

Read ISP1161 Device Controller Interrupt Register
Reset Idle Timer (see Figure 12-4)

—1 Sect Bus Reset Flag “Yes Bus Reset?

‘

Z

Yes— Set Suspend Changed Flag

Yes— DMA EOT Handler Subroutine 4

i

T L] L]

Z
o
A

Yes—m SOF Handler Subroutine

<

No

A

Control IN Done? Yes—» Ep00TxDone Handler Subroutine ——

No™

T

Yes— EpOORxDone Handler Subroutine ——

y

Yes—m EpO01Done Handler Subroutine —‘

’m» Ep02Done Handler Subroutine |——

No %
v

Yes— Ep03Done Handler Subroutine —

Yes— EpOEDone Handler Subroutine

‘4

>
>

No

| -
v
Send EOT to Interrupt Controller

End of ISR

Figure 12-2: Flowchart of ISR

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 69 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
Table 12-2: DcInterrupt Register: Bit Allocation

Bit 3 30 29 28 27 26 25 24
Symbol reserved
Reset 0 0 0 0 0 0 0 0
Access R R R R R R R R
Bit 23 22 21 20 19 18 17 16
Symbol EF14 EP13 EP12 EP11 EF10 EFg EF8 EFP7
Reset 0 0 0 0]] 0 0
Access R R R R R R R R
Bit 15 14 13 12 11 10 9 8
Symbol EF6 EF5 EF4 EF3 EF2 EF1 EPOIN EFOOUT
Reset 0 0 0 0]] 0 0
Access R R R R R R R R
Bit 7 6 5 4 3 2 1 0
Symbol BUSTATUS | SP_EOQT PSOF S0F EOT SUSPND = RESUME RESET
Reset 0 0 0 0 0 0 0 0
Access R R R R R R R R

Note: A logic 1 indicates that an interrupt occurred on the respective bit.

Figure 12-3 contains the pseudo code of a typical Interrupt Service Routine.

voi d fn_usb_isr(void)
ULONG i _st;

i_st = ReadlnterruptRegister(); /* See Figure 12-4 on reading the Interrupt register */
if(i_st 1=0)
i f(i_st & D13REG | NTSRC_BUSRESET)
I sr_BusReset ();

el se if(i_st & DL3REG | NTSRC_SUSPEND)
I sr_SuspendChange(); ~ /* This function sets suspend changed flag */

else if(i_st & DI3REG | NTSRC_EOT)
I sr_DmaEot (); /* DMAEOT handl er subroutine */

else if(i_st & (DL3REG | NTSRC_SOF| D13REG | NTSRC_PSEUDO SOF))
Isr_SOF(); /* SOF handler subroutine */

el se
{
i f(i_st & D13REG_ | NTSRC_EPOI N)
I sr_Ep00TxDone(); * Ep00TxDone handl er subroutine */
/* (control IN EP) */
i f(i_st & D13REG_| NTSRC_EPOQUT)
| sr_EpOORxDone(); /* EpOORxDone handl er subroutine */
/* (control OUT EP) */
i f(i_st & DI3REG. | NTSRC_EP01)
I sr_EpOl1Done(); /* EpOlDone handl er subroutine */
i f(i_st & D13REG | NTSRC_EP02)
| sr_EpO2Done(); /* EpO2Done handl er subroutine */
i f(i_st & D13REG. | NTSRC_EP03)
| sr_EpO3Done(); /* EpO3Done handl er subroutine */
/* Add interrupts as and when needed */
if(i_st & DI3REG | NTSRC EPOE)
| sr_EpOEDone() ; /* EpOEDone handl er subroutine */
}
}

Figure 12-3: Code Example of a Typical ISR

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 70 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

A pseudo code to read the Interrupt register is given in Figure 12-4.

ULONG ReadlI nt er r upt Regi st er (voi d)

ULONG i = O;

out port(D13 COWAND PORT, Read_| nt_Register); /* Read the Read_Int_Register = 0xC0O */

i = inport(D13_DATA_ P(RT) /* Read the | ower word */

i += (((ULONG i nport(D13_ DATA_PmT)) << 16); /* OR the lower word with the upper */
/* word to forma ULONG variable */

return i; /* Return the Interrupt register */

Figure 12-4: Code Example to Read the Dclnterrupt Register

At the entrance of ISR, the firmware uses the Read Interrupt register to decide the source of the interrupt and then to
dispatch it to the appropriate subroutines for processing. ISR communicates with the foreground Main Loop through
event flags "D13FLAGS" and data buffers "CONTROL_XFER".

typedef uni on _D13FLAGS

{
struct _D13FSM FLAGS
{

| RQL_1 UCHAR bus_reset 1;
I RQL_1 UCHAR suspend 1;
I RQL_1 UCHAR DCP_state 4;
| RQL_1 UCHAR setup_dma 1;
| RQL_1 UCHAR timer 1;
} bits;
ULONG val ue;
} D13FLAGS;
typedef struct _CONTROL_XFER
{
I RQL_1 DEVI CE_REQUEST Devi ceRequest ;
| RQL_1 USHORT wiLengt h;
I RQL_1 USHORT wCount ;
I RQL_1 ADDRESS Addr ;
I RQL_1 UCHAR dat aBuf f er [MAX_CONTROLDATA_SI ZE] ;

} CONTROL_XFER, * PCONTROL_XFER;

Wher e,
typedef struct _device_request

UCHAR brRequest Type;
UCHAR bRequest ;
USHORT wval ue;
USHORT wi ndex;
USHORT wiengt h;

} DEVI CE_REQUEST;

Figure 12-5: Control Flags

The task splitting between ISR and the Main Loop is that ISR collects data from the internal buffer of the ISP1362
Device Controller and moves the data packet to a data buffer. When ISR has collected enough data, it informs the Main
Loop that data is ready for processing. The Main Loop processes the data from the data buffer. The following sections
explain the various event handlers.

12.5.1. Bus Reset

The bus reset does not require any special processing within ISR. ISR sets the “bus_reset” flag in D13FLAGS and then
exits.

12.5.2. Suspend Change
Suspend does not require special processing within ISR. ISR sets the suspend flag in D13FLAGS and then exits.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

12.5.3. EOT Handler

71 of 99

Rev. 0.9

For information on EOT handler, contact Philips Semiconductors support team at wired.support@philips.com.

12.5.4. Control Endpoint Handler

No-data Control
return Status

Status
Status

Status

Status

Status

Control Write

Status Control Read

Figure 12-6: State Machine of the Control Transfer

The control transfer always begins with the Setup stage and is followed by an optional Data stage. The Data stage can be

one or more IN or OUT transactions. Finally, it ends with the Status stage, i.e. HANDSHAKE. Figure 12-6 shows the
vatious states of transitions on control endpoints. The firmware uses these five states to handle the control transfer

correctly.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 72 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.5.5. Control OUT Handler

K

Clear Control OUT Interrupt

. Control OUT Status Wrong
No———» R
eturn

Data OUT Packet

Control State =

No ’ DATAOUT? No
A 4

’ Yes
Yes L
$ y - . Control State <-
Control State <- Read Control OUT Endpoint Buffer STALL
SETUPPROC Clear the Buffer

All Data Received? No1
Yes
+ Control State <-
Control State <- DATAOUT
REQUESTPROC

End of Control OUT Handler

Figure 12-7: Flowchart of the Control OUT Handler

The microprocessor must clear the control OUT interrupt bit on the Device Controller of the ISP1362 and verify if this
endpoint is full. Figure 12-8 contains a pseudo code to check if the OUT endpoint is full. This is done by issuing a Read
Endpoint Status command (code 0x50) that clears the control OUT interrupt bit of the Interrupt register, and at the
same time returns status information. Figure 12-9 shows a pseudo code to read the DcEndpointStatus register (see Table
12-3 and Table 12-4). This clears the corresponding endpoint interrupt. If the status information reports a Setup packet
(SETUPT bit (bit 2) of the DcEndpointStatus register), the “SETUPPROC” state will be set for the Main Loop to
process. Otherwise, the microprocessor extracts the content of the data OUT packet buffer by reading the control
endpoint. Figure 12-10 contains a pseudo code to read the contents of an OUT buffer. After making sure all the data is
received, the handler sets the Device Controller of the ISP1362 to the “REQUESTPROC” state.

EP_St atus = Read_Endpoi nt _St at us(0x00) /* Endpoi nt status of EPO */
i f(EP_Status & 0x20) /* Check whether the primary buffer is full or not */

/* Proceed with the programflow */

Figure 12-8: Code Example for Checking Status of the OUT Endpoint

[UCHAR Read_Endpoi nt _St at us(_ UCHAR EPI ndex)

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 73 0f 99
ISP1362 Embedded Programming Guide Rev. 0.9
e
{
UCHAR c;
out port (D13_COWAND _PORT, READ EP_ST + EPI ndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & OxO0ff);
return c;
}
Figure 12-9: Code Example for Reading the DcEndpointStatus Register
A typical pseudo code to read the contents of an OUT buffer is given in Figure 12-10.
{USHORT Read_Endpoi nt (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
USHORT |, i;
/* Sel ect endpoint */
out port (D13_COWAND PORT , READ EP+EPI ndex); /* READ EP = 0x10 */
j = inport(Dl3_DATA PORT); /* Read the length in bytes inside the OUT buffer */
if(j > LENGTH
j = LENGTH,
for(i=0; i<} ; i++)
/* Read buffer */
*(PTR+i) = inport(D13_DATA PORT);
}
/* Clear buffer */
out port (D13_COMVAND_PORT , CLEAR BUFF+ EPI ndex); /* CLEAR BUFF = 0x70 */
return j;
}
Figure 12-10: Code Example for Reading the Contents of an OUT Buffer
Table 12-3: DcEndpointStatus Register: Bit Allocation
Bit 7 6 5 4 3 2 1 0
Symbol EPSTAL EPFULL1 | EPFULLO | DATA_FID OVER SETUPT CPUBUF reserved
WRITE
Reset | 0 0 0 0 0 0 0 0
Access | R R R R R R R R

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

Table 12-4: DcEndpointStatus Register: Bit Description

74 of 99

Rev. 0.9

Bit Symbol Description

T EFSTAL This bit indicates whether the endpoint is stalled or not

i1 = stalled, 0 = not stalled).

Setto logic 1 by a Stall Endpaint command, cleared to logic O by
an Unstall Endpoint command. The endpoint is automatically
unstalled upon reception of a SETUP token.

& EPFULLA Alogic 1 indicates that the secondary endpoint buffer is full.

5 EPFULLD Alagic 1 indicates that the primary endpoint buffer is full.

4 DATA_FID This bit indicates the data PID of the next packet (0 = DATA PID,
1 = DATAT FID).

3 OVERWRITE This bit is sel by hardware, a logic 1 indicating that a new Setup

packat has overwritten the pravious setup information, before it
was acknowledged or before the endpoint was stalled. This bit is
cleared by reading, if writing the setup data has finished.

Firmware must chack this bit before sending an Acknowledge
Setup command or stalling the endpaoint. Upon reading a logic 1
the firmware must stop ongoing setup actions and wait for a new

Setup packet.

2 SETUPT A logic 1 indicates that the buffer contains a Setup packet.

1 CPUBUF This bit indicates which buffer is currently selected for CPU
access (0 = primary buffer, 1 = secondary buffer).

0 - reserved

12.5.6. Control IN Handler

After the Setup stage is complete, the host executes the Data phase. If the Device Controller of the ISP1362 receives a

control IN packet, it will go to the “control IN handler”. Again, the microprocessor must first clear the control IN
interrupt bit of the ISP1362 Device Controller by reading its Read Endpoint Status code (Code 0x51). Figure 12-11

shows a pseudo code to read the DcEndpointStatus register. This clears the corresponding endpoint interrupt. Using the
Endpoint status, it can determine whether the IN buffer is empty or full. Figure 12-12 contains a pseudo code to check
whether the IN endpoint is empty or not. After verifying that the Device Controller of the ISP1362 is in the appropriate
state, the microprocessor proceeds to send the data packet, see Figure 12-13.

Figure 12-14 shows the flowchart of the control IN handler. Since the Device Controller of the ISP1362 control

endpoint has only 64 bytes FIFO, the microprocessor must control the amount of data during the transmission phase, if
the requested length is more than 64 bytes. As indicated in the flowchart, the microprocessor must check its current and

remaining data size to be sent to the host. If the remaining data size is greater than 64 bytes, the microprocessor will

send the first 64 bytes and then subtract the reference length (requested length) by 64. When the next control IN token

comes, the microprocessor determines whether the remaining byte is zero. If there is no more data to be sent, the

microprocessor must send an empty packet to inform the host that there is no more data to be sent.

UCHAR Read_Endpoi nt _St at us(UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COMVAND_PORT, READ EP_ST + EPI ndex);
¢ = (UCHAR) (i nport (D13_DATA PORT) & O0xO0ff);
return c;

/* READ_EP_ST = 0x50 */

Figure 12-11: Code Example for Reading the DcEndpointStatus Register

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 75 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

EP_St at us = Read_Endpoi nt _St at us(0x01) /* Endpoint status of EP1 */
if(!(EP_Status & 0x20)) /* Check whether the primary buffer is enpty or not */

{
/* Proceed with the program flow */
}

Figure 12-12: Code Example for Checking the Status of the IN Endpoint

USHORT Wite_Endpoi nt (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)

{

USHORT i ;

/* Sel ect the endpoint */

out port (D13_COWAND PORT , WRI TE_EP+EPI ndex); /* WRITE_EP = 0x00 ; EPIndex = 0x01 */
out port (D13_DATA PORT , LENGTH); /* Wite the length of the data into the IN buffer */
/* Wite the buffer */

for(i=0; i<LENGTH ; i++)

out port (DL3_DATA PORT , *(PTR+i));

/* Validate buffer */
out port (D13_COWAND PORT, EP_VALID BUF+bEPI ndex); /* EP_VALID BUF =0x60 ; EPIndex = 0x01 */

return j;

Figure 12-13: Code Example for Writing the Contents to an IN Buffer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

76 of 99

Rev. 0.9

Control IN Handler

Clear Control IN Interrupt Bit

Buffer Empty?

No—» Control Status Wrong Return

Control State =

DATAIN? No—¥

Control State <- STAIL

Yes Tast Packet=0?

No

v v

No

Write Control IN Endpoint Buffer

Write Control IN Buffer with
Validate the Buffer Rermaining Data Size
Control State <- DATAIN Control State <- HANDSHAKE

Wrhite Control IN Buffer with
Empty Packet
Control State <- HANDSHAKE

v ,

I

}

Gnd of Control IN Handl@

Figure 12-14: Flowchart of the Control IN Handler

Note: OUT data transactions and IN data transactions are slightly different in implementation. The control OUT
handler and the control IN handler are called during a control OUT interrupt event and a control IN interrupt event,
respectively. When the control OUT interrupt event occurs, it signifies that the host has already sent data to the control
OUT endpoint. This OUT interrupt is the trigger to start reading from the buffer. However, for the control IN, the

payload is first written in the IN endpoint and then validated.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 77 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.5.7. Bulk Endpoint Handler

The Device Controller of the ISP1362 has 16 endpoints: control IN and OUT plus 14 configurable endpoints. The 14
endpoints can be individually defined as interrupt, bulk or isochronous, IN or OUT. The size of the FIFO determines
the maximum packet size that the hardware can support for a given endpoint. Table 12-5 shows the recommended
register programming of the DcEndpointConfiguration register for a bulk endpoint. The bit allocation and bit
description of the DcEndpointConfiguration register are given in Table 12-6 and Table 12-7, respectively.

Table 12-5: Recommended DcEndpointConfiguration Register Programming for a Bulk Endpoint

Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT Endpoint direction
1 for IN
5 1 Enable double buffering
4 0 Bulk endpoint
3t00 0011 Size bits of an enabled endpoint: 64 bytes

Table 12-6: DcEndpointConfiguration Register: Bit Allocation

Bit 7 6 5 4 3 2 1 0
Symbol | FIFOEN EPDIR DBLBUF | FFOISOD FFOSZ[3:0]

Reset | 0 0 0 0 0 0 0 0
Access | RW RIW RW RIW RAW RAW RIW RAW

Table 12-7: DcEndpointConfiguration Register: Bit Description

Bit Symbol Description

7 FIFDEM Adlogie 1 indicates an enabled FIFO with allocated mamaory.
Alogie 0 indicates a disabled FIFO (no bytes allocated).

5] EFDIR This bit defings the endpoint direction (0= OUT, 1 = IN); it also
determines the DMA transfer direction (0 = read, 1 = wrile).

5 DBLBUF Alogie 1 indicates that this endpoint has double buffering.

4 FFOISO Alogic 1 indicates an isochronous endpoint. A logic 0 indicates
a bulk or interrupt endpoint.

dto0 FFOSA(3:0] Selects the FIFO size according to programmable FIFOD size

An example on how to configure a bulk OUT or bulk IN endpoint is given in Figure 12-15.

#defi ne EPCNFG_FI FO_EN 0x80
#defi ne EPCNFG_DBLBUF_EN 0x20
#def i ne EPCNFG_NONI SOSZ_64 0x03
#defi ne EPCNFG_| N_EN 0x40

/* Configuration of bulk OUT */
Set Endpoi nt Conf i g(EPCNFG_FI FO_EN\
| EPCNFG_DBLBUF_EN\
| EPCNFG_NONI SOSZ_64\
, Bul k_EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on which endpoint you */
/* configure as bulk OQUT. */
)

/* Configuration of bulk IN */
Set Endpoi nt Confi g(EPCNFG_FI FO_EN\
| EPCNFG_DBLBUF_EN
| EPCNFG_NONI SOSZ_64\

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 78 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

| EPCNFG_| N_EN\
Bul k_EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on which endpoint you */
/* configure as bulk IN */

)
Figure 12-15: Code Example for Configuting a Bulk OUT or Bulk IN Endpoint

The function definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 12-16.

voi d Set Endpoi nt Confi g(UCHAR bEPConfi g, UCHAR bEPI ndex)
{

out port (D13_COWWAND_PORT, (USHORT) (VWR_EP_CONFI G+bEPI ndex)); /* WR_EP_CONFI G = 0x20 */
out port (D13_DATA _PORT, (USHORT) bEPConfi g) ;

Figure 12-16: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

When the host is ready to transmit the bulk data, it issues an OUT token packet followed by a data packet. The Device
Controller of the ISP1362 generates an interrupt to inform the microprocessor. The microprocessor must clear the
interrupt bit of the ISP1362 Device Controller and verify the data length. The flowchart of the bulk OUT handler is

given in Figure 12-17.

Clear Bulk OUT Interrupt (see
Figure 12-18)

Buffer Full
(see Figure 12-19)

Bulk OUT Status Wrong

No> Return

Yes

v

Read Bulk OUT Endpoint Buffer
(see Figure 12-20)

2

All Data Received?

End of Bulk OUT Handler

Figure 12-17: Flowchart of the Bulk OUT Handler

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 79 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Figure 12-18 shows the code example for reading the DcEndpointStatus register. This clears the corresponding endpoint
interrupt.

UCHAR Read_Endpoi nt _St at us(UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COWAND_PORT, READ EP_ST + EPI ndex); /* READ _EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & OxO0ff);

return c;

Figure 12-18: Code Example for Reading the DcEndpointStatus Register

/* Bu
EP_St
i f (EP_
{
}

| k_EPI ndex ranges from 0x50 — Ox5F, dependi ng on whi ch endpoint you configure as bul k */
atus = Read_Endpoi nt _St at us(BULK_EPI ndex)
St atus & 0x20) /* Check if the primary buffer is full */

/* Proceed with the program flow */

Figure 12-19: Code Example for Checking the Status of the Bulk OUT Endpoint

USHORT Read_Endpoi nt (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
{

USHORT j,i;

/* Sel ect endpoint */

out port (D13_COWAND_PORT , READ EP+EPI ndex) ; /* READ_EP = 0x10 */

j = inport(DL3_DATA PORT); // Read the length in bytes inside the OQUT buffer
if(j > LENGTH)

= LENGTH,
/*Read the buffer */
for(i=0; i<} ; i++)

*(PTR+i) = i nport(D13_DATA PORT);

/* dear the buffer */
out port (D13_COWAND PORT , CLEAR BUFF+ EPI ndex); /* CLEAR BUFF = 0x70 */
return j;

Figure 12-20: Code Example for Reading the Contents of a Bulk OUT Buffer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 80 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

When the host is ready to receive the bulk data, it issues an IN token. The Device Controller of the ISP1362 generates
an interrupt to inform the microprocessor. The microprocessor must clear the interrupt bit of the ISP1362 Device
Controller and return the data packet to be sent. The flowchart of the bulk IN handler is given in Figure 12-21.

Clear Bulk IN Interrupt (see
Figure 12-22)

Bulk IN Status Wrong
Return

Buffer Empty?

(sce Figure 12-23) No—»

Yes
v

Write Bulk IN Endpoint Buffer
(see Figure 12-24)

No

Yes

v

CEnd of Bulk IN Handler>

Figure 12-21: Flowchart of the Bulk IN Handler

A pseudo code for reading the DcEndpointStatus register is given in Figure 12-22. This clears the corresponding
endpoint interrupts.

UCHAR Read_Endpoi nt _St at us(UCHAR EPI ndex)
{

UCHAR c;
out port (D13_COWAND PORT, READ EP ST + EPIndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0OxO0ff);

return c;

}
Figure 12-22: Code Example for Reading the DcEndpointStatus Register

/* Bul k_EPI ndex ranges from 0x50 — Ox5F, dependi ng on which endpoint you configure as bulk. */
EP_St atus = Read_Endpoi nt _St at us(BULK_EPI ndex)
If(!'(EP_Status & 0x20)) /* Check whether the primary buffer is full or not */
{

/*Proceed with the programflow */
}

Figure 12-23: Code Example for Checking the Status of the Bulk IN Endpoint

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 81 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

USHORT Wi te_Endpoint (UCHAR EPI ndex , USHORT* PTR , USHORT LENGTH)
{
USHORT i ;
/* Sel ect the endpoint */
out port (D13_COVMAND_PORT , WRI TE_EP+EPI ndex): /* WRI TE_EP = 0x00 */
out port (D13_DATA PORT , LENGTH); /* Wite the length of data into the IN buffer */

/* Wite the buffer */
for(i=0 ; i<LENGTH ; i++)
out port (DL3_DATA PORT , *(PTR+l));

/* Validate the buffer */
?out por t (D13_COMVAND_PORT, EP_VALI D BUF+bEPI ndex); /* EP_VALID_BUF =0x60; */

return j;

Figure 12-24: Code Example for Writing the Contents into a Bulk IN Buffer

12.5.8. ISO Endpoint Handler

Table 12-8 contains the recommended register programming in the DcEndpointConfiguration register for an ISO
endpoint.

Table 12-8: Recommended DcEndpointConfiguration Register Programming for an ISO Endpoint

Bit Bit Setting Description
7 1 Endpoint enable bit
6 0 for OUT Endpoint direction
1 for IN
5 1 Enable double buffering
4 1 ISO endpoint
3t00 1011 Size bits of an enabled endpoint: 512 bytes

Figure 12-25 contains an example on how to configure an ISO OUT or ISO IN endpoint.

#defi ne EPCNFG_FI FO_EN 0x80
#defi ne EPCNFG_DBLBUF_EN 0x20
#def i ne EPCNFG_| SOSZ_512 0x0B
#define EPCNFG_| N_EN 0x40
#defi ne EPCNFG_| SO EN 0x10

/* Configuration of |1SO QUT */
Set Endpoi nt Conf i g(EPCNFG_FI FO_EN\
| EPCNFG_DBLBUF_EN
| EPCNFG_| SOSZ_512\
| EPCNFG_I SO _EN \
, 1 SO _EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on which endpoint you */
/* configure as | SO QUT. */
)

/* Configuration of 1SOIN */
Set Endpoi nt Confi g(EPCNFG_FI FO_EMN
| EPCNFG_DBLBUF_EN
| EPCNFG_I SCSZ_512\
| EPCNFG_| SO _EN \
| EPCNFG_I N_EN\
, 1 SO_EPI ndex\ /* Ranges from 0x00 — OxOF, dependi ng on which endpoint you */
/* configure as SO IN */
)

Figure 12-25: Code Example for Configuring an ISO OUT or ISO IN Endpoint

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 82 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

The function definition of SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex) is given in Figure 12-26.

voi d Set Endpoi nt Confi g(UCHAR bEPConfi g, UCHAR bEPI ndex)
{

out port (D13_COWAND_PORT, (USHORT) (WR_EP_CONFI G+bEPI ndex)); /* WR_EP_CONFI G = 0x20 */
out port (D13_DATA PORT, (USHORT) bEPConfi g) ;

Figure 12-26: Function Definition of void SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex)

Flowcharts of the ISO OUT handler and the ISO IN handler are given in Figure 12-27 and Figure 12-28, respectively.

1SOOUT
Handler

Clear ISO OUT Interrupt Bit
(see Figure 12-29)

A

Read ISO OUT Endpoint Buffer
(see Figure 12-30)

All Data Received?

Figure 12-27: Flowchart of the ISO OUT Handler

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 83 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

ISO IN Handler

Clear ISO IN Interrupt Bit
(see Figure 12-29)

v

Write ISO IN Buffer
(see Figure 12-31)

v

End of ISO IN
Handler

Figure 12-28: Flowchart of the ISO IN Handler

Time is a key element of an isochronous transfer. A typical example of the isochronous data is voice. All isochronous
pipes move exactly one data packet in each frame, i.e., every 1 ms.

A pseudo code for reading the DcEndpointStatus register is given in Figure 12-29. This clears the corresponding
endpoint interrupts.

UCHAR Read_Endpoi nt _St at us(UCHAR EPI ndex)
{

UCHAR c;

out port (D13_COWAND_PORT, READ EP_ST + EPI ndex); /* READ EP_ST = 0x50 */
¢ = (UCHAR) (i nport (D13_DATA PORT) & 0xO0ff);

return c;

Figure 12-29: Code Example for Reading the DcEndpointStatus Register

USHORT Readl SCEndpoi nt (UCHAR bEPI ndex, USHORT* ptr, USHORT | en)

{
USHORT i, j;

/* Sel ect the endpoint */
out port (D13_COWAND PORT, READ EP+ bEPI ndex); /* READ-EP = 0x10 */
j = inport(D13_DATA PORT); /* Reading length of data in the buffer */

if(j '=1len)

j = len;

/* Read the buffer */

for(i=0; i<j; i++)

*(ptr + i) = inport(D13_DATA PORT);

/* dear the buffer */

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 84 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

out port (D13_COVWAND_PORT, CLEAR BUF+bEPI ndex); /* CLEAR BUF = 0x70 */
return j;

Figure 12-30: Code Example for Reading from an ISO Endpoint Buffer

USHORT Wit el SCEndpoi nt (UCHAR bEPI ndex, USHORT* ptr, USHORT |en)

{

USHORT i ;
static UCHAR j;

/* Sel ect the endpoint */
out port (D13_COWAND_PORT, WRI TE_EP + bEPI ndex); /* WRI TE_EP = 0x00 */
out port (D13_DATA PORT, len); [/* Witing the length of data */

/* Wite the buffer */
for(i=0; i<len; i=i+2)
out port (D13_DATA PORT, *(ptr+i));
/* Validate the buffer */
out port (D13_COVWWAND_PORT, VALI D BUF+bEPI ndex); /* VALID BUF = 0x60 */
return i;

Figure 12-31: Code Example for Writing to an ISO Endpoint Buffer

12.6. Main Loop

Upon powered on, the microprocessor must initialize its ports, memory, timer, and interrupt service routine handler.
Then, the microprocessor reconnects USB, which involves setting the SOFTCT bit in the DcMode register to ON. This
procedure is important because it ensures that the ISP1362 Device Controller will not operate before the
microprocessor is ready to serve the ISP1362 Device Controller.

The flowchart of the Main Loop is given in Figure 12-32. In the Main Loop routine, the microprocessor polls for any
activity on the keyboard. If any of the specific keys is pressed, the handle key commands will execute the routine and
then return to the Main Loop. This routine is added for debugging purposes only. A 1 ms timer is programmed to
activate the routine to check for any key pressed on the evaluation board.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

85 of 99

Rev. 0.9

Main Loop

Initialize ports, memory and timer
Setup ISR and program interrupt controller

Reconnect USB

| Loop

Yes—P

Read the key code and
handle the key command

Noe

]

Yes—

’

Update test LEDs on the evaluation
board

Now

Yes—w

Display the bus reset event

’

T L

Suspend change? Yes—

Read the suspend state and
display the suspend change event

>

No

Yes—

S

Dispatch the setup handler
for future processing

No <«

Yes—

’

Dispatch the device request to the
protocol layer for processing

No «

Yes—P

Dispatch the setup DMA handler

|

No «
v

Program exit?

T
Yes

Figure 12-32: Flowchart of the Main Loop

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 86 of 99

ISP1362 Embedded Programming Guide Rev. 0.9
Table 12-9: DcMode Register: Bit Allocation
Bit 7 6 5 4 3 2 1 0
Symbol | reserved GOSUsSP reserved INTENA DBGMGCD reserved SOFTCT
Reset | 10711 0 0 0 o1l oltl o1l ol
Access | RAW R/W R RNV R/W RMW RW RMW

[11 Unchanged by a bus reset.

Table 12-10: DcMode Register: Bit Description

Bit Symbal Description

Tio6 - reserved

& GOSUSP Writing a logic 1 followed by a logic O will activate the ‘suspend’
mode.

4 - reserved

3 INTEMA Alogic 1 enables all interrupts. Bus reset value: unchanged.

2 DEGMOD Alogic 1 enables debug mode where all NAKs and errors will

generate an interrupt. A logic O selects normal operation, where
interrupts are generated on every ACK (bulk endpoints) or after
every data transfer (isochronous endpoints). Bus reset value:
unchanged.

- reserved
0 SOFTCT Alogic 1 enables SoftConnect. This bitis ignored if EXTPLL =1
in the DcHardwareConfiguration Register (see Table 114). Bus
reset value: unchanged.
Remark: Inthe OTG mode, this bit is ignored. The LOC_COMM

bit of the OtgControl register controls the pull-up resistor on the
OTG_DP1 pin.

Figure 12-33 shows a pseudo code for writing to the DcMode register. An example on setting the SOFCT bit to enable
SoftConnect is given in Figure 12-34.

voi d Set Mbde(UCHAR bMbde) /1 Function definition
{

out por t (D13_COWMMAND_PORT, WRI TE_MOD REG); /* WRI TE_MOD REG = 0xB8 */
out port (DL3_DATA PORT, bMde);

Figure 12-33: Code Example for Writing to the DcMode Register

Set Mode(MODE_| NT_EN /* MODE_I NT_EN = 0x08* enables all interrupts */
| MODE_SOFTCONNECT\ /* MODE_SOFTCONNECT = 0x01 enabl es Soft Connect */
| MODE_DVA16\ /* MODE_DMA16 = 0x80* selects 16-bit DVA bus width */

)

Figure 12-34: Code Example on Setting SoftConnect

When the polling reaches the check setup packet, the microprocessor verifies if the current status is SETUPPROC.
Then, it dispatches it to setup handler subroutines for processing. On reaching REQUESTPROC, it dispatches the
device request to the protocol layer for processing.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 87 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.7. Standard Device Requests

All USB devices must respond to a variety of requests called “standard” requests. These requests are used for
configuring a device and controlling the state of its interface, along with other miscellaneous features. The host issues
these device requests by using the control transfer mechanism. The three states—Default State, Address State and
Configured State—must be taken care of. At a particular time, the device can be in only one of the states. For detailed
information, refer to Chapter 9 of the USB specification rev. 2.0.

12.7.1. Clear Feature Request

In the Clear Feature request, the microprocessor must clear or disable a specific feature of the device based on the three
states. The flowchart of Clear Feature is given in Figure 12-35. In this case, the microprocessor determines whether the
request is meant for the device, interface or endpoints. There will not be any support if the recipient is an interface.
Feature selectors are used when enabling or setting features specific to the device or endpoint, such as remote wake-up.
If the recipient is a device, the microprocessor must disable the remote wake-up function, if this function is enabled. If
the recipient is an endpoint, the microprocessor must unstall the specific endpoint through the Write Endpoint Status
command.

Device Behaviour is Clear_Feature
Undefined i¢— Default State

Configured State

Address State

Clear the device
Yes—W feature according to [—
"Feature Selector"

Clear the device
feature according to —————Yes
"Feature Selector"

Is recipient a

device?

Clear the endpoint
Yes— feature according to —»
"Feature Selector"

Clear the endpoint
feature according to 14— Yes
"Feature Selector”

Is recipient an
endpoint?

Is recipient for Is recipient an

endpoint?

endpoint zero?

No

i

Request Error Stall
Endpoint

ﬁ '
.| Send Zero-Length o Find Clear_Feature Send Zero-Length |
Packet K Packet

Figure 12-35: Flowchart of Clear Feature

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 88 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

Zero-Length Packet

A zero-length packet is a data packet with data length as zero. It is not the same as placing a 0x00 in the buffer and
sending it out because this means a data length of 1 and a payload of 0x00. As can be seen in the pseudo code in Figure
12-13, sending a zero-length packet can be easily done by calling the Write_Endpoint() function with the following
arguments in it.

/1 This function call will send a zero-length packet to the host through the control IN endpoint.
Wite_Endpoint (1,0 ,0) // See Figure 12-13

Figure 12-36: Code Example for Sending Zero-Length Packet

Request Error

When a control pipe request is not supported or the device is unable to transmit or receive data, a STALL must be
returned in response to an IN Token. A stalled control endpoint is automatically unstalled when it receives a Setup
token, regardless of the packet content. If the microcontroller wishes to unstall an endpoint, the Stall Endpoint or
Unstall Endpoint command can be used.

void Wite_ EP_Status(UCHAR bEPI ndex, UCHAR bStall ed)

{

if(bStalled&x01) // Check to stall or unstall the endpoint

out port (D13_COMVAND_PORT, STALL_EP + bEPIndex); /* STALL_EP = 0x40 */

el se

out port (D13_COWAND PORT, UNSTALL_EP + bEPI ndex); /* UNSTALL_EP = 0x80 */
}

Figure 12-37: Code Example to Stall or Unstall an Endpoint

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

12.7.2.

Get Status Request

89 of 99

Rev. 0.9

In the Get Status request, the microprocessor must return the status of the specific recipient based on the state of the
device. The microprocessor must also determine the recipient of the request. If the request is to a device, the
microprocessor must return the status of the device to the host, depending on the states. For a system having remote
wake-up and self-powering capabilities, the returning data is 0x0003. Figure 12-38 shows the Get Status flowchart.

Device behaviour is
undefined

Get_Status

i4— Default State Configured State

Return device status
to the host

Address State

Is recipient
a device?

Is recipient
a device?

No No

Return device status
to the host

Request Error

Stall Endpoint

s recipient ar
interface?

Is recipient

—Yes .
an interface?

Return interface

status to the host

Pl

Return endpoint
status to the host

«Yes

Is recipient
ndpoint zero?

No

Is recipient
endpoint?

Return endpoint

status to the host

Request Error
Stall Endpoint

4—No

/ ‘ N\
» End of Get_Status |4

Figure 12-38: Flowchart of Get Status

Visit

Philips Semiconductors - Asia Product Innovation Centre
www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

12.7.3. Set Address Request

90 of 99

Rev. 0.9

In the Set Address request (see Figure 12-39), the device gets the new address from the content of the Setup packet.
Note that this Set Address request does not have a Data phase. Therefore, the microprocessor must write a zero-length

data packet to the host at the acknowledgment phase.

Set_Address
Default State

\‘//\

s the address non>
No

}

Configured State

zeror

Address State

Is the address
non-zero?

Yes

J

Write zero to the Device Address
Address register. register.
State = Address State State = Default State

Write zero to the Write new address to the Device
Device Address register.

State = Default State

Write new address to the Device
Address register.
State = Address State

4

Send zero-length
packet to the host

<

Device behaviour
is undefined

Send zero-length
packet to the host

A 4

> End Set_Address <

Figure 12-39: Flowchart of Set Address

Figure 12-40 shows a pseudo code of the Set Address routine.

voi d Set Addr ess(UCHAR bAddress, UCHAR bEnabl e)
{

out port (D13_COWAND_PORT, WR DEV_ADD); // WR _DEV_ADD = 0xB6
i f(bEnabl e) // Enables or disables the address

bAddress | = ADDR_EN, /* ADDR_EN = 0x80 */
el se

bAddress &= ADDR _MASK;

| /* ADDR_MASK = Ox7F */
out port (DL3_DATA PORT, bAddress);

}
Figure 12-40: Code Example of the Set Address Routine
Table 12-11: DcAddress Register: Bit Allocation
Bit 7 6 5 4 3 2 0
Symbaol | DEVEM DEVADR[E:0]
Reset | o 0 0 0 0 0 0
Access | RN R RN R R R/ RAN RV

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

91 of 99

ISP1362 Embedded Programming Guide

Rev. 0.9

Table 12-12: DcAddress Register: Bit Description

Bit Symbol Description
7 DEVEM Alogic 1 enables the device.
Gtol DEVADRIE:0] This field specifies the USE device address.

12.7.4. Get Configuration Request

In the Get Configuration request (see the flowchart in Figure 12-41), the microprocessor must return the current
configuration value. The microprocessor first determines what state the device is in. Depending on the state, the
microprocessor will either send a zero or the current non-zero configuration value back to the host.

Address State

Send "0" to the host

Get_Configuration

Configured State

Default State
A

Send non-zero configuration
value of the current
configuration to the host

Device behaviour
is undefined

End Get_Configuration

Figure 12-41: Flowchart of Get Configuration

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 92 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.7.5. Get Descriptor Request

For the Get Descriptor request, the microprocessor must return the specific descriptor, if the descriptor exists. First, the
microprocessor determines whether the descriptor type request is for a device or configuration. It then sends the first 64
bytes of the device descriptor, if the descriptor type is for a device. The reason for controlling the size of returning bytes
is that the control buffer has only 64 bytes of memory. The microprocessor must set a register to indicate the location of
the transmitted size. The Get Descriptor request is a valid request for Default State, Address State and Configured State.
Figure 12-42 shows the flowchart of Get Descriptor.

Get_Descriptor

Does the host
want a device
descriptor request?

A

Send Device Descriptor

Does the
host want a

Send Configuration
Descriptor

configuration

descriptor request?

Does the host
want a string

\J

. Send String Descriptor
descriptor g p

request

Request Error Stall Endpoint

v
Endoﬁ< '

Get_Descriptor

Figure 12-42: Flowchart of Get Descriptor

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

12.7.6. Set Confi

guration Request

93 0f 99

Rev. 0.9

For the Set Configuration request (see Figure 12-44), the microprocessor determines the configuration value from the
Setup packet. If the value is zero, the microprocessor must clear the configuration flag in its memory and disable the
endpoint. If the value is one, the microprocessor must set the configuration flag. Once the flag is set, the microprocessor
must also send the zero-data packet to the host at the acknowledgment phase.

Did the host send
"0" to the device?

Address State

Set_Configuration

\/’/\

Default State

v

Device behaviour

Yes

i is undefined i

Configured State

Did the host send
"0" to the device?

send the configuration value
as stated in the configuration

No

v

Request Error Stall
Endpoint

State = Address State State = Addtess State
No Send zero packet to the host Send zeto packet to the host No
Did the host
send the configuration Did the host
value as stated in the
configuration ¥
descriptor? s Yes descriptor?
State = Configured State State = Configured State
N Send zero packet to the host Send zero packet to the host
o
Request Error Stall
Endpoint

C End Set_Configuration >

Figure 12-43: Flowchart of Set Configuration

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 94 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.7.7. Get and Set Interface Requests

For the Get and Set Interface requests (see flowcharts in Figure 12-44 and Figure 12-45), the microprocessor just needs
to send one zero-data packet to the host because the Philips evaluation board only supports one type of interface. For
the Set Interface request on the Philips evaluation board, the microprocessor need not do anything except to send one
zero data packet to the host as the acknowledgment phase.

Get_Interface

{Address State——— ——Configured state

\/K\

Request Error Stall Default State

Endpoint Send a zero to host

Device behaviour is
undefined

A
End of \ 4
"\ Get_Intetface)

Figure 12-44: Flowchart of Get Interface

Set_Interface

[Address State———

Configured state

Request Error Stall Default State
Fndpoint Send a zero to
np L host
Device behaviour is
undefined
End of

P <
\ Get_Interface)

Figure 12-45: Flowchart of Set Interface

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

12.7.8.

Set Feature Request

95 of 99

Rev. 0.9

The Set Feature request is just the opposite of the Clear Feature request. Figure 12-46 contains the flowchart of Set
Feature. If the recipient is a device, the microprocessor must set the feature of the device according to the feature

selector in the Setup packet. Again, there is no support for the Interface recipient. For example, if the feature selector is
0 (which means enabling endpoint), the Device Controller of the ISP1362 specific endpoint must be stalled through the

Write Endpoint Status command.

Set the device feature
according to
"Feature Selector"
Send Zero Length packet

Address State

Is recipient a
device?

Set_Feature

Configured State

Set the device feature
Is recipient a
device?

according to
"Feature Selector"
Send Zero Length packet

Default State

No

Device Behaviour

Set the endpoint feature is Undefined Set the endpoint feature
. according to . Vs Is recipie'nt an Is recipie_nt an Yeswl accr)rdiflg to
Feature Selector endpoint? endpoint? "Feature Selector"
Send Zero Length packet Send Zero Length packet
No No
Request Error Request Error
Stall Endpoint Stall Endpoint
A4
A v »{ End Set_Feature |« v 4
Figure 12-46: Flowchart of Set Feature
12.7.9. Class Request

Support for class requests is not included in the Device Controller of the ISP1362 sample firmware.

12.8. Vendor Request

In the ISP1362 Device Controller sample firmware and applet, the vendor request sets up the bulk transfer or the
isochronous transfer. This request is sent through the control pipe that is done by IOCTL_WRITE_REGISTER.

IOCTL_WRITE_REGISTER is defined by Microsoft® Still Image USB Interface in Windows® 98 DDK. A device
vendor may also define requests supported by the device.

12.8.1. Vendor Request for the Bulk Transfer
The device request is defined in Table 12-13.

Table 12-13: Device Request

Offset | Field Size | Value Comments

0 BmRequestType 1 0x40 Vendor request, host to device

1 Brequest 1 0x0C Fixed value for IOCTL_WRITE_REGISTER
2 Wvalue 2 0 Offset, set to zero

4 Windex 2 0x0471 | Fixed value of Setup bulk transfer

6 Wlength 2 6 Data length of Setup bulk transfer

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity

ISP1362 Embedded Programming Guide

96 of 99

Rev. 0.9

The details requested by the bulk transfer operation are sent in the Data phase after the Setup Token phase of the device

request. The sample firmware and applet use a proprietary definition, which is given in Table 12-14.

Table 12-14: Proprietary Definition of the Sample Firmware and Applet

Idle

Offset Field Comments
0 Address|7:0] The start address of the requested bulk transfer.
1 Address[15:8] —
2 Address[23:10] —
3 Size[7:0] Size of the transfer.
4 Size[15:8] —
5 Command Bit 7: 1—start bulk transfer by DMA; O—start bulk transfer by PIO
Bit 0: 1—IN token; 0—OUT token
12.8.2. CATC Capture of a PIO OUT Transfer
BmRequestType
Brequest Wvalue
Wlength
Facket# g Svyno
1903 ||| oooooood
Facket# |7 Syne CRC1G6 | ECF | Idle
1884 |=| | noooonood
Facket# g Syno
1925 ||| oooooood 3.00|[11802
Facket# g Svyno ErDP
zo01 ||| oooooood 2 o |oxi1s|z7s
——== Windex
Facket# |7 Syne CRC1G | ECF | Idle
2002 00000001 ox7Foc]z27s|] 4 |
Fachket# Syno
zooz ||| oooooood . ..
Proprietary definition
Facket# g Svyno ADDR (S8
z014 ||| oooooood
Facket # Syno o P m
zo15 || ooooooot | oxDz | o foxoooolsonll s Empty packet
Facket# g Syno A
zod6 || oooocoot | ox4E |z75|[11860
Facket# |3 Syne SUT ENDF Idle Data Payload 64 bytes
2019 &) | oooooooq | oxer 2 7 |oxoc|zo0
Facket# |§ Syno D TAD
2020 =3[| oooooooq OS2 Qooo: 00 00 o0 00 04 05 06 07 053 09 04 OB OC OD OE OF 10 11 12 13 |oxc62E|3.00 n
00zZ0: 14 15 16 17 15 19 14 1B IC 1D 1E 1F 20 &1 22 23 24 25 =6 27
aod0: 25 29 24 2B ZC 2D 2E =F 30 31 532 33 34 35 36 37 38 39 SA 3B
00e0: 3C 30 3E 3F
Facket# |§ Syno ACK
zoz1 || ooooooot | oxd4e |z75|[113sz

Figure 12-47: CATC Capture of a PIO OUT Transfer

Philips Semiconductors - Asia Product Innovation Centre
Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 97 of 99
. .
ISP1362 Embedded Programming Guide Rev. 0.9
e
12.8.3. CATC Capture of a PIO IN Transfer
BmRequestType
Brequest Wralue
Wlength
FPacket# |3 Svne SETLR ADDR J=EE 3 =
2025 5 Qoooooo QG |2.75
7
Fackets |5 Syne (!) Idle
2026 S aooooaod 40 0OC 00 00 71 04 06 00 |Ox=7499|2.75
Facket® B3 Syno Ak
2027 =N | 00000001 Ox4B |2.76[|11802
Facket# |3 Sync QLT ERDP Id
2033 5 aooooood 2 u] Ox1& | 3.00
Facket# Syne
2034 aooooaod
Facket# Syno Windex
2035 Qoooooo . 2.9
Proprietary definition
Facket# Sync ADDR ==
2045 aooooood
Facket# Syne
2047 aooooaod
Empty packet
Facket# Syno
2048 Qoooooo
FPacket# Syne ADDR == CRCS [EOF Data Payload 64 bytes
2051 aooooood
Facket# Syne Idle
2052 oooooooq O3 gooo: 00 00 00 00 04 05 06 07 05 09 04 O OC 0D OE OF 10 11 12 13 Jo=CAZE|2.75 ﬂ
00=0: 14 15 16 17 15 19 14 1B 1C 10 1E IF =0 21 22 23 24 25 2a 27
0o0d40: 28 =9 24 ZE =C 2D 2E 2F 30 31 32 33 54 35 36 37 38 39 34 3B
goso: 3C 3D 3E 3F
Facket® B3 Sync Ak
2053 =8 | 00000001 Ox4B |2.00(|11346

Figure 12-48: CATC Capture of a PIO IN Transfer

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 98 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.8.4. Vendor Request for the ISO Transfer
The device request is defined in Table 12-15.

Table 12-15: Device Request

Offset Field Size Value Comments

0 BmRequestType 1 0x40 Vendor request, host to device

1 Brequest 1 0x00 Fixed value for IOCTL_WRITE_REGISTER
2 Wvalue 2 - 0x0002 = ISO OUT; 0x0001 = ISO IN

4 Windex 2 - 0x0002 = ISO OUT; 0x0001 = ISO IN

6 Wlength 2 0x00 Data length of Setup ISO transfer

For the ISO transfer, the applet and the firmware must prearrange size of the transfer before the transfer can be
completed successfully. This is because the vendor request does not give any transfer size information to the firmware.
Therefore, if you want to transfer 512 bytes of data, the ISO endpoint must be set to 512 bytes, which is the default size
set by the firmware.

12.8.5. CATC Capture of an ISO OUT Transfer

Wlength

BmRequestType

Facket #

1883
Facket #

1884 00000001
Packet # EQP

1885 oooo0001 | oxaB [2.75|[11802
Facket # A

1890 00000001 | 0x96 2 0
Facket # DATAA AT A [CRCTE EC

1891 00000001 | OxD32 =B 2T
Packet # EQP

1892 00000001 | oxaB [2.75|[11861
Packet # [cuT EREE CRCE ECP Jldie

1899 00000001 | OxB7 2 4 | ox1F : 2
Packet # DATAD [ESESU & =i =1

1900 00000001 | o0xC3 [512 bytes|0xF140[3.00]|7758

Figure 12-49: CATC Capture of an ISO OUT Transfer

Brequest Wvalue

ADDR

SETUR
00000001 S

(. 5 EGP
DDD7e| 2.75

T Empty packet

Data Payload 512 bytes

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

Connectivity 99 of 99

ISP1362 Embedded Programming Guide Rev. 0.9

12.8.6. CATC Capture of an ISO IN Transfer

Wvalue Wlength

BmRequestType Brequest

Facket # SETULE ADDR

1903
Facket #

1904 3
Packet # EQP

1905 00000001 D><4B 3.00 |[11802
Facket # ADDR CRCs EC

1916 00000001 | 0x96 2 0 | oxis |2.75|] 6
Packet # DATAT DATA [GRGTE ECP [idie

1917 00000001 . Empty packet
Packet # EQP

1918 00000001 D><4B 2.75 || 11860 IBEEENEEy TS Al e
Packet # N ADDR 2

1925 00000001 | 0x96 2 5 |e<i2 [3.00|] 6
Packet # BISINE DATA CRGIE ECP

1926 00000001 | OxC3 512 bytes |0xF 140 2.75 || 7753

Figure 12-50: CATC Capture of an ISO IN Transfer

13. References
ISP1362 Single-chip USB OTG controller datasheet

Universal Serial Bus Specification Rev. 2.0 (full-speed section)

Open Host Controller Interface Specification for USB, Release: 1.0a

On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0.

Philips Semiconductors - Asia Product Innovation Centre

Visit www.flexiusb.com or www.semiconductors.philips.com/buses/usb

