FJL:
THE FILE JOURNALING LANGUAGE

John Petrella
jp@cs.columbia.edu

UNI: jep2124
June 11, 2007

mailto:jp@cs.columbia.edu
mailto:jep2124@columbia.edu

Introduction:

In today's day and age the cost of hard drives are
nominal and has consequently created the notion of
unlimited file storage. Due to this trend remembering a
file's location in a directory structure or keeping track
of which files are living on a system has become a chore.
The use of updatedb and locate, has become cumbersome
returning a long listing of files, most of which are
typically useless. FJL was invented as a way to keep track
of the files a user owns. It is eloquent and useful,
providing tailored file views consisting of file type
groupings and sorting mechanisms to effortlessly customize
a hierarchical view. Organizing a list of your own files
has never been so easy and simply presented.

Problem Statement:

With file storage becoming seemingly endless, the
necessity to clean up and delete less frequently used files
has diminished. Files are now kept forever and their
location easily forgotten. Currently, there is no
programming language designed to help ease the burden of
remembering file location or organizing files into a
personalized representation. This has resulted in enormous
amounts of wasted time fiddling with specialized ls, grep,
and find commands.

FJL Solution:

A simple, useful organization tool for users concerned
with keeping track of files living throughout their
filesystem hierarchy. The FJL programming language will
provide mechanisms to view you filesystem hierarchy in a
personalized manner. Grouping of files and sorting through
files by size or files between a particular threshold has
never been easier.

Features:

Building FJL meant providing data types and mechanisms
to make filesystem information readily and simply available
to a programmer.

FJL developers envisioned that a mere function call
should read in a permissible directory or recursed set of
directories. The FJL language supplies this mechanism in
the standard library. The standard library provides
extremely useful directed functions.

The data types in the programming language were
carefully crafted to supply the programmer with the all the
file information he/she could ever have use for.

Portability:

FJL is an interpreted language, that was developed to
be portable to all versions of Linux and Unix. Develop in
Linux, and execute it on your old Solaris machine, without
any issues.

Details:

FJL provides several functions to enable easy access
to the filesystem. A call to readdir given a directory
will read in the directory specified and assign it to our
dir type. A call to rreaddir given a directory would
recursively read in the specified directory and assign it
to a special rdir type. Stack mechanisms, including but
not limited to, push and pop have been provided to
manipulate dir types.

FJL has also crafted several language specific data
types. Some of the most useful being the file and dir data
types. The file data type has attributes "name", "time"
and "size" that provide an enormously simple way of
accessing details of files. While the dir data type serves
as a container for file types, it has it's own set
attributes "nof" (number of files), "1t" (last touched),
and "name" to give directory specific information.

FJL also provides flow control with the usage of while
loops and if statements, which provide the looping feature
needed to access individual file attributes. Comparison
operators are also made available.

Examples:

A brief example of the simplicity of the code is shown
below. The example below shows how easy it is read in the
current directory. The example also groups by a particular
file type that has size over a certain threshold.

/***Start***/

int FILESIZE_THRESHOLD = 10240

dirname homeworkdir = "/home/user/homework"
dir dir_contents = readir (homeworkdir)

dir fs_dir

function dir FileNameGroup(dir dir_contents) {
fs_dir.name = “Text Files”

fileext text = "txt"

while (dir_contents.hasmore) {
file x = pop(dir_contents)
if (x.name.hasExt (fileext) && x.size >

FILESIZE_THRESHOLD)
push (fs_dir, x)
}

}

return fs_dir

}

dir retval = FileNameGroup (dir_contents)
print retval.name
print retval

/***End***/
Conclusion:

The benefits of FJL are easily discussed. FJL
provides a elegant solution to a specific problem that will
continue to bug and bother users with growing storage and
an unwillingness to clean up their user space.

