
Analog Additive Synthesis
Language

Vaishnav Janardhan, Rob Katz,
Carlos René Pérez, Albert Tsai

Motivation

Sound Synthesis
Generating or manipulating electronic signals/audio tones for music creation.

Motivation

Sound Synthesis
Generating or manipulating electronic signals/audio tones for music creation.

Motivation

Sound Synthesis
Generating or manipulating electronic signals/audio tones for music creation.

Motivation

Sound Synthesis
Generating or manipulating electronic signals/audio tones for music creation.

Motivation

Sound Synthesis
Generating or manipulating electronic signals/audio tones for music creation.

Educational Tool
Study the effects of envelopes, oscillators, mixers on electronic signals.

Language Introduction

Fundamental Data Types

Program Structure

Language Features

Fundamental Data Types

Oscillators

Envelopes

Produces a repetitive electronic signal: sine, saw, revsaw, and square waves.

Produces a repetitive electronic signal: sine, saw, revsaw, and square waves.

Fundamental Data Types

Sums up its inputs, from multiple oscillators and generates a new output.
Mixers

Array of oscillators that share the same name and are indexed.

+ =

Oscillators Banks[]

Data Types Relations

mixer output;
oscbank ob = 2;
ob[0] = “SINE”;
ob[1] = “SAW”;
env e1 = { (0.0,0.0) (0.5,0.0) (1.0,1.0) };
env e2 = { (0.0,1.0) (0.3,0.5) (0.5,0.0) (1.0,0.0) };

ob[0](5,e1);
ob[1](5,e2);
output = ob[0] + ob[1]

Mixers

Oscillators

Envelopes

Oscillators Banks[]

OUPUT

0[] 1[]

5Hz 5Hz

Header Section

User Defined Functions Section

Main Function

Program Structure

start header
OUTPUT = “test”
TONELENGTH = 10
SEGMENTS = 5

end header

Assign the name of the output file, length and optional
assignment of the segments.

Similar to Main Function, always returns a mixer.

start func of(int x)
def...
con..
OUTPUT = ..

end func of

start func main
def...
con..
OUTPUT = ..

end func main

Must be defined, follows the form of all functions
except that it has the “main” identifier.

Definition Section

Connection Section

OUTPUT Equation

Program Structure

All identifiers must be declared or defined before there use.

start func main
start def

osc o1, o2;
o1=”SINE”;
o2=”SAW”;
mixer s1;

end def
...

end func main

Tree Walker associates data types with other data types.

The most general mixer, always defined.
Also the output of user defined functions.

Stack Heap

5Hz 5Hz

OUPUT

0[] 1[]

IntFloat
OUPUT

[]

Function Overloading

Dynamic Scoping

Language Features

Functions will be matched according to name and argument types.

Variables in the symbol table

In Depth: Oscillators and Oscillator Banks

amp freq

1.0 0.5 e1 osc2 1.0

440 440 e2 1.0 osc3

SINE SAW SQUARE SINE SINE

Amp array

Freq array

Wavetype array

Oscillators are the basic tone
generators

Each tone has a frequency and
amplitude input associated to it.

Frequency and amplitude can be
constant or controlled by another
synthesis element.

Oscillator banks are array of
oscillators, and are stored as
individual elements.

Input to Oscillators
Int/Float

Oscillators
Envelopes

In Depth: Envelopes

env e1 = { (0.0,0.3)
(0.2,0.0) (0.4,1.0)
(0.8,0.8) (1.0,0.0) };

...
oscb1[1](e1@440,e1);

Envelope is composed of (time,value) pairs.

It is controlling the amplitude of an oscillator, in the example
provided

If frequency is not constant, a central frequency will be set
using ‘@’ symbol.

In Depth: Mixer and Oscillator Connection

Mixer: Mixer takes oscillators or functions as inputs and adds them according to given
proposition.

All oscillators, with increasing frequency (2kHz, 4kHz, 20kHz) and decreasing multiplicative
factor are proportional in output amplitude length (200, 50, 1).

in the function osc3(int x) …
o3(x,1.0);

in main
x=2000
mixer m1;

start connect
o1(x,1.0);
o2(2*x,1.0);
end connect

m1 = 200*o1 + 50*o2 + osc3{20000};

Top-Level Design

amp freq

1.0 0.5 e1 osc2 1.0

440 440 e2 1.0 osc3

SINE SAW SQUARE SINE SINE

Amp array

Freq array

Wavetype array

Walking the Tree

Asides from doing the static semantic checking, the tree walker is where each element is
set up and the intermediate representation is built.

From each trait of a synthesis element, a single value is not enough, as it changes across
multiple segments.

Aasl Code Intermediate
Representation

Java Code .wav file

if(SEG==0)
{osc1="SINE";}

else
{osc1="SAW";}

//in the connect section…
osc2(osc1@440,osc1);




Envelope e1 = new Envelope(e1array, 5,);
Oscillator osc1 = new Oscillator("SINE",

/segments, 1000.0, 0.75);



AASL Architecture

Segments and Control Structures

In the head, we split the output into 2 segments.

In segment 0, osc1 is a sine wave.
In segment 1, osc1 is a saw wave.

We use osc1 to control osc2’s amplitude, as shown above.
The pitch moves up and down at the same time, centering around
440Hz.

...head...
SEGMENTS = 2

 ..def section...
if (SEG == 0) {

osc1 = “SINE”;
} else {

osc1 = “SAW”;
}

..connection section...
osc2(osc1@440,osc1);

Segment Arrays

Segment Arrays keep track of which parts of the tone are currently being modified.

Every function begins with a global segment array in which all values are true and the
code applies to all segments.

We may select only certain segments by using “if (SEG==x)” where ‘x’ is the segment to
activate.

//global segment array
osc2=“REVSAW”;

if(SEG==0 || SEG==2)
//now we have this seg array

{osc1="SINE";}
else
//for the else we invert the array

{osc1="SAW";}

//return to global segment array
osc2=“SINE”;

Intermediate Representation

One vector contains output name, tone length and number of segments. This is
followed by a list of the elements and functions. (AaslExecutedFunction and
AaslType).

They are split into individual vectors for each element type, a vector for functions,
and a seperate vector for elements that attach directly to the output for at least one
segment.

All oscillator banks have been split into their component oscillators during the tree
walker

output length # segs osc mixer env func

Intermediate Representation

Each AaslExecutedFunction object had a similar vector for the elements defined with it.

Code is generated for each of the functions first, and then for the main function.

 length # segs osc mixer env osc osc

Print Tail

Print Other Elements

Print Envelopes

Print Functions

Split Vector

Check for illegal
cycles

Check that the rest are
AaslType Objects

Remove Functions from
Vector

Set output, tonelength,
and # of segments

Code Generation

Illegal cycles: an oscillator indirectly end up attached to itself.

Printing functions consists of nearly identical code generation
process on their individual vectors.

Envelopes are printed first, since they are constant.

Oscillators with constant amplitude and frequency inputs are
printed first.

Other oscillators may be printed once the elements attached to
their inputs have been evaluated and printed.

Context

Functionality

Historical Devices

Possibilities

Testing

Unit Testing

gUnit

String Comparison

Jeremy D. Fren’s Test harness

Integration Testing

Code Generation

Sample Programs

Reality

“No plan survives contact with the enemy.”

Lessons Learned

Rob

Carlos Rene

Vaishnav

Albert

Examples

start header
OUTPUT = “envtest1”
TONELENGTH = 3
SEGMENTS = 2

end header

start func main
start def

oscbank oscb1 = 2;
if(SEG==2) {

oscb1[0] = “SINE”;
} else {

oscb1[0] = “SAW”;
}
oscb1[1]=”SQUARE”;
env e1 = {(0.0,0.3) (0.2,0.0) (0.4,1.0) (0.8,0.8) (1.0,0.0) };
mixer s1;

end def

start connect
oscb1[0](2,1.0);
oscb1[1](oscb1[0]@440,e1);
s1 = oscb1[1];

end connect

OUTPUT = s1;
end func main

