
Signal Analysis and Music Processing
Language Proposal

Mike Haskel, Mike Glass, Morgan Rhodes, and Navarun Jagatpal

February 7, 2007

SAMPL is a simple, functional, strictly typed, potentially platform-independent,
translated, high-performance signal processing language.

1 Introduction

SAMPL is a language used for signal and music processing. It produces
programs that take in audio streams as input and outputs the modified audio
stream along with text output. SAMPL also allows for the sampling of
the audio file to be transparent to the user, with the user defining desired
behavior for the program and the actual loop for the sampling happening in
the background. As a program designed for the processing of music, it has
domain-specific types. SAMPL has primitive types including time, frequency,
and intensity, along with string and integer types. SAMPL has the potential
for platform-independence as it will be translated to C. Possible applications
of SAMPL are as simple as frequency filters, effects(such as reverb), and as
complex as identifying and filtering a particular instrument.

2 Functional

SAMPL is a functional programming language in which programs define the
output stream in terms of various operations on the input stream. Programs
consist of a series of recursive definitions. The language provides functions
for sampling the input stream, such as

1



frequency(200 hz, 5 s)

rmsvolume(500 ms)

i.e. samples of the input which vary over time
and
clip(stream, 50db)

mix(stream1, stream2)

highpass(stream, 400hz)

i.e. functions for mutating streams to produce other streams

3 Strictly Typed

SAMPL is strictly typed, providing types directly related to signal processing
such as frequency, time, and intensity. It also provides string and integer
types. Programs specify values of these types by specifying units, as in
300 hz, 20 db, or 50.3 ms. The language supports basic operations such as
comparing, adding, or scaling values of a given type, and provides functions
for converting between types in meaningful ways (such as frequency–time).

4 Control Flow

One of the key features of SAMPL is that the process of scanning and sam-
pling input is transparent to the user. Ordinarily, a program for signal pro-
cessing would need to implement a tight loop which encapsulates the process
of reading the input and updating state as necessary. This process is concep-
tually distinct from the specification of the audio transformations and users
shouldn’t need to implement it. To accommodate this, SAMPL implements
this loop in the background, and a program’s control flow is based upon
constructs for applying filters when certain conditions hold.

Such constructs include “if-then-else”, which takes on a different value
depending on some condition, as in

if rmsvolume(500 ms) > 60 db

lowpass(input, 5000 hz)

else

input

end

2



which applies a low-pass filter to the input when and only when the input is
sufficiently loud. Another important construct is “wait-until”, which transi-
tions between values when specified conditions are met, as in

flute_playing =

wait

false

until flute_attack

true

until flute_dropoff

flute_playing

end

which defines flute playing to be false until a flute starts to play, then true
until it stops, then repeating as if from the beginning. These control struc-
tures limit the layers of indirection between the programs and their intended
effects.

5 Possible Applications

SAMPL has a number of possible applications, ranging from simple to com-
plex processing tasks. Simple applications in SAMPL will allow low or high
pass filters to be applied to the stream, outputting the filtered stream. An-
other application will be applying reverb to the input stream. These appli-
cations can be made more complex in applying a high pass filter whenever a
there is a frequency lower than a specified frequency and apply reverb only
when the intensity exceeds a certain value. SAMPL will also make it possible
to write applications to recognize particular instruments which will make it
possible to filter out the flute, or only filter out the flute while there is a
trumpet playing. Programs generated by the SAMPL compiler are them-
selves inherently modular, as users can easily pipe output from one program
to another.

3


