Learning Language (c--)

Stephen Robinson (sar2120)
Joseanibal Colon Ramos (jc2373)
George Liao (gkl2104)

Huabiao Xu(hx2104)

Purpose

Learning Language is a programming language designed to be accessible to students prior to
entering high school. Students at this age traditionally have no exposure to computer
programming despite the fact that many of them have the maturity and education to write
procedural logic. For these students, existing programming languages can be overwhelming
due to their abstract syntax and the difficulty of implementing 1/O operations. To that end, the
language is designed with the needs and abilities of 10-14 year old children in mind.

Language Features

Learning Language is designed to be accessible to students without any prior knowledge or
experience with computer programming. It has natural syntax, default GUI and is case
insensitive yet maintains enough similarities with advanced programming languages to ease the
transition as students become more familiar with computer science concepts.

Natural Syntax: Learning language is designed to prevent many of the common errors made by
beginner programmers. To do so, it gives the programmer the option of using short descriptive
keywords in place of punctuation wherever possible. This allows for an easier understanding of
code without sacrificing speed. Additionally, Learning Language requires no header above the
main code, allowing users to write programs easily with no overhead.

Default GUI: By default, the compiler will create a simple java GUI for the program without the
programmer being required to add any code. Furthermore, small additions to the GUI will be
made easily available to the user through a simple API. This feature allows users the
opportunity to see the results of their work on the screen to promote greater satisfaction for
the young programmer. A compiler flag is available to disable this feature where a console
program is desired.

Case insensitive: For younger users, keeping track of the capitalization of keywords and
variables can be difficult and frustrating. Learning Language identifies the word that is being
used and not the sequence of characters. Thus if a user names a variable "someNumber",
when using this variable, the programmer can spell it "Somenumber" or "sOmEnUmBeR"
without fault.

Syntax

If statements:
IT (expression) then
ifnot

Endif

Loops:

Repeat (integer) times
//1oop count is held in implicitly defined variable “nth”
Display nth

Endloop

Repeat until (expression)

Endloop

Expressions:

//assignment
A <-B

//comparison operators
=B

> B

= B

<= B

<B<C<D.

>>>>> >

//operators

//order of operations is standard
A<-B+((C-D)*E/F"~G%H

StringA <- StringB + StringC

numA <- |stringA| //magnitude operator, also works for lists

Data Types:

String called (nhame)

Number called (name)
Fraction called (name)

List of (type) called (hame)

Sample Code

//Hello World
disPlay “Hello World!”

//counts to user specified number
Number called num
num <- input
repeat num times
display nTh
endloop

//prints every other element in a list
List of string called strA <- {“1”, “cat”, ‘“house”}
strA[2] <- “zzhShkgv”
Repeat |strA] times

IT nth % 2 = 0 then

Displayline STRA[nth]

endIf

Endloop

//prints the following output:
zzhShkgv

