

SPML Language Reference Manual

Jayesh Kataria, jvk2104@columbia.edu
Dhivya Khrishnan, dsk2121@columbia.edu

Stefano Pacifico,sp2562@columbia.edu
Hye Seon Yi, hsy2105@columbia.edu

March 5, 2007

SPML Language Reference Manual

1

1. Introduction

This document is a reference manual for SPML (Simple PDF Manipulation Language), a language for
Simple PDF Manipulations.

2. Lexical Conventions

2.1 Tokens

Tokens are divided in the following classes:
Identifiers
Keywords
Constants
String Literals
Operators
Other Separators

Blanks, horizontal and vertical tabs, newlines, formfeeds and comments are considered as “white
space”. They have no semantic meaning, and are used only as token separators.

The input stream is divided into tokens where each token is a group of valid characters that could
constitute a token.

2.2 Comments

Comments are defined as a stream of characters that begin with the sequence /* and end with the
sequence */ . Comments cannot be nested and cannot occur inside a string or character literals.

2.3 Identifiers

An identifier is a sequence of letters and digits. The first letter must be a character between [A-Z]
or [a-z]. The remaining characters can be from [A-Z] or [a-z] or digits from [0-9] or the underscore
(_) character.

2.4 Keywords

The following identifiers have been reserved as keywords and cannot be used otherwise

break close continue create else
extractpage getauthor highlight if in
int merge open pdf print
return setauthor start string totextfile
void while

2.5 Constants

SPML Language Reference Manual

2

The different kinds of constants supported by SPML are :

2.5.1 Integer Constants

SPML only supports integer constants to the base 10 i.e. decimal integers. Constants in the
octal or hexadecimal number system are not supported. All integer constants are signed
constants. Unsigned constants are not supported by SPML.

2.5.2 String Constants

String constants, also called string literals, are sequences of characters enclosed in double
quotes for example “abc\n”.
The escape sequence ‘\n’ denotes a new line and it can be used in any string constants.

2.6 Punctuations

These are the punctuation symbols in SPML.
; statement end
, argument separator
“ ” string constant
[] range or array index delimiter
{} function body or block delimiter
() function argument list

3. Type Specifiers

3.1 Basic Types

In SPML, there are four basic types available.

3.1.1 int

int is the primitive type for representing integer numbers. int type is compatible with Java
int type, which means each int is 4 byte-long. When an int variable is declared, the variable
is initialized to 0 automatically.

3.1.2 string

string is the primitive type for representing character strings. string type is compatible with
Java String type, which can hold strings of variable length.

3.1.3 pdf

pdf is the primitive type representing PDF documents

3.2 Composite types

SPML Language Reference Manual

3

Composite types are composed of the basic types. array is a composite type which can store or
reference a variable length of data items with one same basic type. An array is declared the
following syntax is used.

<basic type> <variable name> [(length)?];

The basic type can be int, string, pdf. Users can set a random name for a variable name as long as
the name follows the rules for identifiers. Brackets are used to specify the length of the array. The
length is optional so that an array without data items can be declared. An array with no data item
can be used as a holder for dynamic array creation, for another array, or for returning an array type
for a function.

4. Expressions

Different types of expression are supported, as reported below.

4.1 Arithmetic Expressions

Expression including arithmetic operators. An example is a+b–c*d/f.
Additionally, the + operator can be applied on PDF documents. It is used to combine two PDF
documents into a new one. The following is an example to combine PDF documents referenced by
p1 and p2 into one PDF document referenced by p3.

pdf p1, p2, p3;
p3 = p1 + p2;

4.2 Conditional Expressions / Relational Expressions

Conditional Expressions are those involving comparison operators such as <, <=, >, >=, == and !=.

They can be used inside of if and while loops in SPML in order to test conditions. The associativity
of these operators is from left to right. All of these operators are binary operators that work on two
operands. Examples are a<b, b>=d.

4.3 Logical Expressions

Logical Expressions can only take the values true or false. The logical operators supported by the
language are &&, || and !. && represents the AND logic, || represents the OR logic and ! is the
NOT operator. These operators can be used with relational expressions. An example is

if(a<b && b>c)

The same can be applied to the while loop as well. ! has the highest precedence, followed by &&
and then by ||.

SPML Language Reference Manual

4

4.4 Expression Evaluation

Expressions are all evaluated left to right. In case of logical expressions, if the evaluation of the
first n elements of the expression are enough for evaluating the whole expression itself, the n+1th
element will not be evaluated.

5. Operators

5.1 Unary Operators

Unary operators affect the expressions on their right.

5.1.1 Minus sign: - expression

The result of the minus sign - operator is the negative value of expression. expression must
be of type int.

5.1.2 Logical negation: ! expression

The result of the logical negation operator ! is the constant 1 of type int if expression value
is 0; constant 0 of type int if expression value is otherwise. Expression must be of type int.

5.1.3 Variable length: length expression

The result of the array length operator length is an int value of the number of elements
contained in expression if expression is of type array.
It returns the number of pages contained in the PDF document referred by expression, if
expression is of type pdf.

5.2 Multiplicative Operators

Multiplicative operators associate expressions left-to-right.

5.2.1 Multiplication: expression1 * expression2

The multiplication operator * returns an int value of the product between the values of
expression1 and expression2 elements. expression1 and expression2 must be of type int.

5.2.2 Division: expression1 / expression2

The division operator / returns the integer quotient of type int between the values of
expression1 and expression2. expression1 and expression2 must be of type int. Division by
0 is not allowed and will cause a runtime error.

5.3 Additive Operators

SPML Language Reference Manual

5

Additive operators associate expressions left-to-right.

5.3.1 Addition: expression1 + expression2

The addition operator + returns the sum of the values of expression1 and expression2 if
both expression1 and expression2 are of type int. It returns an object of type pdf being the
concatenation of the PDF files referred by expression1 and expression2 if both expression1
and expression2 are of type pdf. Any PDF file referred by expression1 or expression2 not
being accessible at runtime will cause a runtime error.
If one of expression1 and expression2 is of type string and the other one of type int, the
expression of type int is converted into a string to be added to the other expression of type
string. For example, s2 will contain a string “string1” after running the code below.

int i = 1;
String s1 = “string”;
String s2 = s1 + i;

If both of expression1 and expression2 are of type string, it returns a string which is their
concatenation.
No other type combination is allowed.

5.3.2 Subtraction: expression1 – expression2

The subtraction operator – returns an int value of the difference between the values of
expression1 and expression2. expression1 and expression2 must be of type int.

5.4 Relational Operators

5.4.1 Greater than: expression1 > expression2
5.4.2 Less than: expression1 < expression2
5.4.3 Greater than or equal: expression1 >= expression2
5.4.4 Less than or equal: expression1 <= expression2

The greater than >, greater than or equal >=, less than <, less than or equal <= operators
return constant 1 or 0 of type int if the relation between expression1 and expression2 is
respectively true or false, in the numerical order and both expression and expression2 are of
type int.
They return constant 1 or 0 of type int if the relation between expression1 and expression2
is respectively true or false in the alphabetical order and both expression1 and expression2
are of type string.
No other type combination is allowed.

5.5 Equality Operators

5.5.1 Equality: expression1 == expression2
5.5.2 Inequality: expression1 != expression2

SPML Language Reference Manual

6

The equality == and inequality != operators return constant 1 or 0 of type int if expression1
and expression2 have the same value and both are of type int.
They return constant 1 or 0 of type int if expression1 and expression2 refer to the same PDF
file or not, and both expression1 and expression2 are of type pdf.
They return constant 1 or 0 of type int if expression1 and expression2 are the same string or
not, and both expression1 and expression2 are of type string.

5.6 Logical operators

5.6.1 Logical AND: expression1 && expression2

The logical AND operator && returns constant 1 of type int if expression1 and
expression2 value evaluation is different from 0 for both. It returns 0 otherwise.

5.6.2 Logical OR: expression1 || expression2

The logical OR operator || returns constant 0 of type int if expression1 and expression2
value evaluation is 0 for both. It returns 1 otherwise.

5.7 Other operators

5.7.1 Merge PDF: merge expression1 expression2

The merge PDF files operator merge returns pdf type object referring to a pdf file
containing the fusion of the pages of the PDF documents referred by expression1 and
expression2. expression1 and expression2 must be of type pdf and must refer to a single
page PDF documents only.

5.7.2 In: expression1 in expression2

The element of operator in returns an array of type pdf elements referring to all the PDF
documents contained in the directory as for the path indicated in expression2; in this case
expression1 must be the pdf type keyword and expression2 must be of type string.
It returns an array of type int elements containing the line number where expression1
occurs in expression2; in this case expression1 must be of type string and expression2
must be of type pdf. The PDF file referred by expression2 not being opened will result in a
runtime error.
It returns constant 1 of type int if expression1 is a substring of expression2, 0 if otherwise.
In this case both expression1 and expression2 must be of type string.
No other combinations of types are allowed.

5.7.3 Extract page from PDF: extractpage expression1 expression2

SPML Language Reference Manual

7

The extract a page from PDF operator extractpage returns an object of type pdf referring to
a new PDF document made of the page number expression2 extracted from the PDF file
referred by expression1. expression1 must be of type pdf; expression2 must be of type int.

5.8 Operator Precedence

These are the operator precedence in SPML from the highest to the lowest. The operators with the
same precedence are placed in the same line.

[]
- ! length
* /
+ -
in
< > <= >= == !=
&& ||
=
,

All binary operators associate left-to-right whereas the unary operators associate right-to-left.

6. Statements

Below are the descriptions of the statements in SPML.

6.1 Variable Declarations

These statements are used to declare the variables to be used by the program. The declarations are
terminated with a semicolon and declarations can be separated by the comma operator. Below are
the examples of variable declarations.

int p1, p2, p3;
int p1;

Array declarations are also supported. An example is

int a[10];

Declarations of array and variables and assignment of variables can be given in one statement.

int a, b[5], c=10;

The above declaration consists of a variable of type int, an array of five int and an int assigned
with a value 10. These three can be given in any order. Declarations of other types are that of pdf
and string.

SPML Language Reference Manual

8

6.2 PDF statements

The following statements involving pdf type variables are supported.

6.2.1 open statement

open statement is used to open an existing PDF file. The first argument must be a pdf
variable that should have been declared before this statement is used. The second argument
is the absolute path of the PDF file and it must be of type string. The syntax of the open
statement is as follows:

open pdf_variable “C:\p1.pdf”;

By executing this statement we make the pdf_variable refer to the corresponding PDF
file.

6.2.2 close statement

The syntax of save statement is:

close pdf_variable;

This statement is used to save the PDF document file referred by pdf_variable.

6.2.3 highlight statement

highlight statement underlines every occurrence of the word in a PDF document. The first
argument is of pdf type referencing a PDF document. The second argument is of string
type representing a word or phrase to be highlighted. An example of highlight statement is:

highlight pdf_variable “hightlighted_word”;

This underlines every hightlighted_word in the PDF document referred by
pdf_variable.

6.2.4 extractpage statement

This statement is used to extract a page of a PDF document file into a text file

Open pdf_variable “C:\p1.pdf”;
pdf p = extractpage pdf_variable 1;

The statement extracts page 1 of p1.pdf which is referred by pdf_variable into the
pdf variable p.

6.2.5 create statement

SPML Language Reference Manual

9

The create statement is used to create a new PDF document file. The first argument is of
type pdf referring to a file object which will be created. The second argument is of type
string which represents the path for the file object. For example,

create pdf_1_variable “C:\test.pdf”;

The statement creates a new PDF document named test.pdf and makes pdf_1_variable
refer to it.

6.2.6 setauthor statement

This is used to set the author of a PDF document file. The first argument is of type pdf
which refers to a PDF document. The second argument is of type string which represents
the name of an author for the PDF document. An example is is:

setauthor pdf_variable “Jill”;

The statement sets the author of the PDF file referred by pdf_variable to Jill.

6.2.7 getauthor statment

This is used to get the author of a PDF document file. The first argument is of type pdf
which refers to a PDF document. Below is an example.

string t;
t = getauthor pdf_variable;

The author of a pdf file pointed by pdf_variable is returned into a string variable t.

6.2.8 totextfile statement

This statement produces a text file version of a PDF document. The first argument is of type
pdf which refers to a PDF document. The second argument is of type string which
represents a path for a text file created. Below is an example:

 pdf file1;
 . . .
 totextfile file1 “/path/to/textfile”;

This example creates a text file “path/to/textfile” which contains the contents of a
PDF document referred by file1.

6.3 Assignment statements

SPML Language Reference Manual

10

Assignment statements enable the programmer to define or redefine a symbol. The right side of an
assignment statement can be an arithmetic expression. The syntax is the following:

Variable = expression;

This is an example where the value 5 is assigned to the variable x .

int x = 5;

In SPML, the type of the operands on both sides of the assignment operator = must be the same.
For example:

p1 = p2 + p3;

In this case both the type of p1 (left side) and the evaluation of p2 and p3 (right side) should be
one of type int, string, or pdf. Thus, type conversion is not allowed in SPML.

6.4 Conditional statements

Conditional statements define control flow based on a condition tested. SPML supports the if..else
conditional construct. The syntax is

if(condition)
{

(statement)*
}

else
{

(statement)*
}

The condition must be an expression with an int value. If the expression evaluates to a value
different from 0, the if block is executed. Otherwise, the else block is executed.

6.5 Iteration statements

Iteration statements are used to execute a block of statements more than once instead of replicating
code. SPML supports the while iteration statement, the syntax of which is the same as C.

while(condition)
{

(statement)*
}

SPML Language Reference Manual

11

If the condition evaluates to a value different from 0 then the while block is executed.
Otherwise, the while block is not executed. condition must be an expression with an int value.

6.6 Print statements

Print statements are used to display the value of an expression on the screen. The syntax is:

print (int_var | string_var);

The following example prints ‘1’ on the screen.

int i = 1;
print i;

6.7 Jump statement

Jump statements are used to jump to a different set of statements altogether. They affect the control
flow immediately without any condition check as in iterative or conditional statements.

return : used in functions to return a single value or void.
continue : used to continue with the next iteration in a while loop construct.
break : used to break out of a while loop immediately.

7. Functions

There are two types of functions: language-defined functions and user defined functions. Users are able
to define functions.

7.1 Keywords

These are three keywords related to functions.

7.1.1 return

A function returns to its caller by the return statement. All user defined functions need to
have at least one return statement. However, return statement can be omitted in the start()
function.

7.1.2 start

start() is a language-defined function which is the execution point in SPML programs. In
other words, the program cannot be executed without a start function.

7.1.3 void

SPML Language Reference Manual

12

void is placed to symbolize non-existence in function declaration. If a return type is void,
there is no return value of the function. If void is used as an argument, there is no argument
needed to call the function.

7.2 Function Declarations

A function declaration has four sub parts, namely: a return type, a function name, a list of
arguments, a body which consists of statements enclosed by curly brackets.

<return type> <function name> (argument list) {body}

A return type can be any of the basic types available, which are int, string, pdf, array composite
type and void. A user can choose an arbitrary name for a user-defined function and the name
should follow the definition given before for identifiers. An argument list can contain a number of
arguments separated by a comma. An argument should be declared as a type followed by its name.
The body contains statements executed when the function is called is followed.

For example,

int foo(pdf p, int x)
{

x = x+1;
return x;

}

This is the declaration of function foo, whose return type is an int and which takes a pdf type
variable as the first argument and an int variable as the second argument. Then, the arguments are
local variables within foo function body. In the example, the int variable x, which was passed at
its calling, is incremented. Since the return type of foo function is of type int, foo function
should have at least one return statement which returns an int value. In the example, x is returned.

7.3 Function Calls

User-defined functions can be called in any function including the calling function itself , allowing
recursive calls. A sound function invocation matches exactly the name, number and type of
arguments as for the function declaration. No name overloading is allowed. Also, to call a function,
the function should be declared in advance. When a function is called with a list of arguments, the
arguments are evaluated before calling the function from left to right. When the function returns a
value, the returned value can be retrieved. However, this is optional. Thus, the function call follows
the notation below.

(<variable> =)? <function name> (argument list);

Below are presented two examples of correct invocation of the function foo declared in 4.2:

pdf p;

SPML Language Reference Manual

13

int y;
foo(p, y);
int r = foo(p, y);

7.4 Argument Evaluation

Function arguments are evaluated following the applicative approach: left to right before the
execution of the function.

8. Scope

A program should be compiled at once which means that all source code should be in one file. Thus,
there is one kind of scope in SPML, the lexical scope of an identifier, that is the region of a program in
which the identifier is recognized.

8.1 Lexical Scope

Identifiers in different name space do not interfere with each other. In SPML, there are two
separate name spaces available: variables name space and functions name space. To clarify the
explanation of the lexical scope, the meaning of a block should be defined. A block is a set of
statements grouped by curly brackets, {}. Thus, a block of statements is executed like a single
statement syntactically.
An identifier can be declared once in a block within a name space. Identifiers can be used several
times in its block. If the same name of an identifier is declared outside the block, the identifier in
the outer block will be undermined in the current block. Thus, SPML is following static scoping,
which means the life of an identifier begins with its declaration and ends at the end of its block.

9. Samples of SPML code and programs

/* Declaration of a function */
int foo()
{

print "\ninside foo";
return 1;

}

/* main function of the program: this program illustrates a simple
definition of a function and a basic manipulation of PDF documents.
*/
start()
{

pdf p1,p2,p3;

/* open two existing PDF files */
p1 = "C:\pdf1.pdf";
p2 = "C:\pdf2.pdf";

SPML Language Reference Manual

14

/* create a third PDF file */
p3 = create "C:\pdf3.pdf";

/* assign to the third file the concatenation of the first two */
p3 = p1+p2;

/* highlight the string “hello world” in the second file */
highlight p2 "hello world";

close p3;

int i;
i = foo();

}

10. ANTLR Grammar

// Lexer
class SimpleLexer extends Lexer;
options {
 k = 3;
 testLiterals = false;
 exportVocab = SPML;
 charVocabulary = '\3'..'\377';
}

// punctuation
LPAREN : '(';
RPAREN : ')';
LCURLY : '{';
RCURLY : '}';
LBRACKET : '[';
RBRACKET : ']';
COMMA : ',';
DQUOTE : '"';
SEMI : ';';
NEWLINE : ('\n' | '\r'
 | ('\r' '\n') => '\r' '\n')
 {newline(); $setType(Token.SKIP);};
WS : (' ' | '\t')+
 { $setType(Token.SKIP); };

// string constant
STRCON : '"'! (~('"' | '\n'))* '"'! ;

// operators

SPML Language Reference Manual

15

NOT : '!';
PLUS : '+';
MINUS : '-';
TIMES : '*';
DIV : '/';
ASSIGN : '=';
EQ : "==";
INEQ : "!=";
AND : "&&";
OR : "||";
GT : '>';
GEQ : ">=";
LT : '<';
LEQ : "<=";
COLON : ":";

// keywords (alphabetical order)
BREAK : "break";
CLOSE : "close";
CREATE : "create";
CONTINUE : "continue";
ELSE : "else";
EXTRACTPAGE : "extractpage";
GETAUTHOR : "getauthor";
HIGHLIGHT : "highlight";
IF : "if";
INT : "int";
IN : "in";
LENGTH : "length";
MERGE : "merge";
PDF : "pdf";
PRINT : "print";
RETURN : "return";
SETAUTHOR : "setauthor";
START : "start";
STRING : "string";
TOTEXTFILE : "totextfile";
VOID : "void";
WHILE : "while";

// identifiers
ID options {testLiterals = true;}
: LETTER (LETTER | DIGIT | '_')*;

// number
NUMBER : (DIGIT)+;

SPML Language Reference Manual

16

protected LETTER : ('a'..'z' | 'A'..'Z');
protected DIGIT : '0'..'9';

// comment
MLCOMMENT : "/*" (options {greedy = false;} : .)* "*/"
 { $setType(Token.SKIP); };

// Parser
class SimpleParser extends Parser;

options {
 k = 2;
 buildAST = true;
 exportVocab = SPML;
}

// expressions
expr : conditional_expr (AND conditional_expr
 | OR conditional_expr)*
 ;

conditional_expr : plus_minus_expr (GT plus_minus_expr
 | GEQ plus_minus_expr
 | LT plus_minus_expr
 | LEQ plus_minus_expr
 | EQ plus_minus_expr
 | INEQ plus_minus_expr)*
 ;

plus_minus_expr : times_div_expr (PLUS times_div_expr
 | MINUS times_div_expr)*
 ;

times_div_expr : ((NOT)? (PLUS|MINUS)? (ID (array_expr)?) | NUMBER)
 (TIMES ((NOT)? (PLUS|MINUS)? (ID (array_expr)?)
 | NUMBER)
 | DIV ((NOT)? (PLUS|MINUS)? (ID (array_expr)?)
 | NUMBER))*
 | LPAREN expr RPAREN
 ;

array_expr : LBRACKET NUMBER RBRACKET
 ;
blank_array : LBRACKET RBRACKET
 ;

// main function statement

SPML Language Reference Manual

17

program : (function)* main (function)*
 ;

main : startprog body
 ;
startprog : START LPAREN RPAREN
 ;
body : LCURLY (stmt)* RCURLY
 ;

// function statement
func_prototypes : (VOID|type)functionprog SEMI
 ;
function : (VOID | type) functionprog body
 ;

functionprog : ID LPAREN
 ((type ID (blank_array)?)
 (COMMA type ID (blank_array)?)*)*
 RPAREN
 ;

type : INT | STRING | PDF
 ;

function_call : ID LPAREN (expr (COMMA expr)*)? RPAREN
 ;
function_call_stmt : function_call SEMI
 ;

// type statements
int_stmt : INT ID int_tail SEMI
 ;
int_tail : ((array_expr)|(int_assign))?
 (COMMA ID ((array_expr)|(int_assign))?)*
 ;
int_assign : ASSIGN expr
 ;

// only pdf has blank array assignments
pdf_stmt : PDF ID pdf_tail SEMI
 ;
pdf_tail : ((array_expr)
 |(pdf_assign)
 |(blank_array))?
 (COMMA ID ((array_expr)
 |(pdf_assign)|(blank_array))?)*

SPML Language Reference Manual

18

 ;
pdf_assign : ASSIGN pdf_assign_types
 ;
pdf_assign_types : STRCON
 | expr
 ;

string_stmt : STRING ID string_tail SEMI
 ;
string_tail : ((array_expr)|(string_assign))?
 (COMMA ID ((array_expr)|(string_assign))?)*
 ;
string_assign : ASSIGN expr
 | ASSIGN STRCON
 ;

decl_stmt : int_stmt
 | pdf_stmt
 | string_stmt
 ;

// operation statements
close_stmt : CLOSE ID
 ;
create_stmt : CREATE (STRCON|ID)
 ;
merge_stmt : MERGE ID COMMA ID
 ;
highlight_stmt : HIGHLIGHT ID (STRCON|ID)
 ;
extractpage_stmt : EXTRACTPAGE ID NUMBER
 ;
set_stmt : SETAUTHOR ID (STRCON|ID)
 ;
get_stmt : GETAUTHOR ID
 ;

op_stmts : close_stmt SEMI
 | highlight_stmt SEMI
 | set_stmt SEMI
 | print_stmt SEMI
 | totext_stmt SEMI
 ;

// other statements
conditional_stmt : IF expr (stmt|body)
 (options {greedy=true;} : ELSE (stmt|body))?

SPML Language Reference Manual

19

 ;
iteration_stmt : WHILE expr (stmt|body)
 ;
jump_stmt : RETURN (expr)? SEMI
 | CONTINUE SEMI
 | BREAK SEMI
 ;

length_stmt: LENGTH ID
 ;
print_stmt : PRINT STRCON
 ;
totext_stmt : TOTEXTFILE ID
 ;

in_stmt : (STRCON|PDF) IN (STRCON|ID)
 ;
// id assigned statements (ie) assignment, getauthor, extractpage
id_assign_stmt : ID ASSIGN ((function_call) => function_call
 | array_expr
 | STRCON
 | expr
 | get_stmt
 | extractpage_stmt
 | length_stmt
 | merge_stmt
 | create_stmt
 | in_stmt) SEMI
 ;

// all statements
//id_assign_stmt has some of the pdf statements
// - cause they need the assign operator in them
stmt : id_assign_stmt
 | decl_stmt
 | conditional_stmt
 | iteration_stmt
 | jump_stmt
 | op_stmts
 | function_call_stmt
 ;

