Columbia University
Programming Languages and Translators
Spring 2007
Professor Edwards

SLAWSscript Language Reference Manual

Steve Henderson
Levi Lister

Abe Skolnik
Wel Teng

SLAWSscript Language Reference Manual Page 2 of 15

Table of Contents

Section Page Number
L. INtroduCtion...........cceeeeeeiiiiiniiiiiiiieeeee e, 4
1.1 Hello World.......oooiiiiiiiiiiieeeeeeeeeeee e 4
2. Lexical Conventions...........ccccuvvvveeeeeeeeennnueneeenn. 4
2.1 COMMENLS......uuvriieeeeiiiieeeeeeeeiirrrreeeeeeeeeeesneearaeeeeeeeens 4
2.2 CONSLANTS.eeiiiiiiiiiieeaiiieiee ettt e eietee e e ereeeee e e 4
2.3 Identifiers.....ccocuveriueiriiieiieeeeeeeceeee e 4
2.4 KEYWOTS...ceiieeiiiieeeeeiiiieeeeeeiiieeeeeee e e e e e e sivvereeaeae s 5
2.5 Numeric Literals......c.cccovuieimniieiiiiieiiieee e 5
2.6 String Literals.........ceveiiieiieeiiiiieiiiee e 5
2.7 WHite SPACE...cccuviiieiiiieieiiieeeeeeitee e e eireee e e ireee e e 6
3. SUDTOULINES. ...ceviiiieieieeciiiiiieeee e eeeiree e 6
3.1 Subroutine Scope (summarily: static)..........c.c.ceeeunnnee 6
3.2 ProCedures.coccueeeriueeenniieeniieeeieeee e 6
3.3 FUNCHIONS.uuiiiiiiiiieeeeeeeiiiiteeeee e eeee e e e e 7
4. Variables.......cocoviiiiiiiiiiiiieeeee e 7
4.1 Data TYPES..eeeeeeeeeeeiiiiiiiiiieeeeeeeeeeiirrrreeeeeeeeeseeeenaes 7
4.2 ASSIZNMENT.......viiiiiriiiiieeeeriiieeeeeireeeeeeirreeeeenereeeeas 8
4.3 Variable Scope (summarily: dynamic).............cccc...... 8
4.4 RandOmizZatioN.......ccccveeeriieerniieeeniieeeeeeieeeeeeeieeeeens 8
5. OPEIatOrS....uvviiieeeeeeeeeeeiciiiirrereeeeeeeeeeeseennes 9
5.1 UNAry OPErators.........uuveeeeeeeerrerriiiiiiieeeeeeeeeeeeeeennennnens 9
5.2 Binary and Tertiary Operators.........ccccveeeeerveveeeernennnne 9
5.3 Operator Precedence...........cceeevvieeiinniiieeiiniiiieeennnes 10
5.4 Operator Chaining...........ccceeeevveeeereciieeeeeiiieeeeeenes 10
6. AULO-CONVETSION......uueriiiiiiiiieeeeeeeeeeeeeeeeeaeaeeenn 10
6.1 Unary Operator Auto-CONVersioN.........cccveeeeeeeeennns 10
6.2 Binary Operator Auto-CONVersioN.............eeeeeeueveeee.. 11
6.3 Boolean ConteXt........ccevvverveiiiriieeeeereneiiiiiiieeeeeeenn 12
6.4 Integer CONteXt........uvveeeiuiiieeiiiiieeeeeiiieeeeeieree e 12
7. Conditionals.......ccccevveeiiiiiiiiiiiniiiiee, 12
T 010 o TP 13
8.1 “repeat ... times” LOOPS.....cuvereeeeeereiiiiiiiieeeeeeeeeeenn, 13
8.2 “repeat With” LOOPS....cccceveriuiiiiriieeeiieee e 13
8.3 “While” LOOPS.....ciriiiriiiniiiniieieieceeeeccee e 14
9. Input and OutpuL.......ccoevvriiiiiiiiiiiieieeiieeeee 14
.1 INPUL.cceiieeeee e 14
0.2 OULPUL. ...ttt 15
10. Program Termination.............cccccuveeeerrnuneeennn. 15
|02 B 0] o J ST 15
10.2 ASSEITIONS.vteeeirieeeiiieeniieeeesiteeeeieee e eeeeieeeee s 15

L1, SUMMATLY....uvviiiiiiieiiiiiiieeeeeeeeeeee, 16

SLAWSscript Language Reference Manual Page 3 of 15

1. Introduction

The name of this language is derived from both the initials of the first names of the project members and the fact
that SLAWSscript is a scripting language. SLAWSscript is a general-purpose (yet simple) scripting language,
designed to enable the easy production of text-based (i.e. command-line) applications. SLAWSscript is modeled
on Python, but is on a smaller scale; SLAWscript has no arrays, classes, or objects. As of this writing, only the
three standard UNIX-like channels (stderr, stdin, and stdout) are accessible within SLAWSscript; that is to say,
files cannot be opened and used without external assistance, e.g. shell redirection. Also, unlike Python,
SLAWSscript is not strict about the use of leading spacing.

1.1 Hello World
put "Hello World\n" to stdout

2. Lexical Conventions

2.1 Comments

The '#' character starts a comment from any place which is not inside a literal string. The comment begins at the
#' character and continues until the end of the line. This language does not support multi-line comments as a
separate comment class; multi-line comments may be emulated by writing a sequence of contiguous lines each
of which starts with a '#' as its first non-white-space character. Examples follow.

this entire line is a comment
copy 1 to k # the part of this line including and after the first '# symbol is also a comment
put "# <- this does not start a comment since it is in double quotes" to stdout

2.2 Constants

The following constants are always available in SLAWscript, and may not be changed:

e 2.718281828459045...

pi 3.141592653589793... (i.e. m)
false 0

true 1

For definitions of programmer-provided constants, please see “Numeric Literals” and “String Literals.”

2.3 ldentifiers

The term “Identifiers” refers to all user-defined names (both the names of variables and the names of
subroutines). The following rules define which characters can be used in which positions.

first character: 'A'..'"Z','a'Z'
all other characters: ‘A7), a2, 09", ' (underscore)

Keywords are not allowed as identifiers. Otherwise-usable strings that have keywords as part, but not all,

of their strings are allowed as identifiers (e.g. “if_I_were_a_rich_man”, “while_I_am_still_poor”).

Duplication across the names of subroutines and the names of variables is not allowed. This prohibition ignores
letter case, so in a program with a subroutine named “hello”, a variable named “Hello” is illegal. A subroutine
or variable may be referenced equivalently with any case variation; the identifiers “hello”, “Hello”,

and “HELLQO” all refer to the same subroutine or variable.

SLAWSscript Language Reference Manual Page 4 of 15

2.4 Keywords

The following strings are reserved for use as keywords, and therefore may not be used as identifiers. They may,
however, appear within identifiers, e.g. “do_if_true”.

and or

assert pi

copy procedure
define put

do randomize
e repeat
else return
end true
false set

from stderr
function stdout
get step

if stop
ignore times

is to
localize while

not with

Keywords must be typed in all-lower-case, with the exception of “pi”, which may be typed in any case
combination; choosing either “pi” or “Pi” is recommended, although “pI” and “PI” will also be recognized and
considered equivalent.

Any attempt at redefining any of these words, either as a variable or as a subroutine, will fail regardless of case;
therefore “While” and “IF” are also reserved words, even though they are not recognized as equivalent to
“while” and “if”, respectively.

2.5 Numeric Literals

Numeric literals must be in the form of an optional minus sign followed by either an integer, i.e. one or more
digits, or a floating-point number, i.e. zero or more digits followed by a period followed by one or more digits.
Scientific notation is not allowed in direct numeric literals, but may be encoded in a string literal and converted
to a number at run-time. In this case, the rules for the Java standard library's
“Math.Double.parseDouble(String)” method apply. Examples follow.

3 -9 3.0 0.3 .3 0+"5e4"
2.6 String Literals

String literals must be enclosed in ASCII double-quote marks, e.g. "Hello". The character sequence “\n”
(backslash+'n') (when not immediately preceded by a backslash) is converted to a newline. This sequence may
appear more than once in the same string. If a string with “\” literally enclosed is desired, then the backslash
should be doubled, like so: “\\”. Thus, if a string with “\n” literally enclosed is desired, then the backslash
must be doubled, like so: ‘“\\n”. If a string with “"” literally enclosed is desired, then the double-quote must be
preceded by a backslash, like so: “\"”.

SLAWSscript Language Reference Manual Page 5 of 15

2.7 White Space

Leading spacing, that is to say any number of space or tab characters from the beginning of each line to the first
(if any) non-white-space character, is ignored.

Ending spacing, that is to say any number of space or tab characters from the last non-white-space character to
the end of the line, is also ignored.

Unnecessary separational spacing, that is to say any number of space or tab characters above and beyond the
one required space or tab between two adjacent but distinct parts of a line, is also ignored.

Line endings are meaningful in SLAWSscript; each complete sentence must end in a newline character or
character sequence (any of CR, LF, and CR+LF is acceptable). The same rule applies to paragraph headers and
footers, even though they are not complete sentences; for example, the “if” line that starts an “if”” paragraph and
the “end if”” line which ends it.

3. Subroutines

Nested subroutines are not supported in SLAWscript. Subroutine definitions may only appear inside main-body
code, e.g. not inside an “if” paragraph. Subroutine definitions may appear before, after, or in between sentences
and other paragraphs in the main body of a program. In SLAWscript, there are two distinct types of
subroutines: functions and procedures. A SLAWscript program may not have a function and a procedure with
the same name (ignoring case differences). Subroutine invocations must have the same exact number of
parameters (including the possibility of zero parameters) as the respective subroutine definitions.

“if”” paragraphs are the only places inside a subroutine other than in the main body of the subroutine itself where
the “localize” verb may be used. “if” paragraphs are also the only places inside of a function other than in the
main body of the function itself where the “return” verb may be used. In both cases, the special verbs may be
used inside “if” paragraphs inside other “if”” paragraphs if and only if there are no non-"if” paragraphs
intervening depth-wise. An “if”” paragraph anywhere inside a loop inside a subroutine does not have the special
privilege of being allowed to contain a “localize” or a “return”.

3.1 Subroutine Scope (summarily: static)

All subroutines in SLAWSscript are statically scoped; the subroutines may be invoked from anywhere in the
program (including inside themselves, i.e. recursive subroutines).

3.2 Procedures

Procedures do not return any values, and cannot be used inside expressions; thus, the “return” keyword may not
be used inside of a procedure. Parameters are optional, and listed in brackets if desired. Invoking a procedure is
done by using the “do” keyword followed either by the procedure's identifier alone for a procedure that takes
zero parameters, or by the identifier followed by the bracketed list of actual parameters for a procedure that
takes a positive number of parameters. An example follows.

define procedure say_hello
put "Hello World.\n" to stdout
end procedure

do say_hello # example procedure invocation

SLAWSscript Language Reference Manual Page 6 of 15

3.3 Functions

Functions return exactly one value; parameters are optional, and listed in brackets when desired.

Formal parameters are automatically local variables; global variables with the same names as any of the formal
parameters are hidden for the duration (see “Variable Scope”). Invoking a function is done simply by using its
identifier alone inside an expression (including the possibility of just the identifier itself) for a function that
takes zero parameters, or by using the identifier followed by the bracketed list of actual parameters for a
function that takes a positive number of parameters. An example:

define function square[x]
1f x? # the'? operator here returns O if 'x' is not usable as a number
return (0+x)*x
“(0+x)” in case X' is e.g. “3”; otherwise x*x for x="3" would return “333”
else
put "Error: this is not a number: ""+x+"'.\n" to stderr
stop # this causes the whole program to stop, not just the subroutine
end if
end function

set a to square[3] # example function invocation

If you wish to invoke a function for the sake of its side-effect(s) but do not care about its return value, then use
the keyword “ignore”. For example...

1gnhore square[b]

... which will “throw away” b-squared if it exists, and will exit with an explanatory error message if it does not
exist because 'b' contains a non-numeric string, e.g. “Hello”.

A function may perform a “return” in its main body, inside an “if”” paragraph (including its possible “else if” and
“else” dependent clauses) in its main body, and inside “if”” paragraphs inside those “if” paragraphs.

The keyword “return” may not appear inside a loop, including inside an “if” paragraph inside a loop.

Each execution of a function must end in a “return” sentence; arriving at the “end function” line without
returning any value is an error.

4. Variables

In SLAWscript, variables do not require declaration. However, a variable must be set to some value before an
attempt to read from it is made.

4.1 Data Types
A SLAWscript variable can hold either string data (16-bit Unicode) or numeric data (IEEE double-precision).

Variables holding strings containing only a number (after the removal of optional surrounding white space) are
given special privilege not accorded to other string-holding variables: they are permitted wherever a variable
containing a number is permitted. For example, a variable containing the string “-1.2e3” is permitted as a
parameter to the subtraction operator. The rules for the Java standard library's
“Math.Double.parseDouble(String)” method control what is allowed as a number.

For the purpose of concision, throughout the rest of this manual the following terms will be used to denote the
type of data to which a phrase is referring:

e number: a datum which is stored in IEEE double-precision format

* numeric string: a string which can be converted to a number

* non-numeric string: a string which cannot be converted to a number
e arbitrary string: a string without regard to its numeric convertibility

SLAWSscript Language Reference Manual Page 7 of 15

4.2 Assignment

Assignment of the result of evaluating any valid expression may be done with the “set” keyword.
For convenience and clarity, a “copy” keyword also exists for the copying of the data in one variable into
another variable without change. Examples follow.

set hello to "world"

set a to a+1 # This will increment 'a" if it is a number, and append '1' to 'a" if 'a' is a string
set atob # This is not illegal, but it is confusing; please use “copy” instead.

copy a to b # Please note the opposite direction of data flow relative to “set”.

4.3 Variable Scope (summarily: dynamic

A SLAWscript variable is global by default, even if it is first set inside a subroutine, with the exception of
formal parameters and explicitly localized variables.

The formal parameters of subroutines are implicitly local variables. This cannot be overridden; during the
execution of a subroutine containing a formal parameter 'x', the global variable 'x' (if one exists) is hidden for
the duration. This duration includes the execution of subroutines called from the subroutine containing the
formal parameter 'x', subroutines called from those subroutines, and so on.

Variables may be explicitly localized inside of subroutines by using the keyword “localize” followed by an
identifier. Localizing the same identifier again within the same subroutine as another localization with the same
identifier (or a formal parameter with the same identifier) is not an error, and is ignored. Localizing an identifier
for which there is no global variable is not an error; it allows that variable to exist for the duration (see the
preceding paragraph for the definition of “duration”), and causes the variable to cease to exist after the
subroutine in which it was localized ends.

Localization may occur in the main body of a subroutine, inside an “if”” paragraph in the main body of a
subroutine (including its possible “else if”” and “else” dependent clauses), and inside “if”” paragraphs inside those
“if” paragraphs. Localization may not occur inside a loop, including inside an “if”” paragraph inside a loop.

The scope of a localization that occurs inside an “if”” paragraph is the same as if it had occurred in the main
body of the subroutine.

Once a variable has been localized, it remains localized for the duration, i.e. until the same execution of the
same subroutine ends. Thus, subroutines called from a (potentially the same, i.e. recursive) subroutine receive
their “parent” subroutine's local variables, if any, rather than global variables with the same identifiers.

An example follows.

define procedure localization_example
localize a

At this point, 'a' is a local variable until this procedure ends; any procedures or functions called by
this procedure inherit this version of 'a' unless they have an 'a’ in their formal parameters.

An example of what is not valid here: “put a to stdout”;reason: 'a' is undefined as of now and

9 <« CLINT3

may not be used except to set it (using “copy”, “get”, “set”, “randomize”, or “repeat with”).

set a to 10
put a to stdout # this is now OK: it will put “10” to stdout
end procedure # after this line, not only is control returned to the caller, but 'a' is also

automatically delocalized. If “localization_example” was called from a
context where 'a' was 9, then 'a' shall now be 9 again.

4.4 Randomization

A variable may be explicitly randomized, which sets it to a random number between O (inclusive) and 1
(exclusive) when the “randomize” sentence is executed. The variable is not continually re-randomized; it must
be re-randomized if a new random number is required. This is the only random number support in SLAWSscript.
An example: “randomize r”.

SLAWSscript Language Reference Manual Page 8 of 15

5. Operators

5.1 Unary Operators

() order-of-precedence overrides.

| | absolute value, string length (surround the operand as if with parentheses).
! factorial (postfix).

- unary negative (e.g. “-a”

? variable content type (postfix): returns O if the variable holds a non-numeric string, 1 if it holds a numeric string,
and 2 if it holds a (non-string) number; illegal to use after anything but a variable.

?? variable validity (postfix): returns O if the variable is undefined, 1 if it holds any string, and 2 if it holds a
(non-string) number;illegal to use after anything but a variable.

~ prefix: returns the rounded number if followed by a numeric expression or a numerically
convertible string expression; invalid if followed by a non-numeric string.

% postfix: divides the preceding number by 100; may only appear after a literal number, e.g. not after a variable.
not boolean NOT.

5.2 Binary and Tertiary Operators

A exponentiation.
/ division.
* multiplication (both numeric and string).

- subtraction (e.g. “a—b”).

+ addition, string concatenation.
< is less than.

<= is less than or equal to.

> is greater than.

>= is greater than or equal to.

= relaxed equality (see “Binary Auto-conversion”).

= strict equality (see “Binary Auto-conversion”).

< relaxed inequality (see “Binary Operator Auto-conversion”).

<<>> strict inequality (see “Binary Operator Auto-conversion”).

and boolean AND (short-circuited: left operand is always evaluated, right operand is not always evaluated).
or boolean OR (short-circuited: left operand is always evaluated, right operand is not always evaluated).

@ substring (postfix): must be followed by either one operand or two operands separated by a semicolon;
“a@9” returns the string in 'a’ from the 9th char. onwards; “a@9;2” returns a string of length of at most 2,
starting from the 9th char. of 'a'; returns an empty string if the first operand is not long enough for the
second operand, or if the third operand (if present) is non-positive after rounding. Returns the empty
string if the third operand is present and is zero after rounding.

substring position: "Hello":"el" returns 2; "Hello":"x" returns O; "x":"Hello" returns O; "":a returns O
for any defined 'a'; a:"" returns -1 for any defined value of 'a' (including numbers), since the empty
string is implicitly contained within every string, yet its position within the enclosing string cannot be
defined. Note: when the right parameter matches the left one in more than one place, the first match
determines the index that is returned; for example, "Hello":"1" returns 3.

SLAWSscript Language Reference Manual Page 9 of 15

5.3 Operator Precedence

The following list of groups of operators is in the order of highest-precedence-first. Operators within the same
group have the same precedence level, and are evaluated left-to-right.

1. CH) |1

2. ! not ~ % ? ??7 unary -

3. @

4, A

5. /

6. *

7. + binary —

8. < > <= >= = == <> <<>>
0. and or

The order of precedence has been carefully chosen so as to make it as likely as possible that what the
programmer intended is what is “understood” by the computer, even if parentheses were not used,

especially with respect to equality/inequality and chains of all-and/all-or operations. Therefore, for example,
“a>b+c and b<c/d and f=0 and g>=h!" is equivalent to “(a>(b+c)) and (b<(c/d)) and (f=0) and (g>=Ch!))”.
Be aware, however, that chains of boolean operations which mix “and” with “or” must use parentheses if they
are to be evaluated in an order other than left-boolean-operation-first. Also be aware that “not” (like other
group-2 operators) binds tightly, and therefore requires its operand to be grouped using “()” or “l I if the
operand is not either indivisible (i.e. a constant, a literal, or a function invocation) or an expression of group-1
or group-2 precedence level.

5.4 Operator Chaining

The binary and tertiary operators allow chaining; for example, “set a to b+c+d” is perfectly valid.

However, please be advised that chaining operators will not always produce what you might expect.

For example: in math classes, one is typically taught that “a<b<c” means that 'a' is less than b and 'b' is less than
'c’. However, in SLAWscript, as in many other programming languages, although “a<b<c” is a valid expression,
it does not mean what it would mean in a math class. To get the math-class meaning of “a<b<c” in
SLAWSscript, you must use something equivalent to “a<b and b<c” instead.

6. Auto-conversion

The SLAWscript implementation shall, when needed, convert data from its current type to another type,
possibly with multiple conversion steps, in order to use the operands that are given to operators and verbs.
These conversions do not affect the data or the type of data stored in a variable; the conversions are temporary,
and may include converting the data type of the result of an expression to the needed data type.

The SLAWscript implementation shall output an error message and halt the program due to an incompatible
data type only when it cannot convert the supplied (or computed) data to the needed type; for example, when a
number is needed, and a non-numeric string (e.g. “Hello”) is supplied instead.

6.1 Unary Operator Auto-conversion

Since the following unary operators in SLAWscript expect a number, they all attempt to convert a string to a

number when they find a string as their operand: '!", “not”, unary '-'. Examples follow.
set a to not "0" # this should set 'a' to 1

set ¢ to "3"

set d to c! # this should set 'd' to 6 (numeric)

set f to -c # this should set 'f' to -3 (numeric)

The following unary operators never perform auto-conversion: “()", “I I”,'%', '?", “??7”.

SLAWSscript Language Reference Manual Page 10 of 15

6.2 Binary Operator Auto-conversion

For binary operations, the implementation is to make its best effort at making sense of the expression, and only
abort with an error if absolutely necessary. If at least one of the operands must be converted, and the choice of
which operand to convert is ambiguous because the expressions resulting from either expression would be valid,
then the left operand “wins”, i.e. gets to keep its current type. Therefore, "9"*9 yields the string “999999999”,
whereas 9*"9" yields the number 81.

Auto-conversion of a data type does not implicitly change the data type in a variable. For example...

set g to 4*c#reminder: 'c'is the string “3”
gisnow 12

set h to c*4

'h' 1s now “3333” because 'c' is still a string

If you wish to permanently change the data type of a variable by using auto-conversion, you must use “copy’ or
“set”. For example...

set 1 to 9

set 1 to ""+1
#'1' is now “9” because the left-hand empty string “won” the data-type conversion “contest”

copy 1 to j
set j to 0+j
#'j' is now 9 (numeric) because the left-hand zero “won”
copy 1 to k

set k to 1*Kk# this is another way to force a numeric without change of value
#'k' is now 9 (numeric)

As a result of the autoconversion rules, the '+' operator and the '*' operator are not always commutative.
In other words, a+b is not always the same as b+a and a*b is not always the same as b*a. When 'a' and 'b' are
both truly numbers, i.e. not merely numeric strings, commutativity is preserved.

The following binary operators attempt to perform autoconversion to a number on both of their parameters:

lA' '_Y '<|’ 6‘<:”’ 6‘>:”, Y>', I/" G‘and”, 66n0t,” 660r9"

9 b

G__

The relaxed equality (“=") and relaxed inequality (“‘<>") operators only check for either string equality or
numeric equality, and don't care which one they find; if they find any equality, even if by auto-conversion,
then they consider their operands to be equal. In other words, "3"=3 and 9="9" are both true,

and "3"<>3 and 9<>"9" are both false. "Hello"="Hello" is also true.

The strict equality (“==") and strict inequality (‘“<<>>") operators never perform auto-conversion.
Therefore, "3"==3 and 9=="9" are both false, and "3"<<>>3 and 9<<>>"9" are both true. In all cases where the
(in)equality holds without any auto-conversion, strict (in)equality works the same as relaxed (in)equality.

The '@' operator performs conversion to a string if it finds a number as its first operand, and attempts to perform
auto-conversion to a number on either or both of its second or third operands, as needed. For example,
12345@"2";"3" produces “234”.

The '+' and "*' operators perform autoconversion of their parameters, if needed. Where ambiguity comes into
play due to the types and content of the parameters, the left-hand parameter (with its original type) determines
the result of the operation. For example, 1+"2" yields the number 3 whereas "1"+2 yields the string “12”.

For the '*' operator, "1"*2 yields “11”, whereas 1*"2" yields the number 2. For non-numeric strings, there is no
autoconversion; therefore, "a"+"b" always yields “ab”, and "a"*"b" is always an error.

The ':' operator performs conversion to strings on any operand it finds as a number. Therefore, even a substring
position between an enclosing number and an enclosed number can be found; for example, Pi:1 yields 3.

For forcing a value to be in either number form or string form, the recommended idioms are “0+..” and “""+..”,
respectively. Other techniques may also produce the desired result. For example, “1*..” is mathematically
equivalent to “0+..”. Other techniques are left as an exercise for the reader.

SLAWSscript Language Reference Manual Page 11 of 15

6.3 Boolean Context

While there is no boolean data type in SLAWSscript, there is a concept of boolean context. This context occurs
whenever a boolean value is needed from the program. For example, an “if” statement, a “not” operator, and a
“while” loop each require one boolean value, whereas “and” and “or” require two of them.

In this context, any numeric expression that evaluates to O is considered false. All other numeric expressions are
considered true. Any string that can be converted to zero (e.g. “07, “0.0”, “-0”) is considered false. Any string
that can be converted to a non-zero number is considered true. A non-numeric string in this context is an error,
and causes an error message to be output and the program to be halted.

The inequality and equality operators (both relaxed and strict), as well the “and”, “not”, and “or” operators,
all produce a boolean number, i.e. either O or 1, as their output.

The '?" and “??” operators, while they do not produce only strictly boolean values, have been designed in such a
way as to make them usable by themselves, as if they were strictly boolean. The '?" operator can be used by
itself to ensure that a variable is currently usable wherever a number is needed (as long as having a numeric
string will also cause the desired result to be produced), and the “??” operator can be used by itself to verify that
the variable is currently defined.

Note: if a number is required, and a numeric string will not necessarily cause the desired result to be produced,
then use e.g. “if x7>=2" or “if x?7>=2", both of which are more future-proof than “x?=2", since a future version
of SLAWscript may allow '?" and/or “??7” to return (for example) 3 for an integer and 4 for a boolean.

(Design concept: higher return values indicate a more-specific kind of number which is also enclosed within the
lower positive-number return value number classes.)

6.4 Integer Context

While there is no integer data type in SLAWSscript, there is a concept of integer context. This context occurs
whenever an integer value is needed from the program.

Whenever an integer is required, the SLAWSscript implementation shall convert the datum first to a number,
if it is a numeric string, and then from a number to an integer by rounding. Therefore, —0.1 and 0.1 both convert
to 0, 0.5 converts to 1, —0.9 converts to —1, etc.

The “@” operator must take either one or two integers as its second and optional third operands. The second
operand must be positive after rounding, and the third operand must be non-negative after rounding.

Also, the “repeat...times” loop takes one integer, which must also be non-negative after rounding.

7. Conditionals

SLAWSscript supports the usual “if...else if...else...end if” structure. The “else if”” section may appear any non-
negative integer number of times per “if”. The “else” section may appear zero times or one time per “if”’. The
“end if” marker must appear exactly once per “if”’, regardless of the presence or lack thereof of “else if” sections
and an “else” section. Any valid expression may appear after “if”” and “else if”’; see “Boolean Context” for the
details of the interpretation. At least one space must be present between the “else” and the “if” of “else if”” and
between the “end” and the “if” of “end if””. The code (if any) inside all sections must be valid, even if it will
never be executed. Empty sections are allowed, including comment-only sections, blank-line-only sections, and
truly empty sections with no lines at all.

An example follows.

if @ and @

Putting code here won't help - it will never execute since (0 and 0) is false.
else 1f @ or @ #This “else if” is a silly exercise in futility.

else
end if

SLAWSscript Language Reference Manual Page 12 of 15

8. Loops

SLAWSscript supports three kinds of loops: “repeat ... times” loops, “repeat with” loops, and “while” loops.

8.1 “repeat ... times” Loops

This type of loop is useful for code that needs to be executed a zero-or-more predetermined number of times,
and the code inside the loop does not need to keep track of the number of times it has been executed.

The loop is started with a line containing the word “repeat”, followed by at least one space or tab, followed by
an expression, followed by at least one space or tab, followed by the word “times”. The loop must be ended
with a line containing “end repeat”, where the number of spaces or tabs between “end” and “repeat” must be at
least one.

The existence of this type of loop frees SLAWscript programmers from having to worry about index variables,
index incrementation, and loop termination. Furthermore, it prevents unnecessary “pollution” of the variable
namespace with a variable that is only going to be used for “housekeeping”. In the case of this loop type,
SLAWSscript performs the housekeeping automatically.

The expression between “repeat” and “times” is evaluated in integer context, and is therefore rounded.

If this expression (taken as a number) rounds to zero, the loop is not executed at all. A positive number (after
rounding) causes the appropriate number of loop executions (provided the program does not halt before the loop
ends). Negative numbers (after rounding) and non-numeric strings as the expression result are both errors.

An example follows.

repeat 999999999 times
put "Number 9... " to stdout
end repeat

8.2 “repeat with” Loops

This type of loop is useful for code that needs to be executed a zero-or-more predetermined number of times,
and the code inside the loop does need to keep track of the number of times it has been executed.

The loop is started with a line containing the word “repeat”, followed by at least one space or tab, followed by
the word “with”, followed by an identifier that is not in use as the name of a subroutine, followed by at least one
space or tab, followed by the word “from”, followed by at least one space or tab, followed by an expression,
followed by at least one space or tab, followed by the word “to”, followed by at least one space or tab, followed
by an expression, optionally followed by (at least one space or tab, followed by the word “step”, followed by at
least one space or tab, followed by an expression).

The loop must be ended with “end repeat”, where the number of spaces or tabs between “end” and “repeat”
must be at least one.

The identifier that comes after the word “with” is used as the loop index, which is still accessible after the loop
ends. The usual scope rules for variables apply, so if the identifier was not previously localized (for a loop
within a subroutine), then it identifies a global variable. If the identifier was previously localized, then the
higher-level local variables (if any) and global variables (if any) with the same name are not affected.

The expression that comes immediately after the word “from” is used as the loop's starting index.
This expression must yield either a number or a numeric string (which will be auto-converted to a number).
There is no particular restriction on this number; it can be any real number, so long as the loop makes sense.

The expression that comes immediately after the word “to” is used as the loop's ending index. This expression
must yield either a number or a numeric string (which will be auto-converted to a number).
There is no particular restriction on this number; it can be any real number, so long as the loop makes sense.

If the two indices are equal, then the loop is not executed at all, regardless of the optional “step” section.
In this case, the loop's index variable is set, the same as if the loop had been executed; it is set to the value to
which both of the indices are equal.

SLAWSscript Language Reference Manual Page 13 of 15

If the optional “step” section is omitted, then SLAWSscript automatically sets the loop increment either to one,
in the case of the starting index being less than the ending index, or to negative one, in the case of the starting
index being greater than the ending index.

If the optional “step” section is not omitted, then SLAWscript sets the loop increment to the value yielded by the
expression that comes after the word “step”, converting it to a number if it was a numeric string. In this case,

if the value of the “from” expression is less than the value of the “to” expression, then the value of the “step”
expression must be positive, and if the value of the “from” expression is greater than the value of the “to”
expression, then the value of the “step” expression must be negative. (This is the “makes sense” which was
referred to earlier in this section.) In the case of the loop's starting and ending indices being equal, the value of
the “step” expression is irrelevant, since the loop will not be executed.

Non-numeric strings as the result of evaluating the “from” expression, the “to” expression, or the “step”
expression (if it is present) are all errors.

The results of evaluating the “from” expression, the “to” expression, and the “step” expression (if it is present)
are not rounded; therefore, repeating from 0.1 to 0.5 with a step of 0.001 is valid and will behave as expected.

An example follows.
repeat with a from b+l to c-1 step d/2

put a+"\n" to stdout
end repeat

8.3 “while” Loops

This type of loop is useful for code that needs to be executed a non-predetermined number of times. It is the
same as the “while” loop the reader is likely to be familiar with from at least one other programming language.
For the details on the interpretation of the expression following the word “while”, see “Boolean Context”.

The loop must be ended with “end while”, where the number of spaces or tabs between “end” and “while” must
be at least one.

An example follows.

while a<b
set a to a+l
end while

9. Input and Qutput

Only the three standard UNIX-like channels (stderr, stdin, and stdout) are accessible within SLAWscript; that is
to say, files cannot be opened and used without external assistance, e.g. shell redirection.

9.1 Input

In SLAWSscript, there is only one input technique: the “get” verb, which fetches one line from the
“Standard Input” channel. Each such input must end with the system's appropriate newline, which is not
included in the value which is stored into the variable indicated by the “get” sentence. The value stored by
“get” is always a string. If a number is desired, and a numeric string was retrieved by “get”, then a numeric
conversion may be performed by e.g. “O+input”. See “Auto-conversion” for more on this topic.

An example follows.

get foo

At this point, “foo” should contain a string representing one line of input, minus the ending newline.

SLAWSscript Language Reference Manual Page 14 of 15

9.2 Output

In SLAWSscript, there is only one output technique: the “put” verb, which sends data to either the
“Standard Output” channel or the “Standard Error” channel, as determined by the SLAWSscript code.

A “put” sentence consists of a line containing the word “put”, followed by at least one space or tab, followed by
an expression, followed by at least one space or tab, followed by the word “to”, followed by at least one space
or tab, followed by either the keyword “stdout” or the keyword “stderr” (all lower-case for both).

The expression included in a “put” sentence may evaluate to either a string or a number. If it evaluates to a
number, that number is auto-converted to its string representation.

The implementation of the “put” sentence shall not output any characters that were not specified by the
evaluation of the expression. In particular, an explicit “\n” is required in order to output an end-of-line.

Examples follow.

put "'a' 1s currently <"+a+">\n" to stdout # an explicit “\n” is required to output an end-of-line
put "Oops!\nI did it again!\n" to stderr # more than one “\n” in a single string is OK

10. Program Termination

SLAWSscript programs normally terminate only when they either arrive at their normal conclusion after the
execution of the last line of main body (i.e. non-subroutine) code, or when an error occurs.
However, additional methods to cause program termination to occur are available.

10.1 “stop”

SLAWscript includes a verb called “stop” that causes immediate unconditional program termination. It is valid
anywhere, including inside loops, subroutines, and conditionals.

10.2 Assertions

As an aid to programmers, the language defines a verb “assert” that is similar to verbs with the same name in
other programming languages. An “assert” sentence compares the current contents (if any) of a variable whose
identifier immediately follows the word “assert” to a literal or constant value which follows the word “is”
which, in turn, follows the identifier.

This is mainly a convenience mechanism, as otherwise the programmer could write something like this:

1f a<<>>"test"
stop
end if

However, in the name of increasing the likelihood of programmers using this kind of assertion liberally,
the following is equivalent to the preceding:

assert a is "test"

In the case of “assert” statements, auto-conversion does not apply; that is to say, “assert a is 3” and

“assert a is "3"” are different. In any place that one would succeed, the other would fail. If the programmer
is certain that a variable contains either a number or a numeric string, is not sure which is the case, and wants
either one to succeed, then (s)he may write something like this:

if 3<>a # This is intentionally not “a<>3", which would auto-convert 3 to a string if 'a' were a string,
stop # which would then lead to a possibly-erroneous result, since "3"="03.0" is false.

end if

... which will allow program execution to continue only if 'a' was either 3 or “3” or “3.0” or “03.00” etc.

SLAWSscript Language Reference Manual Page 15 of 15

11. Summary
A SLAWscript variable's data and/or data type can only be changed or initialized by subroutine calls with

29 ¢ 29 ¢ 29 ¢

parameters and by the following sentence types: “copy”, “get”, “randomize”, “repeat with”, “set”.

Auto-conversion produces temporary converted copies of the original values which are not stored for later use
unless the auto-conversion occurs in the context of a “repeat with” or “set” sentence or a subroutine invocation
with parameters.

Within the context of a subroutine, formal parameters are automatically localized and therefore “hide” global or
higher-level local (i.e. the caller is another subroutine) variables with the same names until the end of the
relevant execution cycle (i.e. recursion included) of the subroutine that did the hiding. Variables may be
explicitly localized by using the “localize” verb. Subroutines called by another subroutine initially “inherit” its
immediate caller's local variables (regardless of whether they were localized by formal parameters or explicitly)
unless they were “hidden” by the callee’s formal parameters. Subroutines more than two calls “deep” are not
guaranteed initial access to all of the entire call chain's local variables, even in the absence of formal parameters
in the most-recent subroutine, since a “parent” subroutine may have hidden a “grandparent” or
“great-grandparent” etc. local variable either through the use of formal parameters or through the use of the
“localize” verb.

