

DDRL Reference Manual

Columbia University

COMS W4115 Programming Languages and Translators
Spring 2007

Prof. Stephen Edwards
TA: Abhilash Itharaju

Team Members:
Zhiyang Cao zc2109@columbia.edu
Yitao Wang yw2226@columbia.edu

Alex Ling Lee al2537@columbia.edu
Yan Zhang yz2197@columbia.edu

Kyung Kwan Kim kk2367@columbia.edu

1. Introduction

 DDRL is a computer language based on the C language [1]. The DDRL language
uses basic C language data type and expression and control structure, but it is much
easy and simple than C language, because the DDRL is focused on generating the
graphics shapes and control sequence for dynamic presentation of the data. Only basic
flow controls and simple operators is borrowed from C language.

As we mentioned above, our language consists of three parts: basic flow control
and expression, graphics defines and control, animation sequence define and control,
we will specify all these following.

2. Lexical Conventions
2.1 Comments

Every line of comments should begin with “//” and end at the end of the line.

2.2 Identifiers

An identifier must start with a lower case letter, and only include lower case letter
and a number. A number, if contained by an identifier, can only be placed at the end of
it.

2.3 Keywords
 The following words are reserved by the system as keywords and should not be
used as identifiers. Note that all key words in DDRL starts with capital letters
Basic:
If Else While For Foreach Switch Case
Return Break Continue
Int Float Dataset String Array
Import

Graphics Define:
Color Pointsize Linewidth
Point EndPoint Line EndLine Polygon EndPolygon
Box Endbox Cylinder EndCylinder Slice EndSlice
Plane EndPlane Axis EndAxis AxisMarker EndAxisMarker
Text EndText DisplayModel Display

Time tag:
Loop Clear

Graphics Control:

Show Unshow Position Rotation Scaling
2.4 Types and Constants

3 types of data type are supported: Int, Float, String.
Int: 16 bit integers;
Float: 32 bit float point data type;
Array: a sequence of data objects;
String: a sequence of characters;
Dataset: A buffered data manipulator, used to manipulate data from a file.

Accordingly, available constants include: Int constants, Float constants, String

constants.

Note that programmers can use the attributes and member function of Dataset

type to manipulate the content of a file. It can retrieve the column size, row size,
column name, row name and the data.

Example:
 Dataset mydata = OpenFile(“./example.txt”);
 Int size = mydata.columnsize;
 String rowname = mydata.rowname[1];
 Array Int data[size] = mydata.row[1];

3. Expressions
DDRL expressions are list by precedence form high to low:

3.1.1 Primary expressions
 Primary expressions include identifiers, constants, function calls, contained
within group left to right.

3.1.2 identifier
 Identifier can be Int, Float, String, Dataset, DisplayModel;

3.1.3 Constant
 Constants in DDRL include Integer constant, Float constant, and String constant;

3.1.4 (expression)
 The parenthesis is used to construct the precedence;

3.1.5 Primary-expression <expression-list>
 Such expression is used to clarify the point on time axis;

3.1.6 Primary-expression (expression-list)

 This is used to describe function call, which is primary expression. As a part of
function call, parenthesis is required. Since DDRL doesn’t support pointer type, all
arguments are passed by value. Recursively function calls are supported.

3.2 Operators
3.2.1 Unary Operator
 -expression
The type of the operand here must be Int or Float. Operator – doesn’t change the type
of the expression, it only gives the negative value of the original operand. It associates
from right to left.

3.3 Additive Operators

expression +expression,
expression – expression

3.4 Multiplicative Operators

expression * expression
expression / expression

3.5 Exponential Operator
expression ^ expression

3.6 Relational Operators
expression < expression
expression > expression
expression <= expression
expression >= expression

3.7 Equality Operators
 expression == expression
 expression != expression

3.6 Logical Operators

expression && expression
expression || expression

3.8 Assignment operator
expression = expression

3.9 Other Operators
expression , expression
Comma is used to separate 2 or more expressions;

 constant int. constant.int

 “.” Is used to construct float numbers;

expression;
“;” is used to terminate a statement;

{expression;}
“{“,”}” are used to group expressions.

4. Delearation
4.1 Type specifiers

The type specifiers are:
Type-specifier:

Int
Float
String
Dataset
DisplayModel

4.2 Declarators

declarator-list:
declarator
declarator declarator-list

declarator:

identifier

declarator declarator-list:

identifier

4.3 Declaration of struct type

Struct identifier { typedecllist}
To standardize declaration, DDRL only support one way of declaring struct.

4.4 Declaration of Array type
 Array type-specifier [size]

4.5 Display Model Dclaration
 DisplayModel identifier (parameter-list)

 This will be specified in §8

4.4 Function Defination

func definition:
typespecifier identifier(parameter-list)

{
vardeclaration-list
basic-statement-list
graphics-control-statement-list
}

parameter-list:

typespecifier identifier
typespecifier identifier parameter-list

vardeclaration-list:

vardeclaration
vardeclaration vardeclaration-list

basic-statement-list:

basic-statement
basic-statement statement-list

 graphic-control-statement-list
 graphic-control-statement
 graphic-control-statement graphic-control-statement-list

Note that functions should be defined before declared.

5. Basic Statements

Every statement should be ended with a semicolon. Statement is executed in
sequence.

5.1 Expression statement
 Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

5.2 Compound statement

compoundstatement:

{ statementlist}

basic-statementlist:
basic-statement
basic-statement basic-statementlist

5.3 Conditional statement
If (expression) statement
If (expression) statement Else statement

5.4 While statement
 While (expression) statement

5.5 For statement
 For (expression; expression; expression) statement

5.6 Foreach statement

Foreach (identifier In identifier) statement

5.7 Switch statement

Switch (expression) statement

5.8 Break statement
 Break;

5.9 Continue statement
 Continue;

5.10 Return statement
 Return (expression);

6. Graphics Define Statement

6.1 Vertex Statement
 Specify a 3D coordinate for a vertex, which is used to define a vertex in a 3D
model. It has the form

 Vertex-statement:
 Vex expression, expression, expression;

Normally, the expression would be identifier, constant and other simple expression;
There expressions are the 3D coordinate of the vertex in form of x, y, z;

6.2 Compound Graphics Statement
 The compound graphics statement consists of two parts: one is the basic
statement; another is the vertex-statement. It has following form.

 Compound-graphics-statement:
 Basic-statement
 Vertex-statement-list
 Basic-statement Compound-graphics-statement
 Vertex-statement-list Compound-graphic-statement

 Vertex-statement-list:
 Vertex-statement
 Vertex-statement vertex-statement-list

6.3 Color Statement
 Specify a color for the following 3D model; by default, the system color is black.
When a color statement specifies a kind of color for system, it will remain this color
for following any 3D model unless another color statement specifies a different color.
 The Statement

 Color-statement:
 Color expression, expression, expression, expression;

Four expressions are the color exponents of red, green, blue, alpha; all values of color
component should in the range of 0 - 255.

6.4 Point Size Statement
 Define the size of the point displayed in 3D. It has the form

 Point-size-statement:
 Pointsize expression;

 The point size should be an integer which at least is 1.

6.5 Line Width Statement
 This statement defines the width of the line displayed in 3D. It has the form

 Line-width-statement:
 Linewidth expression;

 The line width should be an integer which at least is 1.

6.6 Point Statement
 Point statement defines a serial of point that in the 3D. This statement should also
define at least one point by using vertex-statement.

 Point-statement:
 Point Compound-graphics-statement EndPoint;

6.7 Line Statement
 Line Statement defines a single line connected all the vertexes specified in the
statement. This statement should define at least two points by vertex-statement. And
the line will connect the point in order.

 Line-statement:
 Line Compound-graphics-statement EndLine;

6.8 Polygon statement
 This statement defines the polygon in 3D by specifying the vertex of the polygon.
The polygon should have at least 3 vertexes and all the vertexes should convex,
otherwise the polygon will not be showed.

 Polygon-statement:
 Polygon Compound-graphics-statement EndPolygon;

6.9 Box statement
 Box statement defines a box in 3D by specifying the width, length and height.
The box normally is placed at the point defined. And the width is the value on x-axis,
length is the value on z-axis, height will be the value on y-axis;

Box-statement:
 Box Compound-graphics-statement expression, expression, expression; EndBox;

6.10 Cylinder statement
 Cylinder statement defines a cylinder in 3D by specifying the radius and height.
The cylinder will be placed at the point defined. And the height will be the value on
y-axis.

Cylinder-statement:
 Cylinder Compound-graphics-statement expression, expression; EndCylinder;

6.11 Slice statement
 Slice statement will defines parts of the pie model in 3D. It should define the
radius, height, startAngle and angle of the slice. And the height is the value on y-axis.
And the startAngle on the positive direction of x-axis is 0.

Slice-statement:

Slice Compound-graphics-statement expression, expression, expression; EndSlice;

 The four expressions are radius, height, startAngle and Angle in order.

6.12 Plane statement
 This statement defines a plane in 3D by specifying its leftmost vertex and
rightmost vertex.

 Plane-statement:
 Plane Compound-graphics-statement EndPlane;

6.13 Axis statement
 This defines and displays the axis in 3D. Only three axes X, Y, Z can be defined.

 Axis-statement:
 Axis X expression, expression, expression; EndAxis;
 Axis Y expression, expression, expression; EndAxis;
 Axis Z expression, expression, expression; EndAxis;

 The three expressions are the displayed title of the axis, the length of the axis and
the interval of the axis for marker.
 The title is string type;
 The length is integer type;
 The interval is integer type;

6.14 AxisMarker statement
 AxisMarker statement defines the title for the interval marker on the axis.

 AxisMarker-statement:
 AxisMarker Marker-statement-list EndAxisMarker;

 Marker-statement-list:
 Marker-statement
 Marker-statement Marker-statement-list

 Marker-statement:
 expression, expression;

 The two expressions are the index of the interval marker and the title of this
marker. The index should be integer and the title should be string.

6.15 text statement

 The text statement defines the text displayed in both 3D and 2D. The text should
be a string. It has the form

 Text-statement:
 Text expression vertex-statement

 If the vertex-statement third expression equals to zero, then the text will be
showed in 2D, and the first two values will be normalize to the screen size.

6.16 graphics define statement
 For following specification, we state this statement which is one of the most
important parts in our language. The graphics define statement is used to define the
3D elementary models that will be displayed.

 Graphics-define-statement:
 Color-statement

Point-size-statement
Line-width-statement
Point-statement
Line-statement
Polygon-statement
Box-statement
Cylinder-statement
Slice-statement
Plane-statement
Axis-statement
AxisMarker-statement
Text-statement

Graphics-define-statement-list:
 Graphics-define-statement
 Graphics-define-statement Graphics-define-statement-list

7. Time Tag Statement
 The time tag statement controls the time slice of the animation of special graphics
statement. The time tag statement specifies the start time and the duration of the
animation. The time tag statement can only control (precedence of) the graphics
statement, like graphics define statement and graphics control statement.

7.1 Time tag statement
 Time-tag-statement:

 <starttime, duration>:
 <starttime, duration>:Loop
 <starttime, duration>:Clear

 The starttime controls the start time of the following graphics animation. The
duration is the length of this animation.

Keyword Loop means redisplay the following animation after it finishes.
 Keyword Clear means clear the following graphics elements after it finishes.
 The starttime and duration are integer type, and should be positive.
Time tag statement only effects the graphics statement on the same line. And graphics
statement includes Graphics-define-statement and Graphics-control-statement.
We will specify the Graphics-control-statement at §9.

7.2 time wildcard
 For easy define the start time and duration of animation, the language provides
two wildcard for time tag statement: ‘$’ and ‘#’.
‘$’: the time that last animation ends. It can only used for starttime in time tag
statement.
‘#’: the duration of the graphics statement animation. The Graphics-define-statement
default length is 1 second. And duration of the Graphics-control-statement is the
length of its controlled Display Model. Looped animation will only count once for its
duration.

Example: <$, #>:Loop

The scope of the wildcard is only in the current display model.

8. Display Model Definition
 In our language, the major display model is Display Model. The model is defines
by type-decl-list and Graphics-define-statement. The type-decl-list defines the data
member of the Model. This should be at the top of the model. The
Graphics-define-statement will define the graphics and animation sequence of the
model.
 The Display Model is the basic element of program. It can only be controlled by
graphics control statement.

 Display-model-definition:
 DisplayModel identifier(parameter-list)

{
type-decl-list
$<DISPLAY

Display-model-def
$DISPLAY>

}

parameter-list:

typespecifier identifier
typespecifier identifier parameter-list

 Display-model-def:
 Basic-statement
 Time-tag-statement Graphics-define-statement
 Basic-statement Display-model-def
 Time-tag-statement Graphics-define-statement Display-model-def

9. Graphics Control Statement
 The graphics control statement control the display or animation of the display
model. It can only control the display model. Control includes show the model;
unshow the model, position of the model, rotation of the model and scaling of the
model.

9.1 show model statement
 This statement will show the display model on the screen according to its position
setting. By default the model position will be at the (0, 0, 0);

 Show-statement:
 Time-tag-statement Show DisplayModel;

9.2 Unshow model statement
 This statement will hide the display model on the screen.

 Unshow-statement:
 Time-tag-statement Unshow DisplayModel;

9.3 Position model statement
 Set the position of the model. x,y,z are the position.

 Position-statement:
 Time-tag-statement Position DisplayModel x,y,z;

9.4 Rotation model statement
 Set the rotation of the model. x,y,z are the rotation angle.

 Rotation-statement:
 Time-tag-statement Rotation DisplayModel x,y,z;

9.5 Scaling model statement
 Set the scaling of the model.

 Scaling-statement:
 Time-tag-statement Scaling DisplayModel;

9.6 Graphics Control Statement
 All statements above compose the graphics control statement.

 Graphics-control-statement:
 Show-statement
 Unshow-statement
 Position-statement
 Rotation-statement
 Scaling-statement

10. Scope rules

DDRL supports the declaration of global variables.
For local variables which are declared inside specific functions, they belong only to
those functions and models.
 In Compound statement, the local variables are only effective between ‘{‘ and
‘}’;

11. Compiler control lines
Keyword “Import” is used to control the compiler so that the compiler knows where
to find modules or functions.

Example: Import “./chartmodel.drl”

10. Example

//Example
//draw a column chart according to the original data

//define the column display model
DisplayModel columnchart(int size)
{
 Array float data[size]; //define the data array
 int r = 255, g=0, b=0, a = 255; //the color for our selection

 float threshold = 50.0; //threshold

 $<Display
 int i;
 for(i=0;i<size;i++) //loop the array for all the data
 {
 if(data[i]>threshold) //if the data larger than threshold
 {
 Color r,g,b,a; //use our defined color
 <$,#>: Box //draw the box, height as value
 Vertex 1.0+i*2,0.0,0.0;//start at current time of this model
 2.0,2.0,data[i]; //duration is default time for Box
 EndBox;
 }
 else
 {
 Color 255,255,255,100;
 <$,#>: Box
 Vertex 1.0+i*2,0.0,0.0;
 2.0,2.0,data[i];
 EndBox;
 }
 }
 $Display>
}

//main function that display the model
int main()
{
 Dataset mydata = OpenFile("./datafile.txt"); //open data
 int size = mydata.columnsize; //get column size
 DisplayModel columnchart mychart(size); //define model
 mychart.data = mydata.row[1]; //get data
 <10,20>: Show mychart; //show model in 2s start 1
 <$,10>: Postion mychart 10.0,10.0,10.0; //position model
 <$,#>: Rotation 0.0,90.0,0.0; //rotation model
 <$,#>: Unshow mychart; //hide model

}

REFERENCES
1. Dennis M. Ritchie ‘‘C Reference Manual’’ Bell Telephone Laboratories 1972.

